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a b s t r a c t 

Coming with the era of highway satellites, nowadays there is a massive amount of remote 

sensing images captured. Therefore, it is now feasible to detect vehicles directly from these 

satellite images, which has attracted extensive research attentions for both academic and 

industrial applications. However, it is not an easy task at all, mainly due to the difficulty 

to obtain training data to train vehicle detectors. On the contrary, there has been sufficient 

amount of labeled information regarding vehicle regions in the domain of aerial images. In 

this paper, we study the problem of detecting vehicles on highway satellite images, with- 

out the time-consuming step of collecting sufficient training data in this domain. Our key 

idea is to adopt a novel transfer learning technology that transfers vehicle detectors trained 

in the aerial image domain to the satellite image domain. In doing so, several cutting-edge 

vehicle detection algorithms can be directly applied. More specifically, our transfer learn- 

ing scheme is based on a supervised super-resolution algorithm, which learns mutually 

correlative sparse coefficients between high and low resolution image patches. Then, a lin- 

ear SVM based detector is trained, the loss function of which is integrated into the sparse 

coding operation above. Experimental results have shown that the proposed framework 

can achieve significant improvement over several alternative and state-of-the-art schemes, 

with high precision and low false alarms. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Coming with the era of highway satellites and high-resolution imaging techniques, nowadays traffic data can be quickly

acquired by using satellite images. Comparing to the traditional method of traffic monitoring that relies on surveillance

images or aerial images, traffic monitoring using satellite images merit in its high convenience, low cost, as well as good

safety. And the resolution of satellite imagery has been significantly improved, for instance many high-resolution satellites

provide 0.5–1 m resolution panchromatic images, such as IKONOS (1m), QuickBird(0.61 m), WordView(0.5 m), etc. Although

it is still not comparable to aerial images or surveillance images, the resolution of satellite images is already sufficient for

traffic monitoring. Therefore, traffic monitoring using highway commercial satellite images has become a research hot spot

in recent years. Among various tasks of traffic monitoring, vehicle detection is one of the core challenges, which has several

real-world applications such as battlefield directing and intelligent transportation, etc. 
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In the literature, vehicle detection from aerial images has attracted extensive research focus in the past years. Different

from that of highway satellite images, aerial images are typically with a spatial resolution of 0.35 m or less [4,11,20,25,26] ,

which contains more details on vehicle appearances and backgrounds. In this resolution level, a wealth of robust cutting-

edge detectors can be directly used for vehicle detection with high accuracy, meanwhile there are rich training instances

and datasets available in the literature. For example, the works in [1,3] focus on detecting moving cars by using airborne

optical sensors. The work in [12] focuses on detecting stilling or parking vehicles by supervised sliding window search. In

general, the existing approaches for vehicle detection in aerial images can be categorized according to the features used in

the methods, i.e.: 

• Explicit model [10,12,19] , which clusters similar pixels into potential vehicles. Such method usually describes a vehicle as

a box, and adopts a top-down matching scheme to find the best-matched candidate in the satellite image. For instance,

Hinz [10] proposed a 3D car model based on significant edges. Holt et al. [12] and Lenhard et al. [19] adopt object

detection schemes to train car detector. 

• Implicit model [15,16] , which extracts intensity or texture features surrounding each pixel to implicitly model the vehicle,

for instance surrounding contour [16] or histograms of oriented gradients [15] . In the implicit model, a vehicle is usually

described by using wire-frame representation. And the detection is performed by checking features surrounding the

target region. 

To train a robust vehicle detector with high accuracy, the existing works typically needs high-resolution aerial images

together with sufficient amount of training samples. The former ensures sufficient details in modeling the appearance of

vehicles, while the latter ensures sufficient samples in detector training. However, this is a big challenge when facing low-

resolution images captured from highway satellites. One limitation is the resolution, i.e., panchromatic band resolutions

of images captured from highway satellites are presently in the range of 0.41–1.0 m. Another limitation is the number of

training instance in that resolution. To the best of our knowledge, Correspondingly, limited work has been proposed in the

literature to study vehicle detection in low-resolution satellite images [8,14,24,28] . And the above works mainly focus on

detecting sparse vehicles on roads. 

For a brief review, recently an automatic vehicle detection method was proposed in [6] , which can be based for panchro-

matic images, multi-spectral image of QuickBird satellite, as well as road network data. Leitloff et al. [18] presented an

automatic vehicle detection method for satellite images, which adopts an adaptive detector learning scheme by using Haar-

like features. He et al. [9] presented a supervised classification and thresholding method to extract traffic information in

high resolution satellite images. Mantrawadi et al. [21] proposed an object identification algorithm for high-resolution satel-

lite images based on data mining and knowledge extraction. More recently, Chen et al. [2] proposed a deep learning based

vehicle detector. 

In this paper, we propose a robust vehicle detection algorithm for low-resolution highway satellite images, which han-

dles the challenges of both low-resolution and few training samples. Our key innovation is to transfer this problem to the

high-resolution aerial image domain, where robust and cutting-edge detectors can be learned. To this end, we proposed a

supervised transfer learning scheme which consists of three steps as follows: 

• A super resolution framework to transfer the detection task in low-resolution satellite image domain to high-resolution

aerial image domain. 

• A sparse-coding based reconstruction algorithm that integrates classifier training into the super resolution process, which

makes the transferred patches in high-resolution more discriminative to train vehicle detectors. 

• A robust vehicle detection via linear SVM based search that supports large-scale parallel. 

The output of our framework is a robust vehicle detector run on the low-resolution satellite image domain. Such detector

has achieved sufficient accurate that has the potential to be directly used for real-world applications of traffic analysis and

road surveillance in military and transportation systems. 

The rest of this paper is organized as follows: In Section 2 , we introduce the proposed super resolution based transfer

learning framework. Then, Section 3 demonstrates and analyzes the experimental results. Finally we conclude this paper in

Section 4 and discuss our future work. 

2. The super-resolution detector transfer framework 

2.1. The proposed framework 

We first briefly review the overall flowchart of the proposed framework for super-resolution detector transfer. 

In preliminary, we assume that vector maps are available to assist the extraction of road area. Nevertheless, other com-

plex algorithms for road detection and segmentation can be deployed without the above assumption. And the step of road

detection is not the core contribution of this paper. Without loss of generality, we first align the vector map with the satel-

lite images by their GPS locations. Then only the road areas are extracted, on which the vehicle detectors are run. In such a

way, “background” inference such as buildings is removed from the subsequent operations, which largely reduces the false

alarm as well as improving the recognition speed. 
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Fig. 1. The proposed transfer learning framework based on super-resolution reconstruction for vehicle detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, we adopt the ArcGIS Engine to calibrate vector map and remote sensing image, with the following opera-

tions: 

• Take the coordinates of remote sensing image as the benchmark, transform the road map according to its coordinates,

and align the scales and directions of both images and road maps. 

• Load the remote sensing image into the projection coordinate system, which subsequently connects the image with the

road information to conduct projection transformation. Therefore, the road data in the database and the images are

seamlessly calibrated. 

• Compare road element in vector map database with the coordinates of the remote sensing image, and select the road

element in line with area, remote the rest areas. 

After the above steps, we only carry out vehicle detection on the extracted road areas, with the assumption that such

areas should be the only candidates where the vehicles reside. More specifically, we decide the buffer size by the radius of

given object space. For a given object A , the buffer size of which can be defined as follows: 

P = { x | d(x, A ) ≤ r} (1)

where d is the Euclidean distance, r is the field radius. 

The subsequent step is to carry out a K-Means based superpixel segmentation. More specifically, for an image with

40 0 0 × 60 0 0 pixels, we set the number of clusters as 400, which ensures that the superpixel area is approximately the

same as the vehicle size. 

After the above preprocessing, we present the super resolution based transfer learning framework, which can be shown

in Fig. 1 . For a brief review, the proposed super-resolution based transfer learning framework broadly relates to transductive

transfer learning [13,22] . One representative work in computer vision comes from [17] , which propagates segmentations over

ImageNet in a well-controlled manner. For another instance, Rohrbach et al. [23] presented a novel transductive transfer for

ImageNet classification with limited training examples. In text, Zhao et al. [27] proposed a crowdsourcing classification

scheme for tweets. In this paper, we adopt a new perspective, i.e., a super-resolution based transfer, which handles the

challenges (vehicle detection in low-resolution satellite images) into a domain that can be easily handled (vehicle detection

in high-resolution aerial images). The details can be described as follows: 

In the offline step, we collect large-scale high-resolution remote sensing images and label vehicle rectangles on the road

manually. Then, we train vehicle detectors upon such high-resolution labeled instances. We further down-sample the above

high-resolution images into their corresponding low-resolution, upon which train sparse coding based super-resolution op-

erator. This operator serves as a “bridge” to link the target-of-interest to be detected in the low-resolution domain and the

detectors residing on the high-resolution domain. 

In the online step, given a low-resolution target-of-interest region obtained from road extraction and superpixel segmen-

tation, our goal is to decide whether this is a vehicle or not. To this end, we first carry out super-resolution reconstruction

based on sparse coding, which transfers the detection problem to the high-resolution domain. This step outputs the “aug-

mented” features on which the vehicle detector is run to determine whether the target region is a vehicle. 
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Fig. 2. The first column of this figure is the raw image. In the second column, we show the resulting regions after SLIC based segmentation. Here, we set 

the number of superpixels n so that the superpixel regions are approximately segmented as a size of 30 × 30. In the third column, the blue rectangles 

are the detection results that are likely to contain vehicles from regions obtained via SLIC based segmentation. The fourth column is the result after SLIC 

with n equal to setting the images area as 15 × 15. The fifth column is the 12 highest responded regions after running vehicle detector in this images. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More specifically, given the k th target detection result of super-resolution reconstruction area Score high 
k , we combine

Score high 
k with the super-resolution reconstruction coefficients w k of this region as a weight. We then calculate the overall

detection score as follows: 

Score low 

= 

K ∑ 

k =0 

w k Score high 
k (2) 

where K is the number of all non-zero reconstruction coefficients and Score high 
k is the k th voting result of the classifier,

i.e., SVM, based outputs 1 . This score is with the range of [0, 1]. w k is the non-zero reconstruction coefficients of the high-

resolution superpixel to the current low-resolution superpixel. And finally, we use a threshold obtained by cross validation

to determine whether the target-of-interest is vehicle or not. The calculation of w k and Score high 
k will be introduced in depth

in the following sections. 

2.2. SLIC superpixel 

In this section, we introduce the details of our superpixel segmentation algorithm run on both low-resolution and high-

resolution images. One consideration here is to reduce the computational cost, as we replace the sliding window based

scanning to superpixel-level scanning. We assume that, after segmentation, each superpixel should be homogeneous, a.k.a.,

uniformly contains either vehicle or not. In particular, we adopt the SLIC based segmentation proposed by Achanta et al.

to achieve this goal. It can quickly convert a given satellite image into a set of homogeneous regions, which typically with

regular shapes and sizes. It is worth to note that the computing speed of running SLIC is extremely fast. 

More specifically, we segment a given satellite image into n superpixels. For a fixed-sized image, the larger n means

the larger number of the patches and detection boxes, which will increase the detection speed and is closer to the sliding

window based approaches. On the other hand, a small n refers to the less number of patches and detection boxes, which

will result in the case that some vehicle regions are missed after detection as they are mixed with backgrounds in the large

bounding box. We therefore tune n as a parameter to determine the best scale for the superpixel size. We have found that

for different image resolutions, the best scale is also different. For instance, as shown in Fig. 2 , A , B , and C rectangles are

not located very well in column. However, as shown in Column 5, the vehicle regions can be better located. Meanwhile,

in Column 5, D and E rectangles are not located better than they do in Column 3. by combing both scales in SLIC, we can

obtain a much better segmentation results for all vehicles. Note that the size of each patch in Fig. 2 is 60 × 60, which is

just enough to contain a vehicle at an astonishing ground sampling distance of 0.127 m. 
1 Note that we adopt its classification probability, or equivalently its regression score, rather than its binary labels in the above decision. 
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2.3. Sparse coding based super-resolution 

For a given superpixel region in the low-resolution satellite images to be detected, a super-resolution algorithm is first

proposed to “transfer” this region into high-resolution, which can “bypass” the detection limitation in low-resolution satellite

images. In the most recent literature, the mainstream algorithm for image super-resolution is the learning-based super-

resolution construction. Its basic idea is to reconstruct low-resolution superpixels by selecting high-resolution superpixels

having the similar appearance, with a set of optimized combination weights learned. However, due to the limitation in

selecting similar image patches, the matching performance is typically poor. In order to address the above issue, in this

paper we present a collaborative dictionary learning scheme using sparse coding, which reconstructs low-resolution patches

using its most similar high-resolution patches with shared coefficients obtained via joint dictionary learning. The main

idea is to collaborate the sparse coding process for both high- and low- resolution image patches during dictionary based

quantization. Sparse links are then established better high- and low-resolution image patches. In such a way, appearance

noise and background clutters can be largely reduced. We introduce the details of our algorithm as follows: 

( 1) Cross-correlation sparse dictionary learning: 

The proposed method adopts a learning-based sparse coding scheme, which has stronger adaptive ability and can get

more accurate representation. To acquire the training data set, we first obtain the superpixel set X h = { x 1 , x 2 , . . . , x n } from

large-scale high-resolution remote sensing image. Correspondingly, we also obtain large-scale high-low resolution training

samples via the following Equation 3 via downsampling: 

Y l = SHX 

h (3)

where S denotes the downsampling operation, H denotes the operation of fuzzy filtering, Y l = { y 1 , y 2 , . . . , y n } denotes the

obtained low-resolution superpixels. By carrying out the above equation for fuzzy and downsampling for high-resolution

aerial images, we obtain a set of high-low resolution superpixel point pairs P = { X h , Y l } . 
We then leverage the learned sparse association coefficients from the above sparse coding procedure, based on which

we define the training sample pairs as P = { X h , Y l } . P is composed of the extracted superpixels from the high-resolution

satellite images as well as their down-sampling results. Each training sample pair { x i 
h , y i 

l } is represented by a column

vector of image feature block, where x i 
h represents the superpixel patches of high-resolution image, and y i 

l represents the

superpixel patches of low-resolution image. 

Sparse coding targets at learning P using the dictionary, by which the high- and low-resolution image patches are aligned.

To this end, we adopt the following equation to achieve sparse dictionary learning for high- and low- resolution image

patches, respectively: 

V h = arg min ︸︷︷︸ 
{ V h ,U} 

‖ X 

h − UV h ‖ F 

2 + | λ | ‖ U‖ 1 

V l = arg min ︸︷︷︸ 
{ V l ,U} 

‖ X 

l − UV l ‖ F 

2 + | λ | ‖ U‖ 1 (4)

where U denotes the coefficients from sparse representation. V h and V l are the learned sparse dictionary for high- and low-

resolution patches respectively. 

We then combine the learning of both high- and low-resolution dictionaries, as forcing both dictionaries to have the

same sparse expression. We design the corresponding learning equation as: 

min ︸︷︷︸ 
{ V h ,V l ,U} 

1 

N 

‖ X 

h − UV h ‖ F 

2 + 

1 

M 

‖ Y L − UV L ‖ F 

2 + λ
(

1 

N 

+ 

1 

M 

)
‖ U‖ 1 (5)

where N and M are the dimensions of image feature vectors for both high- and low-resolution image regions respectively.

As coefficients in the above equation, such coefficients should balance the effect of the overall sparse coding framework

between low- and high-resolution image regions. Therefore, the above formulation can be further simplified as: 

min ︸︷︷︸ 
{ V h ,V l ,U} 

‖ X C − UV C ‖ F 
2 + λ

(
1 

N 

+ 

1 

M 

)
‖ U‖ 1 

s.t. X C = 

[ 1 √ 

N 
F X 

h 

1 √ 

M 

F Y l 

]
V C = 

[ 1 √ 

N 
V 

h 

1 √ 

M 

V 

l 

]
(6)

To learn an optimized coupled dictionary, an iterative optimization scheme is further adopted in this paper. In particular,

we carry out such an interactive optimization between the following two steps: 

• Fix the sparse coefficients and learn both low- and high-resolution dictionaries. 

• Fix both dictionaries and learn the joint (shared) sparse coefficients. 

The above process is done iteratively until both are converged. This step outputs two over-complete dictionaries, i.e., V h

and V , respectively. 
l 
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( 2) Super-resolution reconstruction based on sparse coding: 

In the online detection phase, given a low-resolution target superpixel, the following sparse coding model is adopted to

construct super-resolution representation: 

• First, for the input low-resolution superpixel patch y , we estimate its sparse coding a according to the learned low-

resolution dictionary V l . It can be done as follows: 

min ‖ α‖ 0 s.t. ‖ V l α − F y ‖ 2 
2 � ω (7) 

• Second, we further convert the above L 0 optimization problem to the problem of minimizing L 1 norm, formulated as: 

min ‖ α‖ 1 s.t. ‖ V l α − F y ‖ 2 
2 � ω (8) 

We then share the obtained low-resolution sparse coefficients a , which are directly used in combination with the high-

resolution dictionary V h via iterative learning. This step outputs the cross-correlation high-resolution superpixel patch

set Y S . 

• Third, based on this high-resolution superpixel patch set Y S , we further combine with the linear SVM learned offline to

determine whether the target superpixel region is vehicle or not. 

In the offline process, given a set of high-resolution aerial images as training samples, the proposed algorithm first carry

out an unsupervised learning to learn both high- and low-resolution dictionaries respectively. In the online process, for

a given low-resolution satellite image, we first determine its scale, a.k.a., resolution, upon which we carry out the sparse

coding on its corresponding scale. 

2.4. Training linear SVM detector in high-resolution 

Based on the super-resolution reconstruction results, we can obtain a set of a high-resolution image patches that are most

relevant to the low-resolution aerial image patches, as well as the reconstruction coefficients using the coupled dictionaries

and sparse coding algorithm. In this paper, we do not investigate the details of using complex detectors to detect vehicles in

the high-resolution aerial image domain. Instead, we resort to the most commonly-used detector/classifier, i.e., linear SVM,

to train our vehicle detector 2 . Note that in such a case, the classifier should be written as a linear model to suit in the

detector loss as introduced in the super-solution based transfer learning. 

More specifically, given a set of labeled vehicle rectangles, we treat them as positive examples to train a set of linear

SVMs by using the libsvm toolbox. We then carry out a calibration step over this set of linear SVMs using the validation set,

which results in a set of weights reflecting the confidence of the detectors. For the given test aerial image, once detection

scores of different superpixel regions are obtained, a non maxima suppression is further adopted to produce a non redun-

dant detection results without spatial overlapping. The overlapping area between the detection result (rectangle) and the

ground truth rectangle is calculated to evaluate the detection accuracy, which follows the PASCAL VOC operation mode. Test

results overlapping with real standard of more than 0.5 will be classified as a positive example, and test results overlapping

with real standards below 0.2 will be classified as a negative example. 

It is worth to note that such scores are fitted with a logistic function to unify their distribution. The proposed calibration

step can be interpreted as a simple adjusting and moving operation for decision boundary. In other words, through moving

the decision boundary towards the direction of the sample, the SVMs worse performed will be suppressed, and by moving

the decision boundary away from the direction of the sample, the SVMs better performed will be promoted. 

Although the resulting decision boundary is not optimal for local SVM, the comparison precision will be greatly improved

between different samples. Formally speaking, given a test example x and a set of learned sigmoid parameters ( αE , βE ), the

calibration test score of sample E is: 

f (x | w E , αE , βE ) = 

1 

1 + e −αE ( w E 
T x −βE ) 

(9) 

In online testing, we adopt a threshold value of the original SVM score -1 (negative border) to adjust the Sigmoid parameter

for each classifier. Given the super-resolution reconstruction results, we can obtain the high resolution superpixels (multiple)

that are used to reconstruct the target low-resolution area, with which we can conduct binary detection. 

3. Experiments 

In this section, we present in depth our quantitative evaluation. All experiments are done on Visual C++ 10.0 developing

environment with OpenCV. 

3.1. Road map extraction 

For the step of road map extraction, a MapInfo/Tab format 2D-vector map and ArcGIS Engine is used to test the perfor-

mance of our scheme. Fig. 3 shows some exemplar results of the calibration operation between the satellite/aerial images
2 Without loss of generality, other complicated detectors can be also deployed, which is orthogonal to the contribution of this paper. 
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Fig. 3. Registration result of remote sensing image and road vector information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the vector maps. In addition, Figs. 3 (a) and 4 (b) show some registration result of remote sensing images and road

vectors. 

Fig. 5 shows several groups of the superpixel segmentation results. From Fig. 5 , we can see that the edge information of

the vehicle can be well preserved, which means in this case vehicles can be recognized much easier. 

Fig. 5 shows one original vector map and 3 watermarked vector maps. By comparing the same part of each map (zoomed

out), we can see that the watermarked vector maps (with iteratively embedding) have more smooth appearance, which can

induce lower shape distortions and improve the detection accuracy of the proposed scheme. And with the increasing of the

iterative embedding times, the capacity also increase accordingly, thus the proposed scheme has a better performance on

perception invisibility. In addition, Fig. 5 shows the watermark images that iteratively extracted twice from Fig. 5 (b), five

times from Fig. 5 (c) and ten times from Fig. 5 (d), respectively. 

3.2. Data collection and ground truth labeling 

We test our algorithm on both satellite and aerial image datasets. To build the satellite image dataset, we collect 80

satellite images from Google Earth (©2009 Google https://earth.google.com/ ), in which each image is with 979 × 1348

resolution, covering the road maps in New York City. Correspondingly, we further collect 80 corresponding aerial images

covering the same road map of New York City by zooming in the Google Earth into the finest resolution. We ask a group

of volunteers to manually labeled vehicle regions with both low- and high-resolution images collected above, resulting in

in total 1482 vehicle annotations. Fig. 6 shows several groups of vehicle rectangles, which are quite in visual appearance,

imaging conditions, and camera viewing angles. 

3.3. Baselines and evaluation protocols 

From the aerial images, we adopt an 1:5 leave-one-out (training:cross-validation) scheme for parameter tuning. Note that

labels from the low-resolution satellite images are used for validation purpose only. The accuracy of the proposed scheme

is tested by using precision-recall curves and mean classification error. 

We compare the proposed scheme to a serial of baselines and state-of-the-art approaches, including: (1) k NN-source :

It adopts k NN to search most similar superpixels and assign labels by majority voting, which is operated on the source
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Fig. 4. Road information extraction. 

Fig. 5. The result of superpixel segmentation. 

 

 

 

 

 

 

 

(low-resolution) domain. (2) Linear SVM-source : It adopts SVM with linear kernel for detection and operates on the source

domain. (3) k NN-target : It adopts k NN to search most similar superpixels and assign labels by majority voting, which is

operated on the target (high-resolution) domain. (4) Linear SVM-target : It adopts SVM with linear kernel for detection and

operates on the target domain. It is the final method adopted in this paper. 

For all above approaches, HoG based descriptors [5] are adopted to extract features 3 . 

3.4. Preliminary settings 

In preliminary, both satellite and aerial images are processed by applying a low-pass filter to remove noises. We then

extract road maps from both satellite and aerial images. More specifically, a MapInfo/SHP format 2D-vector map and ArcGIS

Engine( https://www.arcgis.com/ ) is used to align vector maps and satellite (and aerial) images. Then, the road maps are

extracted from images regions that coincide on roads of vector maps. Specially, active shape model is adopted to extract

precise boundaries. 
3 It is quite clear that, even with the current “high-resolution” vehicle regions, the superpixels are still quite small, which by nature hesitates complex 

and premature detection models such as Deformable Part-based Model [7] to be deployed. Further, more complex features can be further adopted, which 

is orthogonal to the contribution of this paper. 
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Fig. 6. Examples of vehicles extracted from low (left) and high (right) resolution imageries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subsequently, superpixel segmentation is adopted to segment the roads into superpixels, on which the vehicle detector

is run. Fig. 5 shows the superpixel segmentation results. We tune a best segmentation scale to ensure that the size of

superpixel is approximately the size of vehicles. 

3.5. Parameter tuning 

We have identified and tuned the following parameters that affect the performance of the proposed super-resolution

transfer algorithm: 

• Dictionary size : The proposed coupled dictionary learning is affected by the dictionary size. As shown in Fig. 7 , we tune

to seek the best size by using the validation set. 

3.6. Quantitative analysis 

As in Fig. 8 , the Precision-Recall curves have demonstrated that our approach achieves consistent and promising perfor-

mance comparing to the five baselines as introduced above. Especially, there is a significant performance boosting by trans-

ferring from the source (low-resolution) domain to the target (high-resolution) domain. And another performance gain can

be clearly observed by replacing k NN and Linear SVM based classifiers with the proposed E-SVMs. The proposed learning-

to-rank based classifier calibration further push the Precision-Recall curves to the best one as evaluated in our entire exper-

iment. 

We parallelize individual classifiers of each positive examples using 10 servers each with Intel(R) i5 3.20 GHz cpu, which

has achieved approximately 7–8 times of speedup overall. It requires on average 2.02 h. in learning dictionary, 28 m. in

training E-SVMs, and 167 s. in calibration. It is not a linear speedup, as data communications and ranking score aggregations

are required in a sequential manner. 

4. Conclusion 

In this paper, we study the problem of vehicle detection in low-resolution satellite imagery. Two critical challenges are

there, i.e., limited training examples, as well as the difficulty to train robust detectors directly on the satellite domain. To

this end, we contribute in the following aspects: First, we propose to transfer the detection problem into high-resolution

aerial imagery, which is based on a supervised super-solution algorithm with coupled dictionary learning. Second, in the

targeted domain, a simple detection scheme based on linear SVMs is proposed, which is very efficient while moderately

accurate to cope with the domain transfer variations. We have tested the proposed scheme extensively with comparisons to

a serial of existing and alternative approaches. Significant performance gains have been reported. 
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Fig. 7. Parameter tuning on the dictionary size. 

Fig. 8. Quantitative comparisons of PR curves between the proposed algorithm and alternatives. 
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In our future work, we will pay further attention on handling the multi-scale issues, i.e., the detected windows can be

further extended into a pyramid matching setting to ensure finding vehicles using satellites with various spatial resolutions.

In addition, it would be beneficial to break the restriction that the vehicle has to be on the road map, which is, in our

current scenario, a practical setting which has significantly reduce our computational complexity. And finally, it would be

beneficial to incorporate labels from satellite domain (while current very limited), if any, to assist the training of detectors

and super-resolution based transfer. 
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