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REVIEW

Use of mobile LiDAR in road information inventory: a review
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ABSTRACT
Mobile LiDAR technology is currently one of the attractive topics
in the fields of remote sensing and laser scanning. Mobile LiDAR
enables a rapid collection of enormous volumes of highly dense,
irregularly distributed, accurate geo-referenced data, in the form
of three-dimensional (3D) point clouds. This technology has been
gaining popularity in the recognition of roads and road-scene
objects. A thorough review of available literature is conducted to
inform the advancements in mobile LiDAR technologies and their
applications in road information inventory. The literature review
starts with a brief overview of mobile LiDAR technology, including
system components, direct geo-referencing, data error analysis
and geometrical accuracy validation. Then, this review presents a
more in-depth description of current mobile LiDAR studies on
road information inventory, including the detection and extraction
of road surfaces, small structures on the road surfaces and pole-
like objects. Finally, the challenges and future trends are discussed.
Our review demonstrates the great potential of mobile LiDAR
technology in road information inventory.

ARTICLE HISTORY
Received 10 January 2016
Accepted 8 May 2016

KEYWORDS
Mobile LiDAR; road
information inventory;
pavement cracks; roads;
road markings; pole-like
objects

1. Introduction

Remote-sensing technologies for road information inventory are undergoing rapid
developments. The possibility of acquiring three-dimensional (3D) information of
large-area roadways with survey-grade accuracy at traffic speeds is opening up new
and efficient ways for road information inventory. Recent advances in sensor electronics
and data treatment make these technologies affordable. The two major remote-sensing
technologies that are popularly used in road information inventory are image-based and
laser-based mobile mapping systems (Toth 2009). Mobile mapping systems collect
street-level data more completely and efficiently than traditional surveying methods.
Image-based mobile mapping systems have gained popularity in modelling and esti-
mating road boundaries for road safety assistance (Dickmanns and Mysliwetz 1992,
Pomerleau and Jochem 1996, Bertozzi et al. 1997) because the images contain rich
information, such as colour and texture, beneficial for road extraction. Commercial
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image-based road extraction systems have been widely available (Liu et al. 2013).
However, image-based mobile mapping systems are limited to illumination and weather
conditions, shadows cast by roadside buildings and trees, and occlusions caused by
nearby moving vehicles and pedestrians (Tsogas et al. 2011). Moreover, the captured
image data lack of accurate geospatial information and suffer greatly from distortions.

A laser-based mobile mapping system is flexibly mounted on any moving platforms,
such as airplanes, cars/trucks, trains and boats. Future development continues to design
a compact, lightweight and relatively inexpensive multipurpose mobile laser scanning
system that should be quick and easy to deploy, and requires a minimum amount of
existing equipment for operational support. An unmanned aerial vehicle (UAV, e.g.
balloons and helicopters) or a small all-terrain vehicle based laser scanning platform
would be a promising development trend (Glennie et al. 2013). In this review, mobile
laser scanning implies that a laser scanning system is deployed on the top of a land-
based vehicle (Lemmens 2011). In the field of laser scanning, more terms, such as
terrestrial mobile laser scanning (TMLS), land-based MLS or mobile LiDAR, are inter-
changeably used. Through this review, the term ‘mobile LiDAR’ is used.

Mobile LiDAR, a widely used technology since year 2003 when the first mobile LiDAR
system emerged (Glennie 2009), has attracted much attention for mainly transportation-
related applications (Jacobs 2005, Toth 2009, Stauth and Olsen 2013). It is a data
revolution. With a mobile LiDAR system, mapping engineers can drive on a highway,
rural road and railroad, or along the shoreline of a river or lake. Along the way, the
system captures trees, bridges, streetlights, buildings, power lines and other street-scene
small objects (e.g. cracks, road markings, etc.) in the form of 3D point clouds. In addition,
the acquired 3D point clouds provide accurate 3D geospatial information of roadways.
The collected data are a totally immersive 3D view of the objects and surroundings
(Rybka 2011). Research achievements or application cases were demonstrated on var-
ious sources, such as conference presentations, peer-reviewed journals, industry maga-
zines and websites, and technical reports (Williams et al. 2013). Thus, this review
presents the results of an in-depth review of available literature to highlight the
advancements of mobile LiDAR technology in road information inventory.

This review is important for researchers who are considering the use of mobile LiDAR
technologies for road information inventory. The contents of this work include the
following sections. First, the literature review presents background on the basis of
mobile LiDAR technology, including in-depth descriptions of current mobile LiDAR
system components, geo-referencing, error analysis and geometric accuracy validation.
Next, this review shares insights on current and emerging road inventory applications of
mobile LiDAR through academic research. Finally, a discussion of challenges and future
research is presented and concluding remarks are given.

2. Mobile LiDAR technology

LiDAR technologies have become well-established surveying techniques for acquiring
geospatial information because Global Navigation Satellite System (GNSS) technologies
have been widely commercially used since the early 1990s (Beraldin et al. 2010). Closely
followed by airborne LiDAR, terrestrial LiDAR (that is, the laser scanner is mounted on a
tripod) and mobile LiDAR technologies have been rapidly developed. Mobile LiDAR
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technology is being used at an increasing rate for transportation-related applications
due to the following advantages. One of the crucial benefits of mobile LiDAR is its
greater safety over other traditional surveying methods because mobile LiDAR performs
road survey inside a vehicle with the flow of traffic, sparing surveyors the exposure to
traffic and environmental hazards. Furthermore, mobile LiDAR efficiently performs road
surveys with fewer surveyors at traffic speeds, day and night. In addition, mobile LiDAR
collects a very wide range of data sets at various accuracies, from geographical informa-
tion system (GIS) grade to survey grade (Gordon 2010). Therefore, a growing number of
transportation agencies around the world have considered mobile LiDAR for road
inventory and outlined corresponding guidelines for transportation-related applications
(Williams et al. 2013). To fully picture the feasibility of mobile LiDAR for road surveys, this
review will detail (1) its system configuration, (2) geo-referencing, (3) error analysis, and
(4) geometric accuracy validation.

2.1. System components

Puente et al. (2013a) presented and compared several commercially produced mobile
LiDAR systems. Though there are many types of mobile LiDAR systems, most mobile
LiDAR systems consist of five essential parts: (1) a mobile platform; (2) a navigation
solution system that integrates GNSS antenna(s), an Inertial Measurement Unit (IMU),
and a wheel-mounted Distance Measurement Indicator (DMI); (3) laser scanner(s); (4)
camera(s); and (5) a control system including data storages and integrating all sensors’
function. In addition, a rigid platform firmly attaches laser scanners, digital cameras,
GNSS and IMU, and other ancillary devices into a compact unit. The offsets between
each sensor have to be strictly measured to remain stable for mobile LiDAR systems.
Usually, these offset parameters are provided by the manufacturers; thus, no concerns of
users are needed.

2.1.1. Navigation sensors
Among the navigation sensors, GNSS and IMU mainly provide accurate position and
orientation measurements of a moving vehicle, and DMI provides supplementary posi-
tioning information during GNSS outage. Rather than one of these navigation sensors
used alone, an integrated navigation system allows exploiting the complementary
nature of these sensors. GNSS receivers provide three primary measurements: time,
position and velocity (speed and direction). Position and velocity measurements are
inputs to the logging computers and the IMU, respectively. Although GNSS receivers can
provide highly accurate position information in an open environment, it suffers when
satellite signals are blocked by high-rise buildings, vegetation, tunnels and other obsta-
cles. On the other hand, IMU provides attitude information (e.g. roll, pitch and heading)
of the moving vehicle, and requires no satellite signals to sense three-axis accelerations
and three-axis angular rotations; however, the accuracy of position and orientation
degrades with the time. An IMU sensor usually contains an embedded microcomputer
unit and a module of accelerometers and gyroscopes. GNSS provides an initial IMU
position and attitude, and thereafter the updated positions and velocities are calculated
by integrating the measurements from the accelerometers and gyroscopes of IMU. Once
IMU is initialised, no external information is required to determine its positions, velocities
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and orientations; therefore, it is autonomous, immune to jamming or deception. IMU has
almost no high-frequency errors but gives time-growing errors; while GNSS, on the other
hand, has high-frequency noise but with good long-term accuracy. Thus, GNSS positions
are augmented by IMU in periods of poor satellite conditions, while GNSS provides
updated position information to IMU. Moreover, a wheel-mounted DMI constrains error
drifts, especially during vehicle stoppages in areas of intermittent GNSS coverage.
Attached to one of the vehicle’s wheels, DMI measures wheel rotations, directly estimat-
ing a travelled distance. DMI usually supplements GNSS and IMU with additional
positioning information. Wheel rotation data constrain drift, especially during vehicle’s
moving in areas of intermittent GNSS coverage. In addition, DMI assists in reducing
duplicated LiDAR data while the vehicle is stopping.

2.1.2. Laser sensors
The number and arrangement pattern of laser scanners vary greatly with different
mobile LiDAR systems. Laser scanners emit continuous laser beams at a fixed or user-
defined angular increment to measure the distances to objects. In current mobile LiDAR
systems, two techniques are mainly used for range measurements: pulse measurement
and phase shift measurement (Beraldin et al. 2010, Lichti 2010). For pulse measurement
(or time-of-flight (TOF)), a laser scanner emits pulse beams and records the round-trip
time to and back from the measured objects to measure the range based on the light
propagation velocity in a given medium.

Phase measurement in continuous wave modulation can be considered as an indirect
form of TOF measurement. Continuous waves can be modulated in amplitude modula-
tion (AM) or frequency modulation (FM) for measuring target ranges. Amplitude mod-
ulation measures the range using phase difference between the emitted laser beam and
the returned laser light. Frequency modulation measures the range by exploiting beat
frequencies (Beraldin et al. 2010).

Generally, the phase shift mode tends to have very high data rates (up to 1,000,000
points/s) and higher precision ranging from sub-millimetre to sub-centimetre, but
shorter measuring ranges (<100 m) (Petrie and Toth 2008, Beraldin et al. 2010). On the
contrary, the TOF measurement has a much longer range (e.g. 800 m) but lower data
rates (usually <500,000 points/s in TLS (terrestrial laser scanning) /mobile LiDAR and
<20,000 points/s in ALS (airborne laser scanning)) and relatively lower precisions ranging
from sub-centimetre to centimetre level. The TOF mode is commonly used for the
majority of current commercially available mobile LiDAR systems, while the phase
mode is mostly used for terrestrial LiDAR systems. Examples of TOF laser scanners include
Velodyne (2016), Optech Lynx (2016), RIEGL (2016), Sick (2016), Leica (2016), Trimble
(2016), and DYNASCAN MDL (2016). Examples of phase shift laser scanners include Z+F
(2016) and Faro (2016). FARO and Z+F scanners have also been operated in mobile LiDAR
systems. Many types of TOF-based and phase-based laser scanners in mobile LiDAR
systems are set to operate in a 2D scan line /planar mode, while the third dimension
of the acquired 2D scan data can be obtained by the forward movement of the vehicle.

The quality of a laser scanner is determined by the following factors: eye safety,
accuracy, field-of-view, data rate, scan frequency and range (Iavarone 2007). Table 1 lists
the system parameters of several laser scanners popularly used in the market. Laser
scanners use Class 1 eye safety rating, that is, the beam is invisible and safe to human
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eyes in both aided and unaided conditions. The accuracy of a mobile LiDAR system
directly determines the accuracy of the final deliverable products. A field-of-view dic-
tates the extent of the area that can be covered in a single pass of the collection vehicle.
The laser scan rate and data rate determine mobile LiDAR data collection rate. As shown
in Table 1, RIEGL VQ-450, one of the most advanced commercially available laser
scanners, has a scan rate of up to 500 Hz, which allows the users to collect highly
accurate data of required ground point density within a very short period of time. The
point resolution of the collected data depends on several factors, including vehicle
speed, laser mirror scanning speed and system measurement rate.

2.1.3. Camera/video recording
Most mobile LiDAR systems incorporate camera(s) to provide ancillary information. For
example, for visualisation, the points collected by laser scanners can be colourised by
true-colour information in the real world. Similarly to laser scanners, the number and
arrangement pattern of digital cameras vary with different mobile LiDAR systems.
Different mobile LiDAR systems configure different numbers of digital cameras in
many deployed patterns. For example, a typical Trimble MX-8 system is deployed
with four Grasshopper ® GRAS-50S5C CCD cameras with a maximum resolution of
2448 × 2048 pixels and a maximum frames per second of 15. The VMX-450 mobile
LiDAR system is typically configured with four digital cameras, each of which is sealed
with a protective housing for operating under different environmental conditions. The
specific deployment of cameras is customised by users and projects. This additional
colour information contributes to road feature extraction because it provides a great
level of features details.

2.2. Direct geo-referencing

Calculating ground coordinates for illuminated objects, termed ‘geo-referencing’, from a
mobile LiDAR system can be found in the literature (Glennie 2007). The laser scanner is
referenced when its position and orientation relative to the mapping coordinate system
is known by a set of navigation systems. The navigation data must be precisely time
stamped for sensor integration and determination of the exact coordinates of mapping
points (Barber et al. 2008). The coordinates of a target P shown as Figure 1 can be
calculated by
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2
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(1)

where the parameters in Equation (1) are listed in Table 2. Equation (1) defines the
relationship among all observation parameters for producing geo-referenced point
clouds.
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2.3. Error analysis for mobile LiDAR systems

Equation (1) defines the relationship among all observation parameters for producing
geo-referenced point clouds. To examine the final point accuracy, we discuss the
following typical errors of these observations.

Laser scanner errors: According to Equation (1), the factors that influence the coordinates
of point P include distance error (Δd) and scanning angle error (Δα). The error in distance is
caused by the internal accuracy of the clock that measures the time of flight and the width
of the output laser pulse; the error in scanning angle is due to the angular resolution of the
laser scanner angle encoder and the uncertainty of beam divergence (Olsen et al. 2013).

Figure 1. An illustration of coordinates between mapping frame, target and mobile LiDAR system.

Table 2. Parameters used in geo-referencing.
XP; YP; ZP Location of the target P in the mapping frame.
XGNSS; YGNSS; ZGNSS Location of GNSS antenna in the mapping frame.
RMIMUðω;φ; κÞ Rotation matrix between IMU and mapping frame, ω;φ; κð Þare the roll, pitch and yaw of the

sensor with respect to the local mapping frame. These values are provided by the IMU system.
RIMUS ðΔω;Δφ;ΔκÞ Rotation matrix between the laser scanner and IMU, ðΔω;Δφ;ΔκÞ are the boresight angles which

align the scanner frame with IMU’s body frame. Those values are determined by the system
calibration.

rSPðαdÞ Relative position vector of Point P in the laser scanner coordinate system, α and d for scan angle
and range measured and returned by the laser scanner.

LX ; LYLZ Lever-arm offsets from the navigation and IMU origin to the laser scanner origin. These values are
determined by system calibration or measurement.

LðG=IÞX ; LðG=IÞY ; LG=IZ
Lever-arm offsets from the IMU origin to the GNSS origin. These values are determined by system

calibration or measurement.
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IMU attitude errors: The IMU component of a mobile LiDAR system provides roll,
pitch and heading angles that represent the rotation relationship between the IMU
and the mapping frames. An IMU consists of two main parts: (1) three orthogonal
accelerometers, each of which measures the acceleration along a specific axis, and (2)
three orthogonal gyroscopes, each of which measures and maintains the orientation,
based on the principles of conservation of angular momentum. Accordingly, systema-
tic errors of the sensor include accelerometer biases and gyro drifts. Typically, as IMU
components are supplied by two or three different system manufacturers, their
accuracies can be examined from the manufactures’ technical specifications. For
example, RIEGL VMX-450 is configured with a set of Applanix® POS LV 510, whose
typical accuracy can be found on the manufacturer’s technical specification (http://
www.applanix.com). Applanix® POS LV 510 can deliver 0.005° in roll and pitch, and
0.015° in heading (at 1σ).

Positioning errors: The positioning accuracy of a GNSS subsystem is influenced by the
following factors: multipath, atmospheric errors, baseline length, poor satellite geometry
and loss of lock (Haala et al. 2008); therefore, the absolute level of the positioning
accuracy for mobile LiDAR survey is difficult to quantify. Ideally, the positioning accuracy
is expected to be 1 cm +1 ppm horizontally and 2 cm +1 ppm vertically within a
relatively short kinematic baseline (<30 km) (Bruton 2000).

Lever-arm offset errors: Usually, the origins of laser scanners and IMU cannot be
collocated; the lever-arm offsets thus must be known in order to obtain accurately geo-
referenced mobile LiDAR point clouds. There are two methods to measure the lever-arm
offsets: calibration and physical measurement. Compared with the first method, the
second one is widely used because it is simple to implement. Accordingly, the measure-
ment errors are also introduced because of the assumption of the alignment of two
sensors’ axes (Glennie 2007, Olsen et al. 2013).

Boresight errors: The boresight errors result from the misalignments between the IMU
and laser scanner measurement axes, as shown in Figure 1. To process laser scanning
data, the location of the scanner and its orientation in relation to the IMU must be
precisely known because alignment errors will be propagated over the distance
between the sensor and the object being scanned. Boresighting is a very precise
measurement process that attempts to correct any mounting misalignments between
the IMU and laser scanners (Rieger et al. 2010, Lim et al. 2013).

The above discussion of error sources for a mobile LiDAR system demonstrates
that the accuracy of mobile LiDAR point clouds depends on the underlying accuracy
of GNSS/IMU and laser scanners. Among those errors, two possible error sources
(boresight and lever-arm) can be recovered by system calibration. In fact, the overall
accuracy of mobile LiDAR point clouds is mainly affected by the navigation solution
because of multi-path effects and signal shading that are caused by high-rise build-
ings and trees along the street deteriorate GNSS conditions in a moving vehicle
(Barber et al. 2008, Haala et al. 2008). Compared to a long distance from an aircraft to
the ground in ALS, GNSS positioning errors of a mobile LiDAR system have a much
greater impact on the overall error budget, owing to a short distance between a
laser scanner and a scanned object, even about several to 10 metres. To improve
mobile LiDAR data accuracy, a post-processing procedure of navigation trajectory is
indispensable.
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2.4. Geometric accuracy validation

As mentioned above, mobile LiDAR systems must operate different sensors (i.e. GNSS,
IMU, DMI and laser scanner) to provide geometric quantities, and synthesise these
quantities to detail point cloud data. To ensure that engineers and decision-makers
take full advantage of using mobile LiDAR technology, accuracy verification must be
conducted because mobile LiDAR systems have their own set of limitations and their
performance vary with some factors, such as range distance, object reflectivity, incident
angle of laser pulse to the reflective object, and the accuracy of navigating system. A
literature review is presented to report such geometric validation work.

Goulette et al. (2008) reported that the laser-based LARA-3D system produced an
estimated measurement precision of 5 cm. Barber et al. (2008) conducted geometric
validation of a Streetmapper system (integrated with the TERRA control GPS/IMU system
and three Riegl laser profilers). The experiments assessed the precision and accuracy of
delivered data across two test sites: a peri-urban residential housing estate with low-
density housing and wide streets, and a former industrial area containing narrow streets
and tall warehouses. The study showed that a measurement precision (95%) of between
2.9 and 3.1 cm was achieved in elevation; RMS errors in elevation were in the order of
3 cm; the planimetric accuracy of approximately 10 cm was achieved. The experimental
results demonstrated that the system can be successfully used in the survey of urban
areas. Puente et al. (2013b) assessed the performance of a Lynx Mobile Mapping system
from Optech Inc. The system was operated at a maximum scan frequency of 200 Hz,
pulse repetition frequency of 500 kHz per sensor, and a scanning field of view of 360°.
Absolute accuracy levels around 1–5 cm and a relative accuracy level of 10 mm were
achieved, which made the system suitable for very accurate applications.

Lim et al. (2013) assessed the vertical and horizontal accuracies of data collected by
the mobile LiDAR system, including an Optech ILRIS 3DMC laser scanner, and the
navigation instruments (an IMU and two GPS antennas). The final point cloud accuracy
was 6.0 cm (east), 9.5 cm (north) and 5.3 cm (height). The study also demonstrated that
the point-to-point spacing in a single scan line varied from 2 to 5 cm at the ranging
distance of <30 m and the minimum scan line spacing of 10 cm was observed at a
vehicle speed of 8 km hour−1, a scan angle of 10° and a scan count of 80.

Guan et al. (2013) assessed the performance of Trimble MX-8. The system configura-
tion is detailed in Figure 2. Two survey areas were within Fengtai District, northwest of
Beijing, China. The first test site was a two-side, four-lane road with a greenbelt in the
middle. Many residential buildings (about 5 or 6 storeys) and large industrial manufac-
tories and warehouses were interspaced along the sides of the road. The sky view across
the street was considered as a good case for capturing more GPS signals although a
small amount of overhanging vegetation that restricted visibility was located along the
street. The second test site was relatively narrow and approximately 26.9 km long. More
high-rise commercial buildings and apartments were located along the survey route. The
city canyon was created by narrow streets and high-rise buildings, which limited the sky
view for capturing satellite signals. In addition, there was a high bridge crossing the
pass, further blocking the satellite signals.

To validate the performance of the system in Guan et al. (2013), around 30 control
points (corner points of objects on the streets and white road markings) for validation
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were collected for each test site. The mean standard deviations of planimetric accuracy
for the left and right laser scanners were 4.2 and 3.3 cm, respectively. The mean standard
deviations of vertical accuracy for the two laser scanners were 1.7 and 2.1 cm, respec-
tively. Notice that the minimum standard deviation appeared at the check points
measured near the base station with a good GPS coverage. In spite of errors of check
points, the accuracy of mobile LiDAR points was still consistent to the accuracy of the
navigation system and even outperforms the Applanix’s specification. The errors were
lower than ±5 cm, and met the requirements of data accuracy for urban surveying.

Assuming that a road within a small local area was flat, road data within a small
rectangle were selected to calculate the elevation precision. The local precision was
determined by evaluating the residuals following a least square of the mobile LiDAR
points to the plane. For example, the yellow points shown in Figure 3(a) were fitted to a
plane and individually calculated the distance to the plane based on the plane para-
meters. As shown in Figure 3(a), the minimum standard deviation was 1.477 mm, and
the maximum standard deviation was close to 2 mm. Similarly, the data on a vertical
advertising board attached to a light pole were selected for the assessment of
planimetric precision of the collected point clouds, as shown by the yellow points in
Figure 3(b). Compared to the elevation precision, the planimetric precision was a little
lower; the standard deviation ranged from around 7 to 11 mm. For common transporta-
tion applications, the 3D accuracy at 95% confidence generally required a range of 1 cm
(e.g. engineering survey, DEM, pavement survey and slope stability) to 10 cm (e.g. urban

Figure 2. A system configuration of a Trimble MX-8. The system includes two Riegl® VQ-250 laser
scanners, four Point Gray Grasshopper ® GRAS-50S5C CCD cameras, and a set of navigation system
containing two GNSS antennas, an IMU, and a DMI. (Guan et al. 2013).

228 H. GUAN ET AL.



modelling and roadway condition assessment) based on the information from literature
review, questionnaire and project team experience. Thus, this geometric validation
demonstrated that the data collected by a Trimble MX-8 system were sufficient for the
transportation-related road features in both horizontal and vertical precision.

3. Main road inventory applications

Duffell and Rudrum (2005) discussed that a point cloud can be utilised to perform road
inventory mapping, including any road-scene structure, road pavement, traffic signalling
devices, etc. (Williams et al. 2013, Landa and Prochazka 2014). According to Landa and
Prochazka (2014), mobile LiDAR data can be used for different types of road-scene
object inventory, which can be subdivided into three types: road pavement, road surface
structures (e.g. road markings and road cracks), and pole-like objects (e.g. light poles and
traffic signposts). This article will focus on the aforementioned three types of road-scene
objects. Other objects such as trees, buildings, vegetation and powerlines will be
excluded from this article.

3.1. Road pavement extraction

Although geometric design parameters for recently built roads are mostly available,
these data for old roads are unavailable or unusable for upgrading or assessing the
quality of the roads (Jaakkola et al. 2008). When interpreting mobile LiDAR point clouds,
different road detection/extraction algorithms were developed. These algorithms are
categorised into five groups, in terms of (1) road geometric shape, (2) the use of road
geometric features and LiDAR data characteristics, (3) data format, (4) the use of
classification methods, and (5) external data sources. Accordingly, the following subsec-
tions will comprehensively detail the literature.

3.1.1. Identifying 3D road surface points by road structure representation
Some algorithms directly detected planar road surfaces, while the others extracted roads
by first detecting and fitting linear road edges. The direct extraction of planar road
surfaces are performed by model fitting methods, such as Hough Transform (Takashi and
Kiyokazu 2006), RANSAC (Smadja et al. 2010), and weighted least-squares linear fitting

Figure 3. Precision of the collected mobile LiDAR points, (a) vertical, and (b) planimetric.
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(Yuan et al. 2010). By using Hough Transform, Takashi and Kiyokazu (2006) directly
identified road lanes with curvature, yaw angles and offsets derived from point clouds.
However, applying Hough Transform to large volumes of mobile LiDAR data is quite
time consuming and computationally intensive. Yuan et al. (2010) employed a fuzzy
clustering method based on maximum entropy theory to segment points, followed by a
multi-time weight least-squares linear fitting algorithm to differentiate linearly and
nonlinearly distributed point segments. Similarly, these methods, which require inten-
sive computations to extract roads from mobile LiDAR data, are time consuming. Smadja
et al. (2010) suggested a two-step road-surface extraction algorithm based on local road
shape. RANSAC was first applied to each scan line individually for roughly estimating
road sides. Then, the curb candidates were picked out by a multi-frame accumulated
map for road extraction.

To improve computational efficiency, many studies extract roads by detecting and
extracting road edges (Goulette et al. 2008, Yoon and Crane 2009, McElhinney et al.
2010, Ibrahim and Lichti 2012, Kumar et al. 2013, Yang et al. 2013). Yoon and Crane
(2009) estimated road edges by using two criteria: slope and standard deviation
calculated from mobile LiDAR points. McElhinney et al. (2010) proposed a two-step
strategy: (1) generation of a set of lines from points, and (2) extraction of road edges
according to slope, intensity, pulse width and proximity to vehicle information. Ibrahim
and Lichti (2012) extracted curb edges by applying the derivatives of the Gaussian
function to mobile LiDAR points. Based on elevation difference, point density and
slope changes, Yang et al. (2013) modelled three types of curbs with a moving window
operator.

3.1.2. Identifying 3D road surface points or point clusters using data characteristics
and road properties
In this category, some road detection and extraction algorithms are developed by
using different LiDAR data characteristics (e.g. point density and intensity), road
properties (e.g. curb, minimal road width and elevation), and their combinations.
Given the mobile LiDAR scanning mechanism, point density is inversely propor-
tional to the scanning distance from the mobile vehicle’s trajectory. By analysing
varying point densities, Ibrahim and Lichti (2012) separated ground points from
non-ground points. Other data characteristics include local point patterns, intensity
and pulse return information (e.g. pulse width and scanning angular coordinates),
height, and height-derived information (e.g. slope, height variance, mean value and
height differences). In most cases, several characteristics of a LiDAR point cloud
were combined to segment road points from the entire scanned LiDAR data
(Jaakkola et al. 2008, Munoz et al. 2008, Yoon and Crane 2009, McElhinney et al.
2010, Pu et al. 2011, Wang et al. 2012, Kumar et al. 2013, Fan et al. 2014, Hata et al.
2014). In addition, a prior knowledge of the road of interest was widely used in the
literature. Road features include curb, minimal road width and elevation informa-
tion. Guo et al. (2015) combined road width with the elevation data of point clouds
to filter out non-road surface points. Curbs are a critical feature for road extraction
because curbs represent boundaries of roads in an urban environment. As men-
tioned, some studies extracted road edges by identifying curbs (Yang et al. 2013,
Guan et al. 2014a).
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3.1.3. Identifying road surfaces from 3D raw point clouds or 2D feature images
Road extraction can be performed on either 3D LiDAR points (including 2D scan profiles)
or 2D feature images interpreted from 3D points. Along every direction and orthogonal
direction of the scan line segment between two adjacent trajectory points, Wang et al.
(2012) iteratively detected road surfaces and boundaries based on a height threshold,
altitude variance and altitude mean value. Hata et al. (2014) extracted roads by applying
differential, distance and regression filters to 3D raw LiDAR points. To decrease compu-
tational cost, trajectory data were intuitively used (Ibrahim and Lichti 2012, Wang et al.
2012, Guan et al. 2014a). As reviewed, mobile LiDAR systems acquire data scan line by
scan line. The spatial configuration of the scan lines depends on the setting parameters
of a system, i.e. speed of the vehicle, sensor trajectory, scanner orientation, and sensor
measurement and rotation rates. The greater point density of road surface points
permits a computational improvement in road extraction by processing scan lines
(Manandhar and Shibasaki 2001, 2002, Zhao and Shibasaki 2002, Yang et al. 2013,
Guan et al. 2014a). Manandhar and Shibasaki (2001) relied on the information from
individual scan lines to classify points into roads and buildings. Based on scan lines,
Zhao and Shibasaki (2002) first classified range points into the groups of vertical building
surface, road surface, other surface, window, tree and unknown objects. Then, an
erroneous measurement was implemented to record irregular data in the window
areas. Volumetric modelling and marching cube method were exploited to model
both surface-structured objects, e.g. building and road surfaces, and volume-structured
objects, e.g. trees.

Several studies first segmented 3D points into line sections, on which laser data
features and road properties were analysed to obtain road information (Abuhadrous
et al. 2004, McElhinney et al. 2010, Cabo et al. 2015, Riveiro et al. 2015). Abuhadrous et al.
(2004) classified points into buildings, roads and trees by analysing two histograms in
the Z- and Y-directions in one profile to reflect the horizontal or vertical nature of urban
targets.

Converting 3D points into 2D feature images is an effective way to extract road
surfaces from large volumes of mobile LiDAR data (Hernandez and Marcotegui 2009). By
using the established image processing algorithms, road edges or road surfaces can be
detected and extracted efficiently. Kumar et al. (2013) applied a combination of two
modified versions of the parametric active contour or snake model to 2D elevation,
reflectance and pulse width raster data, which were interpreted from the first-level
terrain pyramids using natural neighbourhood interpolation.

3.1.4. Identifying road surfaces by using road-scene classification approaches
Some algorithms focus on a specific road-scene object, while others prefer to classify the
whole scene into different types of objects of interest at one time. With a mobile LiDAR
system, the collected data are a totally immersive 3D view of the objects and surroundings
(Rybka 2011). Different authors proposed a plenty of automated or semi-automated algo-
rithms to recognise different road features within a point cloud at one time, such as traffic
signposts, trees, building facades, road surfaces and road markings (Jaakkola et al. 2008,
Munoz et al. 2008, Shen et al. 2008, Pu et al. 2011, Fan et al. 2014, Díaz-Vilariño et al. 2016).

Considering geometrical characteristics (e.g. linear structures, planar structures, free
shapes whose projections onto the ground have a specific width), Goulette et al. (2008)
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segmented point clouds into two groups: one group containing grounds and roads,
while the other group including facades and trees. Munoz et al. (2008) described an
Associative Markov Network (AMN) to roughly classify point clouds of urban road
environments. Then, local point distribution was proposed to label points as linear,
planar or scatter structures. Finally, the post-processing step using height histogram
and surface fitting was performed to obtain five classes (e.g. vegetation, wires, poles,
load bearings and façades). The overall classification rate was around 90%. Fan et al.
(2014) classified a point cloud into six classes (e.g. buildings, roads, vehicles, trees, poles
and traffic signs) based on height histogram, point density and regular geometric
features. Pu et al. (2011), by using size, shape, orientation and topological relationships,
automatically extracted ground surface, objects on ground and objects off ground (e.g.
traffic signs, trees, building walls and barriers) within a point cloud. The authors men-
tioned an 86% accuracy of pole detection and pointed out that images were required for
extraction.

3.1.5. Extracting road surfaces by fusing with other data sources
Such as video cameras (Yu et al. 2007) and airborne laser scanning data (Boyko and
Funkhouser 2011). Yu et al. (2007) created 3D surface geometric models from mobile
LiDAR data with fine geometric details of cracks that are only a few centimetres wide
along with the depth information. The authors claimed that the entire process required
minimal human intervention in tuning parameters. With higher resolution 2D texture
information, road objects, such as road distresses, were archived and analysed. To
overcome the challenges that the points from different scanners may be captured at
different times, in different weather conditions, under different illuminations and with
different sampling densities, Boyko and Funkhouser (2011) proposed a method for
extracting roads from a large-scale dense point cloud merged from multiple aerial and
terrestrial source scans of an urban environment. Registered the given 2D map of a road
network with the input 3D point clouds, a map spline was first created and then split
into independent parts, road patches. Accordingly, a sub-cloud of relevant points for
each road patch was calculated to a ribbon snake by optimising an active contour that
aims to maintain the smoothness of its boundary while fitting its boundary to likely
predictions in the attractor map. Finally, for each individual sub-cloud, the points that
fall inside the active contour were labelled road points.

3.2. Road surface structures

Recently, mobile LiDAR intensity data have been explored to detect other road-surface
features, such as highly reflective road markings (Jaakkola et al. 2008, Toth et al. 2008;
Vosselman 2009, Smadja et al. 2010, Yang et al. 2012a, Guan et al. 2014a) and even
illuminated structures (e.g. manholes and sewer wells (Yu et al. 2014a, 2015c), tunnels
and culverts (Puente et al. 2014, Lin and Hyyppä 2010).

Road markings on paved roadways, as critical features in traffic management systems,
have important functions in providing guidance and information to drivers and pedes-
trians. For example, driver-assistance systems require reliable environmental perception to
improve traffic safety by informing motorists and preventing accidents. Along with pave-
ment condition and road topography, the visibility of road markings is a key element in
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accidents where the road itself is the cause. Especially, in highly populated urban envir-
onments, high accident rates are caused by the absence of clearly presented road signals
(Carnaby 2005). Road markings are highly retro-reflective surfaces painted on roads;
reflectance of the target in the form of intensity can be used to identify road markings
(Chen et al. 2009, Mancini et al. 2012, Guo et al. 2015, Riveiro et al. 2015).

Most researchers segmented road markings from 2D feature images converted from
3D points. Based on semantic knowledge (e.g. shape and size) of road markings (Yang
et al. 2012b), the established image processing algorithms were applied, such as thresh-
olding-based segmentation, Hough Transform, morphology and Multi-Scale Tensor
Voting (MSTV) (Jaakkola et al. 2008, Chen et al. 2009, Vosselman 2009, Smadja et al.
2010, Mancini et al. 2012, Guo et al. 2015, Riveiro et al. 2015, Guan et al. 2015b). The use
of Hough transformation for road marking extraction is weakened by specifying the
number of road markings to be detected, which is a limiting factor for complex types of
road markings such as hatchings and words. To overcome intensity inconsistency caused
by scanning pattern, multiple thresholding methods were researched by defining the
relationship between scanning distances with intensity values (Vosselman 2009, Guan
et al. 2014a). Guan et al. (2014a) dynamically extracted road markings with multiple
thresholds that corresponded to different ranges determined by appropriate point-
density normality, followed by a morphological closing operation with a linear structur-
ing element. The extracted road markings are shown in Figure 4. Guan et al. (2015b)
achieved a further improvement in road marking extraction by using multi-scale tensor
voting (MSTV). The MSTV algorithm had an advanced capability to efficiently suppress
high-level noise and infer perceptual structures from noisy or corrupted data. Yu et al.
(2015a) emphasised an automated road marking extraction from 3D mobile LiDAR point
clouds rather than the derived feature images. After road marking segmentation, the

Figure 4. The extracted road markings overlaid on the geo-referenced intensity images: (a) Huandao
and (b) ICEC data sets (Guan et al. 2014a).
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authors dealt with large-size markings based on trajectory and curb-lines, and small-size
markings based on deep learning and principal component analysis (PCA). Within point
clouds, the authors finally classified road markings into boundary lines, stop lines,
rectangular markings, pedestrian markings, arrow markings, zebra crossing lines and
centrelines.

Pavement manholes provide access to conduits that are used to conduct rainwater,
drainage, steam, natural gas and other utility networks including telecommunication
wires and power cables. It is one of the key elements in urban environment that
ensures quality of life, economic prosperity and national security (Pikus 2006).
Manholes are usually covered with metal or concrete covers, resulting in the retro-
reflective differences between manhole covers and road surfaces in the near-infrared
spectrum. Due to manhole covers being located on road surfaces, several manhole
cover extraction algorithms were performed on 2D raster data interpolated from 3D
mobile LiDAR points. Guan et al. (2014b) extracted manhole covers by applying
distance-dependent thresholding, multi-scale tensor voting and morphological opera-
tions to the interpolated feature images. Similarly, Yu et al. (2015c) developed a
supervised deep learning model to depict high-order features of local image patches,
and a random forest model to locate urban road manhole covers. In Yu et al. (2014a),
marked point processes were proposed to detect circular-shaped and rectangular-
shaped manhole covers from mobile LiDAR point clouds. To further precisely locate
manhole covers, Ji et al. (2012) developed a new method combined with multi-view
matching and feature extraction techniques by using close-range images and mobile
LiDAR data.

In addition to providing a high promising solution to the extraction of road markings
and manhole covers, mobile LiDAR data might be a valuable data source for estimating
pavement distresses, which can be caused by fractures due to excessive loading, fatigue,
thermal changes, moisture damage, slippage or contraction. Based on the visual appear-
ance of cracks in the near-infrared range usually darker than that of the normal road
surface, Guan et al. (2015a), developed a multi-scale tensor voting (MSTV) strategy to
extract curvilinear pavement cracks. The authors indicated that pavement cracks were
recognised with the average scoring measure (SM) value of 91.5.

3.3. Pole-like objects

Utility poles, traffic signs and lamp posts can be considered as an important part of road
infrastructure. Mobile LiDAR technology has been widely used to detect these pole-like
objects and tree trunks (Manandhar and Shibasaki 2001, Chen et al. 2007, Hofmann and
Brenner 2009, Jaakkola et al. 2010, Lehtomäki et al. 2010, Yokoyama et al. 2013).

Based on eigenvalue analysis, principal component analysis (PCA) was a widely used
method for detecting pole-like objects from irregular point clouds (Yokoyama et al.
2011, 2013). These PCA-based methods detect linear pole-like structures by first con-
structing a covariance matrix for each point with its neighbours and then analysing
eigenvalues decomposed from the covariance matrix (El-Halawany and Lichti 2011).
Eigenvalue-based PCA methods show high computational efficiency. However, other
objects (particularly tree trunks) in a road scene might cause a considerable number of
false alarms.
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Traffic signs in point clouds are shown by retro-reflectively painted planar objects.
Chen et al. (2009) explored intensity information of mobile LiDAR data to detect traffic
signs and lane markings. The intensity is a measure of the retro-reflectivity property of
the scanned surfaces (Riveiro et al. 2016).

Shape and context features were also widely used in pole-like object detection
methods (Teo and Chie 2016). Shape features were characterised based on height,
number and types of attached part segments (Yang and Dong 2013); whereas context
features were computed based on surrounding distributions (Yokoyama et al. 2013, Yu
et al. 2014b). For example, in Yu et al. (2015b), a pairwise 3D shape context descriptor,
which considered both local and global similarity measures, was proposed to detect light
poles. Pole-like objects in 3D mobile LiDAR point clouds show circular-shaped structures
at the top-down view. Therefore, point clouds are horizontally sectioned into a number
of profiles, on each of which approximate circles or eclipses are detected as pole-like
candidates. Kukko et al. (2009) and Lehtomäki et al. (2010) clustered scan lines in a local
neighbourhood to detect pole-like objects profile by profile. Brenner (2009a, 2009b)
investigated local upright patterns and Z-directional extension of a pole, and then
extracted the pole structures in stacks of hollow cylinders. Pu et al. (2011) developed a
percentile-based method with respect to shape, height and size of light poles. Puttonen
et al. (2013) integrated a different distance sensitive sampling method into the method
proposed by Lehtomäki et al. (2010). With the prior knowledge of pole-like objects in
shape and size, by using grammar rules, a voxel structure (that is a volumetric cubic unit)
was applied to mobile LiDAR data (Cabo et al. 2014). For each voxel, Cabo et al. (2014)
considered only the coordinates of the centroids and the number of points to reduce the
original point cloud. After voxelisation, 2D analysis was performed by the following three
stages: (1) segmentation of the connected horizontal elements, (2) selection of elements
by a maximum area criterion and (3) selection of elements by an isolation criterion.
Finally, a 3D neighbourhood analysis was used to detect pole-like street furniture
objects. Pole-like objects were extracted by analysing scan lines, rather than raw point
clouds (Chen et al. 2007, Kukko et al. 2009, Lehtomäki et al. 2010, Hu et al. 2011).
Manandhar and Shibasaki (2001) detected vertical poles by extracting vertical line
segments from individual scan lines. To improve computational efficiency, some studies
were performed on 2D feature images (El-Halawany and Lichti 2013). Point density in 2D
feature images was also exploited to detect light poles (Chen et al. 2007).

Moreover, mobile LiDAR systems can provide high-density point clouds at a normal
vehicle speed. In the vertical direction, pole-like objects contain more points than other
objects such as road surfaces (Yan et al. 2016). Golovinskiy et al. (2009) presented a step-
wise urban feature (including poles) recognition method. First, point density was
explored to select potential objects. Next, the candidate objects were separated from
the background, and they were characterised according to their spatial context and
configuration. Finally, the features were classified by comparing their characterisation
with the labelled data from a training data set.

4. Current challenges and future trend

The literature review reveals that Mobile LiDAR offers a huge potential for road informa-
tion inventory, mainly due to its improved safety, efficiency, flexibility and data
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reusability. More importantly, mobile LiDAR, as an active remote-sensing technology,
provides highly accurate point clouds with high point density. However, several chal-
lenges exist when implementing mobile LiDAR data in road-related applications. Future
trends will emerge accordingly.

Although mobile LiDAR has been commercially available for one decade, few stan-
dards have been developed when using mobile LiDAR for carrying out road inspections
along the route corridor. Thus, in the foreseeable future, a consistent guideline is
urgently required to standardise the adoption of mobile LiDAR by transportation agen-
cies. Standards and best practices, such as control requirements, accuracy standards,
data interoperability and management, and data quality needs of specific applications,
will be established and developed for various road inventory-related applications. As a
result, experienced geomatics personnel can be involved throughout the entire process
when using mobile LiDAR technology for road inventory.

Note that mobile LiDAR technology will certainly not replace current conventional
methods of topographic data collection. The mobile LiDAR data, in most cases, may
need to be supplemented by data collected from conventional surveying, GNSS, aerial
/UAV photogrammetry and airborne LiDAR (Gordon 2010). Accordingly, integration of
mobile LiDAR data with other data sources for road inventory is greatly needed to use
the complementary characteristics of these data sets.

The data set size and data complexity are considered as significant challenges. Hardware
manufactures continue to build advanced mobile LiDAR systems. For example, the RIEGL
VMX-250 system, which can collect 0.5 million points per second, was developed into the
current RIEGL VMX-450 system that collects 1.1 million points per second. A RIEGL VMX-250
system collects data up to a total of 120 Gigabytes (including 40 Gigabytes image files and
80 Gigabytes LiDAR point clouds) in one hour at the speed of 40–45 km/h. The size and
complexity of mobile LiDAR data require upgrading not only the entire computing infra-
structure (software, workstations, servers, data storage and network backbone) but also
data post-processing packages for road-information extraction. Data post-processing is the
key to a complete solution for the end-users (e.g. transportation engineers/agencies)
because they are less interested in the actual point cloud data than in the computer-
aided model (CAD) formatted geometric road information. Manually processing large
volumes of mobile LiDAR data for road-information extraction is very time consuming.
To process the entire data set efficiently, most current software packages adopt the
common strategy, where the data are subsampled or segmented into small tiles/sections.
In addition, the majority of existing methods developed for performing road inventory are
of high computational complexity. Effective object recognition methods will be required to
perform road geometry and road physical data in a timely manner. Furthermore, consider-
ing the object recognition in mobile LiDAR data, multiple attributes including elevation,
intensity pulse width, range, incident angle and multiple echo information can be explored
for extracting road features.

Currently, the advanced third-party point-cloud post-processing software includes
Leica Cyclone®, InnovMetric PolyWorks®, GeoCue software suite, TerraSolid software
suite, PHOCAD PHIDIAS®, Bentley Pointools, and Virtual Geomatics software suite (Yen
et al. 2011). Most third-party software packages deal with small volumes of 3D points or
involve one or several steps when processing mobile LiDAR data. Multiple software
packages have to work together to obtain the CAD-formatted deliverables, such as road
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centrelines and road markings. To avoid the loss of essential information when inter-
polating mobile LiDAR data, seamless integration of the third-party software packages is
urgently needed. Furthermore, a common data exchange platform should be considered
for transportation agencies to improve data interoperability.

5. Conclusions

Roads play a vital role in people’s daily lives in all countries because it brings people
together for business or pleasure by connecting small and large cities, urban and rural
communities, as well as connecting a country with its neighbours to enable the safe
movement of goods, people and services. To safely keep people on the move, transporta-
tion departments in cities or countries have to periodically perform road surveys. The
documentation of road features includes both road surface geometry (e.g. lane width,
number of lanes, longitudinal slopes and transverse slopes) and road environment (e.g.
road markings, pavement cracks, street signs, trees, vegetation and traffic light poles). The
surveyed data are used not only for transportation departments to maintain, rehabilitate
and reconstruct the current roadways and bridges, and to manage traffic and parking
infrastructure, but also for administration to assess policies and practices affecting roadways.
A mobile LiDAR system, mounted on the top of a vehicle, captures virtually anything visible
to the eyes in the form of 3D point clouds with real-world coordinates, thereby providing
accurate 3D geospatial information of roadways. To date, the feasibility of mobile LiDAR
technology for road surveys has been proven for safety, cost, efficiency and data confidence.
Given these mobile LiDAR systems’ advantages, as mentioned in most reports, research
articles, presentations at conferences or short web articles, a growing number of transporta-
tion agencies have been considering mobile LiDAR for road information inventory.

In this work, a review of the ability of mobile LiDAR systems to road information
inventory was described. This review includes a discussion of system configuration,
direct geo-referencing and the analysis of data quality, and current road-scene applica-
tions. The main distinction produced by the review identifies that the systems are ideal
for road information inventory and transportation-related applications.

Mobile LiDAR systems are gaining widespread acceptance with time. With the contin-
uous advancement of mobile LiDAR technology, as well as the reduced costs of system
development, it can be expected that both mobile LiDAR technologies and data processing
techniques will be further explored in road information inventory. The literature review
reveals that studies on mobile LiDAR technology as a reliable and cost-effective alternative
is worthwhile for carrying out road inspections along the route corridor.
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