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ABSTRACT
This paper presents a step-wise method for extracting power-
transmission lines and towers from vehicle-borne light detection
and ranging (lidar) data. First, this method estimates road ranges
with regard to incidence angles and separates off-road points
from road-surface points by applying elevation-difference and
slope criteria to the road ranges scan-line by scan-line. Then,
three filters, in terms of height, spatial density, and a combination
of size and shape, are proposed to extract power-transmission
line/power tower points from the identified off-road points, fol-
lowed by the extraction of individual power-transmission lines via
Hough transform and Euclidean distance clustering. Finally, a
three-dimensional (3D) power-transmission line is modelled as a
horizontal line in the x–y plane and a vertical catenary curve
defined by a hyperbolic cosine function in the x–z plane. We
evaluated the method using two data sets acquired by the RIEGL
VMX-450 system. The average completeness, correctness, and
quality of the extracted power-lines on two data sets are 0.92,
0.99, and 0.91, respectively, and the positional accuracies including
root mean square error and maximum error averaged 0.07 and
0.05 m, respectively. The results show that the proposed method
extracts power-transmission lines from large-scale, vehicle-borne
lidar data with good thematic and positional accuracy.
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1. Introduction

As power-transmission lines interconnect various electrical power-generation facilities
and distributors of the bulk electricity transmission system, their safety significantly
affects our daily lives and industrial activities. Accurately and timely monitoring
power-transmission lines for re-engineering transmission lines and identifying possible
encroachments is an extremely high priority for utility companies. The purposes of
extracting power-transmission lines cover two main aspects: (1) vegetation
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encroachment, which aims to prevent growing vegetation from damaging transmission
lines; and (2) estimation of the catenary curve, which is used for estimating the amount
of sag (McLaughlin 2006).

Objects, such as trees, buildings, and any other fixtures (e.g. lighting and signalling
poles), that approach overhead electricity conductors and power-transmission lines too
closely can cause fatal or severe shocks and burns. The minimum safety clearance must
be maintained in order to prevent such incidents. Trees must be planted far enough
away from the transmission facilities so as not to pose a threat to the facilities, such as
swaying into the wires. Trees cannot exceed 3 m in height at maturity. Thus, analysis of
tree encroachment is one of the most important applications. As such, the estimation of
the amount of sag is also to prevent the contact between the lines and overgrown
vegetation that encroaches on the required clearance zone for the lines. If high-voltage
power-transmission lines are sagging, they may touch tree branches resulting in the
failure of electricity to flow in a circuit, and a flashover discharge (and potential sparking)
might occur. The tree becomes an electrified body, resulting in power-line single-phase
grounding; even short trips can cause power outages and even serious fire. On average,
trees are involved in approximately 30% of all power outages (Consumers Energy 2013).
In addition, at the substations, transformers are used to step the voltage down for
distribution to commercial and residential users. At the point of use, the energy is
transformed to a low voltage. Large electrical motors switching on and off can cause
widely varying sags and surges in electrical AC loading. Both sags and surges are the
most commonly experienced power quality problems among electronic and computer
equipment users (Warkentin-Glenn 2006).

Current traditional technologies that used for power-transmission line extraction
include:

(1) Manually operated methods, where utility companies hire electrical linesmen to
inspect, monitor, and maintain electrical distribution and overhead power-trans-
mission lines. Field survey methods include pole climbing, foot patrols, or inspec-
tion using a vehicle (NYPA 2004). These manual methods are very time
consuming, labour intensive, inaccurate, and dangerous.

(2) Aerial video surveillance or multispectral imaging, which is an alternative to
overhead power-transmission line monitoring (Junaid et al. 2013). Utility compa-
nies use aircraft (such as a small plane, helicopter, or unmanned aerial vehicle
(UAV)) to maintain their electric transmission networks over thousands of miles
passing through dense forests or terrains. This aerial technology is mainly applied
to a wide range of sites, in particularl inaccessible areas (Duller et al. 2001).
Through the acquired aerial colour images, infrared images, or videos, the
damage status of power-line facilities can be detected (Yamamoto and Yamada
1997; Whitworth et al. 2001; Sun et al. 2006; Yan et al. 2007). However, compared
with fieldwork, image-based methods are limited by environmental conditions
(e.g. light intensity, weather, and distracting background), camera stability, and
image degradation due to camera residual sightline motion (Jones et al., 2001;
Golightly and Jones 2003).

(3) Polarimetric radar data, which range from millimetre-wave to long- and medium-
wavelength polarimetric synthetic aperture radar (POLSAR) (Ma, Goshi, and Shi
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2011; Deng et al. 2011). This technology can work under all-weather and all-day
conditions. Most polarimetric detection algorithms are based on the polarimetric
scattering characteristics of power-transmission lines. However, these technolo-
gies are unreliable because of low signal to clutter ratio (SCR), weak backscatter-
ing, and noisy data due to ground return.

(4) Airborne lidar, which has gained popularity in documenting the majority of over-
head transmission lines in terms of high accuracy and high density (Kim and Sohn
2010, 2013). This technology uses time-of-flight between the emitted and
reflected pulses to record the range and other ancillary information of a distant
object. This ‘fly-by’ data acquisition contributes to large-scale power-transmission
line corridors. However, environmental factors, such as occlusions caused by high-
rise buildings and other objects, may negatively affect airborne lidar in regard to
inspecting power-transmission lines within complex urban areas.

Vehicle-borne lidar (also termed mobile lidar or mobile laser scanning), introduced in
2003, represents a promising means for land-based surveying and mapping because it
can produce highly accurate, point clouds of extremely high density, generating digital
elevation models (DEMs) with centimetre-level accuracy and >100–300 points m−2

resolution (Toth 2009; Guan et al. 2013), while most airborne lidar systems provide
only 20 cm-level accuracy and 1–20 points m–2 resolution (Young et al. 2010; Lim
et al. 2013). Additionally, compared with airborne lidar, vehicle-borne lidar provides a
dramatic reduction in price-per-mile because of its ‘drive-by’ data acquisition ability.
Along a corridor, vehicle-borne lidar systems capture (and represent in the form of 3D
point clouds) trees, bridges, street lighting poles, buildings, power-transmission lines,
and road surface features (e.g. markings, pavement cracks) (Yang et al. 2012a) – virtually
anything visible to the naked eye. Thereby, the data collected from a single mission can
be reused for multiple tasks without the need for further field visits, resulting in an
increase in data reusability and efficiency. More importantly, vehicle-borne lidar systems
enable zero-traffic impact data acquisition of road corridors since less congestion occurs
at night. Thus, vehicle-borne lidar systems are recognized for their ability, in terms of
increased safety, efficiency, and abundant and detailed data, to determine various
power-transmission lines’ physical parameters (e.g. catenary characteristics and vegeta-
tion encroachment distances) and use them for further engineering analysis (Lehtomäki
et al. 2010; Kukko et al. 2012; Puente et al. 2013; Williams et al. 2013; Babic et al., 2012).

The algorithms that extract power-transmission lines from point clouds are grouped
in two categories: (1) classification and (2) mathematical estimation. In the first category,
some machine learning methods, such as support vector machine (SVMs) and random
forests (RF), first design and summarize multiple features and then train a set of samples
to classify power-transmission lines from 3D point clouds (Clode and Rottensteiner 2005;
Kim and Sohn 2010). These algorithms are time consuming because substantial samples
are required. In addition, the selection of training samples and features of interest are
the other two factors that can influence classification accuracy. Most researchers prefer
the second category, where Hough transform and RANSAC (RANdom SAmple
Consensus) are widely used for extracting linear objects from 3D point clouds or 2D
interpolated range data (Liu et al. 2009; Melzer and Briese 2004). Based on the assump-
tion that power-transmission lines are represented by linear structures in the vertical
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view, these geometric approaches have been shown to be computationally efficient in
extracting power-transmission lines from the interpolated range data. However, Hough
transform does not perform well for complex power-transmission lines, particularly
those in close proximity.

In this article, we propose a step-wise algorithm for directly extracting 3D power-
transmission lines from vehicle-borne lidar data. First, the algorithm detects kerbs and
separates off-road points from road-surface points by applying elevation-difference and
slope criteria to vehicle-borne lidar data, scan-line by scan-line. Then, a group of multiple
features of power-transmission lines are employed, followed by a spatial density filtering
method aimed at isolating power-transmission line points in the identified off-road
points. Next, the power-transmission line points are grouped into clusters representing
individual power-transmission lines via a Euclidean distance clustering method. Finally, a
3D power-transmission line is modelled as a horizontal line in the x–y plane and a
vertical catenary curve defined by a hyperbolic cosine function in the x–z plane (Jwa and
Sohn 2012). The proposed algorithm was tested on a set of point clouds acquired by the
RIEGL VMX-450 system.

2. Vehicle-borne lidar data

This research uses data collected by the RIEGL VMX-450 system. The system comprises
two RIEGL VQ-450 laser scanners, four CCD cameras, and the Applanix POS LV (Position
and Orientation System for Land Vehicles) 520 processing system containing two Global
Navigation Satellite System (GNSS) antennas, an inertia measurement unit (IMU), and a
distance measurement indicator (DMI). Together with the POS computer system (PCS),
these components are integrated and fixed within a case and mounted on the vehicle
roof. The system uses two rotating-head laser scanners, and thus the data from the two
scanners form a slant grid-like pattern. Calculation of the ground coordinates for
illuminated objects is termed as ‘geo-referencing’. The laser scanner is referenced
when its position and orientation relative to the mapping coordinate system is known
by a set of navigation systems. The navigation data must be precisely time-stamped for
integration, and are used to determine the exact location of the mapping points.

The survey area is Xiamen Island (118° 04ʹ 04ʺ E, 24° 26ʹ 46ʺ N), part of the city of
Xiamen, which is a major city on the southeastern coast of China. The data were
acquired on 23 April 2012. In this survey, the mean standard deviation of planimetric
accuracy for the left and right laser scanners is 4.2 and 3.3 cm, respectively. The mean
standard deviation of vertical accuracy for the two laser scanners is 1.7 and 2.1 cm,
respectively.

During this survey, two types of parameter were predefined – mission and scanning
parameters – as shown in Table 1. The mission parameter category includes target
distance and ground speed. The surveyed road was quite busy, with the average driving
speed 30–50 km h−1. Because the buildings (e.g. high-rise residential apartments and
commercial buildings) are located along this typical urban road, this survey used 30 m
and 30 km h−1 for target distance and ground speed, respectively. We also used the
default values for all scanning parameters, including scan mode, scan-line start, scan-line
end, and increment angle. Dcan-line spacing, point spacing, and average point density
are defined by Guan et al. (2015):
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LDist ¼ SG=Ss; (1)

PDist ¼ tanðLIncreÞ � TDist; (2)

PDensity ¼ 1=ðPDist � LDistÞ: (3)

LDist is proportional to SG and inversely proportional to Ss, indicating that the
higher the vehicle’s speed, the lower the scan-line spacing in the direction of
movement while the higher the scan speed, the higher the scan-line spacing. In a
single scan-line, PDist varies markedly with scan angle and scan count but very little
with vehicle speed. The point density for vehicle-borne lidar data is heavily reliant
on the nominal distance to the target, where the point spacing is measured as well
as the incidence angle. PDensity can be also determined by dividing the number of
vehicle-borne lidar points on the horizontal plane by the total area. Accordingly, at
a vehicle speed of 30 km h−1, the values of LDist , PDist , and PDensity are estimated as
0.0583, 0.0598, and 286.44 points m–2, respectively. From the survey data, two data
sets are selected to verify the proposed power-transmission line extraction method.
Data set I has 7.8 million points in a road length of 95 m; data set II contains 8.4
million points covering a road length of 90 m, as shown in Figure 1.

Table 1. Mission, scanning, and derived parameters from the survey.
Parameter Description Value

Mission SG Vehicle speed 30 km h−1

TDist Target distance 30 m

Scanning LIncre Scan-line incremental 0.1143°
Ss Scan speed/scan rate 200 lines s−1

SStart Scan-line start 0°
SEnd Scan-line end 360°

Derived LDist Scan-line spacing 0.0583 m
PDist Point spacing 0.0598 m
PDensity Average point density 286.44 points m–2

Figure 1. Two RIEGL VMX-450 point cloud data sets: (a) dataset I and (b) data set II (grey: point
clouds).
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3. Methodology

The proposed algorithm contains the following three steps: (1) off-road point extraction,
in which the transverse range of a road is first determined based on incidence angle,
and then the separation of off-road from road-surface points is performed based on
elevation-difference and slope criteria; (2) power-transmission line extraction, in which
three filters, in terms of height, spatial density, and a combination of size and shape, are
used to extract individual power-transmission lines; and (3) 3D power-transmission line
fitting, in which power-transmission lines are mathematically fitted in the horizontal and
vertical planes.

3.1. Off-road point extraction

Power towers are normally installed at the sides of roads, and therefore the overhead
power-transmission lines are distributed along or transversely to those roads. Moreover,
due to the scanning principles of the vehicle-borne lidar system, the point density of the
data drops sharply perpendicular to the line of travel, resulting in a large proportion of
road-surface points in the data. Therefore, in order to improve the computational
efficiency of power-transmission line extraction, separating off-road points from road
surface points is performed to cut down the amount of data for processing. In addition,
kerbs function not only to contain and direct water flow as part of the drainage system,
but also separate road surfaces from sidewalks in an urban environment (Vosselman and
Zhou 2009; Serna and Marcotegui 2013; Guan et al. 2014). Kerbs, vertical or nearly
vertical to the road surface, are sharp height jumps, and through their detection off-
road points can be separated from road surface points.

Each laser scanner in the RIEGL VMX-450 system generates its own 360° ‘full circle’
profile scans due to the motorized mirror scanning mechanism. The scan angle ranges
from −180 to +180°, and the incidence angle is derived by

tan α ¼ Dh=h; (4)

where α is the beam incidence angle; h is the sensor elevation from the ground; and Dh

is the horizontal distance between the scanner and the target of interest. In this study,
the system configures two laser scanners at an angle (η) of 45° towards the rear of the
vehicle, as shown in Figure 2(a).

The transverse range (Dt) from point O to point P
00
is estimated by

Dt ¼ Dh cos η: (5)

Thus, the relation of the incidence angle to the transverse range is represented by

tan α ¼ Dt=h cos η: (6)

According to (6), a priori knowledge of road width is used to obtain the incidence
angle range, α 2 ½�K�; K��. The road surface points of interest are within this range, as
shown in Figure 2(b).

As mentioned above, point spacing (PDist) for subsequent points in a scan-line varies
markedly with scan angle but very little with vehicle speed. Given that PDist for all scan-
lines is consistent on the ground surface, we extract kerb points scan-line by scan-line
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using two criteria – height difference and slope. Slope at the pavement edge is usually
higher than that of consecutive points on the roadway. Moreover, pavement points have
higher elevation than adjacent road surface points. The slope criterion detects off-road
points, such as cars and kerbs, then the elevation-difference criterion discriminates kerbs
from off-road points. Thus, for each scan-line, we mathematically define the slope (Si)
between two consecutive points and the elevation-difference (Zi) of point pirelative to
its adjacent structures as follows:

Si ¼ arc tan ziþ1�ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1�xiÞ2þðyiþ1�yiÞ2

p
� �

Zi ¼ ziþ1 � zi

8<
: ; (7)

where ðxi; yi; ziÞ and ðxiþ1; yiþ1; ziþ1Þ are the coordinates of points pi and piþ1, respec-
tively. Starting from the point with α = 0°, we subsequently process points in two
opposing directions, namely, positive (from 0° to K�) and negative (from –K� to 0°).
For each pi, we define two observations as (Guan et al. 2014):

"pi :
ifðSi > ST & ðZmin � Zi � ZmaxÞ Þ curb candidate

otherwise; non-curb point

�
; (8)

where ST is a given slope threshold, and Zmin and Zmax are the minimum and maximum
thresholds, respectively.

The process of kerb detection can be described as follows: for any point pi in the
pseudo scan-line, if the slope Si is larger than ST, as well as elevation-difference Gi in the
vicinity being within the range of [Zmin, Zmax], point pi is labelled as a kerb candidate;
otherwise, pi will be labelled as a non-kerb point. As the survey vehicle moves along the
road, with a priori knowledge of the road we select kerb candidates closest to the
scanning centre as kerb corners. After identifying all kerb corners from the profiles, we
employ a B-spline fitting algorithm to generate two smooth road edges, and finally
separate road surface from off-road points.

Figure 2. (a) Determination of a transverse range according to incidence angle, and (b) points along
each scan-lines within the transverse range.
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3.2. Power-transmission line extraction

For a vehicle-borne lidar system, point density dramatically decreases perpendicular to
the line of travel. After removing road points, which account for a large proportion of
vehicle-borne lidar data, it is efficient to use the algorithm of progressive triangulated
irregular network (TIN) densification, detailed in Axelsson (2000), to obtain terrain points
from off-road points. This TIN densification filtering algorithm is considered to be robust
and steady for modelling surfaces with discontinuities such as urban areas (Meng, Currit,
and Zhao 2010). The normalized digital surface model (nDSM), a representation of
elevated objects on a flat surface, is generated by subtracting the digital terrain model
(DTM) from the digital surface model (DSM).

To extract overhead power-transmission lines, three filters regarding data characteristics
and objects of interest (e.g. height, spatial density, and a combination of size and shape), and a
power-transmission line extractor are applied to the extracted off-road points. For example,
overhead power-transmission lines are usually installed at different heights according to
different voltages. Along a road, the system can capture at least 75% of a power tower – a
cylindrical structure. Relatively speaking, power towers contain highly dense 3D points. The
flowchart of the proposed power-transmission line extraction is shown in Figure 3.
(1) Height filter
Every country has its own standards in regard to the design and distribution of power-
transmission lines with various types of voltage. For example, according to the National
Electrical Safety Code (NESC), vertical clearance to the ground for power-transmission
lines of various voltages is given as 6.4 m for 138 kV, 7.0 m for 230 kV, and 8.5 m for
500 kV. However, ground clearance in China is standardized as 5.0 m for 1–10 kV, 10 m
for 35–110 kV, and 15 m for 220 kV. Thus, we filter low-rise objects, particularly
vegetation fences (such as shrub hedges) that are designed for traffic safety and visual
satisfaction, via a height constraint condition (Hline):

Figure 3. Flowchart of the proposed power-line extraction algorithm.
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nDSM ¼ DSMð Þ � DTMð Þ þ Hline (9)

(2) Spatial density filter
After filtering out large-scale terrain points and low-rise objects, besides power-trans-
mission lines and towers, high-rise buildings and vegetation are still contained in the off-
road point clouds. In addition, occlusions resulting from high-rise buildings and other
objects limit the focus in this study to detecting power-transmission lines and power
towers/poles along the corridor. Due to the principles of vehicle-borne lidar, vertical
building facades and trees have a much higher point density. As a result, we propose
two indicators – spatial density and shape-and-size constraints – to remove buildings
and vegetation, while simultaneously preserving the power towers/poles.

First, the off-road points are segmented into a number of N voxels with a given voxel
size (Vs), as shown in Figure 4. The voxel size depends upon the diameter estimation of
power towers. We statistically calculate the number of points (Γ i) for each voxel
(vi; i ¼ 0; 1; 2:::N). In this study, we focus on identifying the locations of power poles,
not the power pole details (e.g. conductors and arms). The samples of voxels of power
poles are trained to estimate the spatial density threshold (Γpole). The points within voxel
vi are labelled by the following constraint condition:

"vi
Γ i � Γpole CPPðpower� pole candidatesÞ
otherwise; CPLðpower� line candidatesÞ

�
: (10)

(3) Shape-and-size filter
As a power pole or transmission tower is represented by a cylindrical structure, its shape
is approximately a three-quarter circle in the horizontal view while it is a slender
rectangle in any arbitrary vertical view. Although the trunk of a tree is similar to a
power pole/tower, the tree canopy accounts for a large area in both horizontal and
vertical views. In addition, a building facade is linear and rectangular in the horizontal
and vertical view, respectively. Thus, region growing is used to subdivide CPP into a
number of segments, followed by the size-and-shape filter proposed to extract poles

Figure 4. Example of data voxelization. (a) Section of non-road points, and (b) close-up view of a
transmission tower.
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from segments. Given that buildings are rectangular and linear shape in the vertical and
horizontal view, respectively, while pole-like objects appear as elliptical or circular in the
horizontal view, the compactness of the polygonal shape can be applied to distinguish
buildings and pole-like objects (Yang et al. 2012b). Compactness (Sc) can be calculated
by the following equation, proposed by Touya (2007):

Sc ¼ 4π
CA
C2
P
; (11)

where CA and CP are the area and perimeter of a cluster, respectively. Sc is 1.0 if the
cluster appears circular, while Sc is close to 0.0 if the cluster appears elongated. Thus,
according to shape compactness, buildings and pole-like objects can be classified with a
given shape threshold, Γshape.

Considering the sizes of trees and poles, clusters classified as approximately circle-
shaped will be eliminated if their size is higher than the threshold (Γsize). The threshold
of Γsize is a parameter indicating the diameter of a cluster. Generally, the diameter of
power poles in the study area is less than 0.5 m.
(4) Power-transmission line extractoion with Hough transform and Euclidean dis-
tance clustering
After removing unwanted structures (e.g. buildings and trees), Hough transform is used to
detect power-transmission lines from CPL in the horizontal plane. However, the detected
power-transmission lines from the top-down view contain multiple lines. In order to group
the classified power-transmission line points into clusters representing separated power-
transmission lines, a Euclidean distance clustering method is applied to cluster the power-
transmission lines with a predefined clustering distance (Γd). Moreover, the detected
power-transmission lines in turn facilitate the accurate detection of power poles in CPP.

3.3. Power-transmission line fitting

In this section, a fitting method is proposed to respectively project the 3D power-
transmission line points onto the x–y and vertical planes. In the x–y plane, power-
transmission lines can be described by a two-parametric model or one with more than
two parameters and additional constraints. This is given by the Hessian normal form
(McLaughlin 2006; Levinson and Kane 1993):

x cos θþ y sin θ ¼ ρ; (12)

where θ and ρ are the angle between the line’s normal vector and the x-axis, and the
distance between the line and the origin, respectively.

In the vertical plane, a catenary curve, C, is fitted in the x–z plane:

z ¼ aþ c cosh
x � b
c

� �
; (13)

where a and b are the parameters for the translation of the origin; and c is a scaling factor
denoted as the ratio between the tension and the weight of the hanging flexible wire per
unit of length. The reconstruction of catenary curves is used to determine the optimal
parameters (i.e. a, b, and c) via a group of segmented power-transmission line points.
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4. Experiments and discussion

We tested the proposed power-transmission line extraction algorithm on the two
vehicle-borne lidar data sets detailed in Section 2.

4.1. Power-transmission line extraction

The two vehicle-borne lidar data sets show typical urban environments with overhan-
ging power-transmission lines, trees, dense shrub hedges, and buildings along roads.
According to the information for the road sections studied, the parameters used in this
study are empirically selected and are listed in Table 2. A priori knowledge of the
surveyed road suggested that Dh = 11.70 m and η = 45°. Using the calculated range
of incidence angles, ranging from −70 to 70°, all road-surface points were included (see
green shading in Figure 5 (a) and (b)). Within the calculated incidence angle range, we
set ST = 75°, Zmin = 10 cm, and Zmax = 30 cm for detecting kerb points scan-line by scan-
line. Figure 6 (a) and (b) shows the results of kerb detection. Points shaded red and
green belong to the classes kerb and road, respectively. Although certain kerb points
(red) were missing because of occlusions caused by cars and other street-scene objects,
all road edges were extracted with the assistance of the vehicle trajectory constraint in
B-spline cubic interpolation.

Based on the filtering method of the TIN densification filter in Axelsson (2000), the
extracted road-edge and off-road points were combined to generate DEM. Hline = 3.0 m
was used to generate nDSM, according to the power-transmission lines and towers of

Table 2. Parameters used for extracting power-lines.
Processing step Parameter Value

Off-road point extraction Horizontal distance (Dh) 11.7 m
Scanner configuration angle (η) 45°
Threshold of slope (ST) 75°
Minimum threshold of height difference (Zmin) 0.1 m
Maximum threshold of height difference (Zmax) 0.3 m

Power-line extraction Height constraint condition (Hline) 3.0 m
Voxel size (Vs) 0.5 m
Threshold of spatial density (Γpole) 200
Threshold of size (Γsize) 0.5 m
Threshold of shape (Γshape) 0.6
Clustering distance (Γd) 0.3 m

Figure 5. Results of incidence angle based segmentation on (a) data set I, and (b) data set II (green:
road surface point candidates ranging from −70 to 70°).
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interest. The areas investigated in this study contain two types of power-transmission
line: (1) >138 kV voltage, three-phase transmission lines across the road; and (2) 1–10 kV
voltage lines along the road. The power towers for the first type of transmission line are
> 30 m, while the power poles supporting the second type of transmission line are
around 6 m in height.

In nDSM, the majority of low shrub hedges and trees (green points in Figure 7 (a) and
(b)) were removed. The filtered data (red points) include, apart from all power-transmis-
sion lines and power towers/poles, tree canopies, high-rise buildings, and other outliers.
Without the disturbance of shrub hedges and trees, linear power-transmission lines and
cylindrically shaped power towers/poles were easily extracted.

We maintained Vs = 0.5 m to segment the filtered data into a number of voxels, as
shown in Figure 8 (a) and (b). A number of samples were selected to statistically obtain
the threshold of spatial density Γpole= 200 to separate the data into the data sets: CPP
(including trees, buildings, power poles/towers, and other clustered objects) and CPL
(including power-transmission lines, small objects, and outliers). In order to extract
power towers/poles from CPP, the values of Γsize and Γshape were empirically given as
0.5 and 0.6 m, respectively. The power-transmission lines extracted from CPL in turn
refined the extracted results of the power towers/poles, as shown in Figure 9 (a) and (b).
Several power poles, particularly small ones supporting 1–10 kV transmission lines, were
not accurately extracted in Figure 9 (a). The missing power towers/poles cannot separate
the long power-transmission lines extracted by Hough transform into small sections. In

Figure 6. Results of kerb-based road extraction from (a) data set I, and (b) data set II (red: kerb
points; green: road surface points; grey: off-road points).

Figure 7. Candidates of power-lines and transmission towers (red) on (a) data set I, and (b) data set
II (green: low shrub hedge and tree points; red: filtered points (including power-line points); grey:
road surface points).
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general, considering safety factors, the vertical distance between the high-voltage
power-transmission lines is designed to be greater than that of low-voltage power-
transmission lines. The value of the clustering distance was specified as 0.5 m for
individually extracting most of the high-voltage power-transmission lines along the
road, as shown in Figure 9 (b).

However, the overhead power-transmission lines across the road were not clustered
because of the low point density. For the low-voltage power-transmission lines, we set
Γd = 0.3 m because their vertical distance is less than 0.5 m. Most of the low-voltage
power-transmission lines were individually separated. However, within the rectangle
each transmission line section comprising two single lines was clustered into a single

Figure 8. Results of data voxelization on (a) data set I, and (b) data set II (green: lidar points; red:
voxels).

Figure 9. Extracted power-lines along with transmission towers from (a) data set I, and (b) data set II.
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one. This is also because of the characteristics of the low-voltage power-transmission
lines, such as small diameter and distances less than 0.3 m. The choice of Γd has a major
impact on the clustering results. If Γd is given a lower value, the points belonging to one
power-transmission line are not adequately linked. On the other hand, if Γd is given a
higher value, the points between different power-transmission lines will be clustered
into a single power-transmission line. Γd relies on point density, which is further
dependent on vehicle speed, scan rate, and the incremental scanning angle, according
to Equations (4)–(6).

All the extracted power-transmission lines are fitted in the x–y and x–z planes and
modelled in 3D space. As there are too many power-transmission lines to display, and
the wires in each group share similar properties of fitting and modelling, a representa-
tive of all power-transmission lines is randomly selected and presented in Figure 10. All
extracted power-transmission lines are fitted and reconstructed individually in the
previous sections. Based on the estimated parameters and functions, a 3D

Figure 10. A single fitted catenary power-line on (a) the x–y plane, and (b) the vertical plane.
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reconstruction map in the study area is shown in Figure 11, where the red lines denote
the fitted power-transmission lines of data set I.

4.2. Quantitative evaluation of power-transmission lines

In order to validate the applicability of the proposed method, the fitted power-transmis-
sion lines were evaluated by two indicators: positional and thematic accuracy. Positional
accuracy evaluates the accuracy of the location of the classified power-transmission lines
by measuring their distance from their true locations on the ground. Thematic accuracy
evaluates the attributes of the classified power-transmission lines by measuring whether
their labels are different from their true ones (Congalton and Green 2009). The assess-
ment of thematic accuracy has been widely used by comparing the extracted power-
transmission lines with those manually interpolated. Three criteria were used to measure
accuracy in this study: completeness, correctness, and quality (Guan et al. 2014). True
positives (TP), true negatives (TN), false negatives (FN), and false positives (FP) were
counted. TP and TN are respectively the numbers of correctly extracted power-transmis-
sion-line points and non-power-transmission-line points that are commonly found in
both the reference and the results. FN and FP are respectively the numbers of falsely
extracted non-power-transmission-line points and power-transmission-line points that
are found only in the results. Completeness (Ecmp) describes the percentage of TP in the
reference data; Correctness (Ecrt) depicts the percentage of TP in the power-transmission-
line results; Quality (EQ) is an overall measurement. The three criteria are defined as
follows:

Ecmp ¼ ðTPÞ
ðTPÞ þ ðFNÞ ; (14)

Figure 11. A group of fitted 3D power-lines.
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Ecrt ¼ ðTPÞ
ðTPÞ þ ðFPÞ ; (15)

EQ ¼ ðTPÞ
ðTPÞ þ ðFNÞ þ ðFPÞ : (16)

The quantitative evaluation results using these three criteria are detailed in Table 3.
Our experiments achieved average Ecmp, Ecrt, and EQ values of 0.92, 0.99, and 0.92,
respectively. In regard to thematic accuracy, the Ecmp values are lower than the Ecrt
values for the following reasons: (1) power-transmission line points close to the power
towers are labelled as power tower points; and (2) in the process of Euclidean distance
clustering, some points are excluded when their point spaces are larger than the
clustering distance threshold. The selection of the clustering distance threshold plays
a significant role in power-transmission line tracking, particularly for those that are quite
thin and grouped together or close to each other. Closely spaced power-transmission
lines would not be isolated if their vertical distances are higher than the clustering
distance threshold; otherwise, the proposed method would miss some points belonging
to power-transmission lines if the point space was higher than the clustering distance
threshold.

In this study, we also calculated the root mean square error (DRMSE) and maximum
error (DMAX) of the distances between points and fitted power-transmission lines to
assess the positional accuracy of the extracted lines. The values of DRMSE and DMAX were
estimated in both horizontal and vertical space, as shown in Table 3. In our experiments,
an average DRMSE value of 0.05 m was achieved. The DRMSE values of distance for the
horizontal and vertical spaces of the power-lines match the point density of the
collected vehicle-borne lidar data. Point density and data accuracy relate to scanning
distance, that is, point density and data accuracy decrease with an increase in scanning
distance. Thus, points of power-transmission lines can generate poor positional accu-
racy. In addition, some points that should belong to power towers may generate the
maximum distance in the evaluation of positional accuracy.

5. Conclusions

Power-transmission lines and towers are crucial elements in the positioning of a multi-
tude of bulk electricity transmission systems. Vehicle-borne lidar is opening new possi-
bilities by rapidly collecting highly accurate, geo-referenced spatial data and
transforming them into information-rich 3D infrastructure models. We implemented a
step-wise method for extracting power-transmission lines from vehicle-borne lidar data.
Using the point clouds collected from a RIEGL VMX-450 system, we verified our method

Table 3. The accuracy of the extracted power-lines.

Data set

Thematic accuracy Positional accuracy (m)

Ecmp Ecrt EQ DMAX DRMSE

Data set I 0.93 0.99 0.92 0.07 0.05
Data set II 0.91 0.99 0.91 0.06 0.05
Average 0.92 0.99 0.92 0.07 0.05
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and presented promising results. The thematic and positional accuracy results show that
the proposed method is capable of extracting power-transmission lines from vehicle-
borne lidar data at high precision. However, the performance of the proposed method is
affected to a large extent by the point density of vehicle-borne lidar data. Future
research is needed to develop a parameter-free method to decrease the sensitivity of
the parameters used in this study to the extracted power-transmission lines.
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