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Pole-Like Road Object Detection in Mobile
LiDAR Data via Supervoxel and
Bag-of-Contextual-Visual-Words

Representation
Haiyan Guan, Member, IEEE, Yongtao Yu, Jonathan Li, Senior Member, IEEE, and Pengfei Liu

Abstract—This letter addresses the problem of detecting pole-
like road objects (including light poles and traffic signposts)
from mobile light detection and ranging (LiDAR) data for
transportation-related applications. The method consists of two
consecutive stages: training and pole-like object detection. At the
training stage, a contextual visual vocabulary is created from
the feature regions generated from a training data set by super-
voxel segmentation. At the pole-like object detection stage, a bag-
of-contextual-visual-words representation is generated for each
semantic object segmented from mobile LiDAR data. The ex-
perimental results show that the proposed method achieves cor-
rectness, omission, and commission of 88.9%, 11.1%, and 2.8%,
respectively, in detecting pole-like road objects. Computational
complexity analysis demonstrates that our method provides a
promising and effective solution to rapid and accurate detection
of pole-like objects from large volumes of mobile LiDAR data.

Index Terms—Bag-of-contextual-visual-words, detection, mo-
bile light detection and ranging (LiDAR), pole-like objects, super-
voxel segmentation.

I. INTRODUCTION

MOBILE light detection and ranging (LiDAR) systems
integrate laser scanner(s), a global navigation satellite

system, an inertial measurement unit, a distance measurement
indicator, and digital/video camera(s) [1], [2]. LiDAR systems
have been used to acquire three-dimensional (3-D) geospatial
data of roadways over a large area at a normal driving speed.
Nowadays, high-density and high-accuracy LiDAR data are
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becoming a leading source for highway mapping [3], urban
road distress assessment [4], [5], and road feature inventory
[6], [7]. Pole-like road objects, including light poles and traffic
signposts, located along roads/streets, are typical kinds of road
infrastructure. For example, light poles provide illumination to
pedestrians and vehicles at night for a clear visibility of the
road environment. Traffic signposts, as a highly important trans-
portation infrastructure, play a critical role in transportation,
traffic safety, and route guidance. Thus, recently, detecting pole-
like road objects (specifically light poles and traffic signposts)
has attracted increased attention in the literature.

Based on eigenvalue analysis, principal component analysis
(PCA) was a widely used method for detecting pole-like road
objects from irregular point clouds [8], [9]. These methods
detected linear pole-like structures by first constructing a co-
variance matrix for each point with its neighbors and then
analyzing eigenvalues decomposed from the covariance matrix
[10]. Eigenvalue-based PCA methods show high computational
efficiency. However, other objects (particularly tree trunks) in a
road scene might cause a considerable number of false alarms.

Shape and context features were also widely used in pole-like
object detection methods. Shape features were characterized
based on height, number, and types of attached part segments,
whereas context features were computed based on surrounding
distributions [8]. For example, a percentile-based method was
developed in [6] with respect to the shape, height, and size of
light poles. In [11], a pairwise 3-D shape context descriptor,
which considers both local and global similarity measures, was
proposed to detect light poles. In [7], a 3-D object matching
framework was proposed for detecting light poles, with attach-
ments, of varied shapes and sizes.

With the prior knowledge of pole-like objects in shape and
size, by using grammar rules, a voxel structure was applied to
mobile LiDAR data [12]. Through a 3-D neighborhood analysis
of voxel representations, pole-like objects were detected. In
[13]–[16], pole-like objects were extracted by analyzing scan
lines, rather than raw point clouds. To improve computational
efficiency, some studies convert 3-D point clouds into 2-D
representations [17]. Point density in 2-D representations was
also exploited to detect light poles [13].

Supervoxels, presented in [18], group 3-D points into per-
ceptually meaningful clusters by using voxel cloud connectivity
segmentation (VCCS). VCCS, an oversegmentation algorithm
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Fig. 1. Portion of the 11-km-long road containing the test data set. (a) Raw
point cloud. (b) Filtered off-ground points by a voxel-based upward growing
filtering.

for point clouds, performs computationally efficiently. Thus,
in this letter, we supervoxelize a training data set to generate
feature regions based on a first-order supervoxel neighbor-
hood. Regarding generated feature regions, we analyze their
spatial contextual information to generate a contextual visual
vocabulary because spatial contextual information exhibits
richer, more salient, distinctive representations than do only
local feature regions. Then, by using the generated contextual
visual vocabulary, semantic objects, segmented from mobile
LiDAR data, are quantized to form a bag-of-contextual-visual-
words representation to detect pole-like objects. Such a bag-
of-contextual-visual-words representation has the advantage
of effectively, saliently, and distinctively depicting an entire
object, thereby providing a promising object-oriented detection
solution.

II. MOBILE LiDAR DATA SET

In this letter, the survey area is within Xiamen Island
(118◦04′04′′ E, 24◦26′46′′ N), a part of the City of Xiamen,
China. A RIEGL VMX-450 system (see the RIEGL website for
complete specifications) was used for this survey. In this survey,
we collected data along Ring Road South at an average speed
of 30–40 km/h. Ring Road South is a typical urban road area
containing a plethora of road infrastructures (e.g., light poles
and traffic signposts) and other objects (e.g., cars, buildings, and
high bridges). The average point density in the survey is about
4082 points/m2. From the collected data, we selected a test data
set, containing about 1728 million points and covering a road
segment of approximately 11 km. Fig. 1(a) shows a portion of
the 11-km-long road segment.

To reduce the number of points to be processed, a voxel-
based upward growing filtering method [7] is first performed
to remove ground points from the test data set. Fig. 1(b) shows
the filtered off-ground points.

III. POLE-LIKE OBJECT DETECTION FRAMEWORK

The method proposed for the detection of pole-like road ob-
jects from mobile LiDAR data includes the following two stages:

1) Training stage, which generates contextual visual vocab-
ulary via supervoxel segmentation.

2) Detection stage, which detects pole-like objects, includ-
ing light poles and traffic signposts, from the filtered
off-ground points by a bag-of-contextual-visual-words
representation.

A. Training Stage

The training stage aims to generate a contextual visual vocab-
ulary for depicting the features of pole-like road objects. From
the filtered off-ground points, to construct a contextual visual
vocabulary, we select a group of 50 training data sets, each of
which covers a road segment of about 50 m.

1) Generation of Feature Regions: To obtain salient and
distinctive local geometric representations of pole-like road
objects, the training data are first segmented into a set of
supervoxels by using the VCCS algorithm [18]. Then, the
feature region associated with a supervoxel is created by in-
tegrating this supervoxel and its first-order neighbors. During
supervoxelization with the VCCS algorithm, two parameters,
voxel resolution (Sr) and seed resolution (Ss), control the
segmentation quality. Sr condenses a continuous point-cloud
space to a voxel-cloud space, whereas Ss controls seed point
selection to construct initial supervoxels. As demonstrated in
[19], such a feature region generation strategy, by embedding
first-order supervoxel neighbors, achieves higher saliencies and
distinctiveness than does its counterpart, by using single super-
voxels as feature regions.

2) Structural Description of Feature Regions: In this letter,
we describe feature regions by a structural descriptor, integrating
geometrical (Fg), orientation (Fo), and scale information (Fs).

Geometrical information (Fg) includes two components:
a 3-D eigen-based geometrical feature descriptor (geigen) [20]
and a 16-dimensional fast point feature histogram (FPFH)
descriptor (gFPFH) [21]. An FPFH descriptor can depict 3-D
point clouds rapidly and saliently. For a feature region, geigen
is derived from a covariance matrix S3×3, constructed by all
of the points in the feature region. The covariance matrix’s
three eigenvalues (λ1, λ2, and λ3, λ1 ≥ λ2 ≥ λ3 > 0) are
decomposed to calculate the three members of the eigen-based
feature descriptor, geigen = {al, ap, av}

al =

√
λ1 −

√
λ2√

λ1

ap =

√
λ2 −

√
λ3√

λ1

av =

√
λ3√
λ1

(1)

where al, ap, and av represent the linear, planar, and volumetric
geometrical features, respectively [20].

Orientation information (Fo) denotes the orientation of a fea-
ture region and is represented by the eigenvector e1 associated
with the largest eigenvalue λ1 of the covariance matrix S3×3.

Scale information Fs is defined as the longest Euclidean
distance between the centers of a supervoxel and its first-order
neighbors in a feature region.
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3) Generation of Contextual Feature Groups: Next, a con-
textual feature group is created for each feature region to obtain
spatial contextual information. As stated in [22], the number of
feature regions m plays an important role in constructing con-
textual feature groups. The greater the number of feature regions,
the smaller the repeatability of the combination of feature
regions. Moreover, because of increasing feature-to-feature
matching orders, an increase of feature regions leads to high
computational burdens for measuring spatial contextual sim-
ilarities between two contextual feature groups. In this letter,
m is empirically set to 3.

Accordingly, for a feature region r, its contextual feature
groupG is constructed by r and its two nearest neighboring fea-
ture regions. Within G, spatial and scale relationships (RO(G)
and RS(G)) are calculated by

RO(G) =
m∑

i=1,j>i

arccos
(
FoTi · Foj

)
(2)

RS(G) =

m∑
i=1,j>i

log

(
1 +

Fsi
Fsj

)
(3)

where Foi and Fsi are the orientation and scale information,
respectively, for feature region ri andFoj andFsj are the orien-
tation and scale information, respectively, for feature region rj .

To measure the spatial contextual similarity between two
contextual feature groups, we use a discriminant distance met-
ric. We define a possible match between two contextual feature
groups as a matching order. Given that m is 3, the number
of matching orders is 6. For each matching order, we calcu-
late all of its spatial context weighted Mahalanobis distances
between two contextual feature groups. Then, to obtain the
best matching order, the discriminant distance metric is defined
as a spatial contextual similarity. Let GA and GB denote
two contextual feature groups, respectively. Then, their spatial
contextual similarity S(GA, GB) is defined by

S(GA, GB) = max
ψ∈{0,...,m!}

1

2

(
Sψ
O(GA, GB) + Sψ

S (GA, GB)
)

(4)

where ψ ∈ {0, . . . ,m!} is a matching order and Sψ
O(GA, GB)

and Sψ
S (GA, GB) are the orientation and scale similarities,

respectively, under matching order ψ. The similarities are
defined as

Sψ
O(GA, GB) =

min
(
Rψ

O(GA), R
ψ
O(GB)

)

max
(
Rψ

O(GA), R
ψ
O(GB)

) (5)

Sψ
S (GA, GB) =

min
(
Rψ

S (GA), R
ψ
S (GB)

)

max
(
Rψ

S (GA), R
ψ
S (GB)

) . (6)

The definitions of Rψ
O(GA) and Rψ

S(GA) are established in
(2) and (3).

For each matching order, the spatial contextual similarity
between contextual feature groups GA and GB is calculated

based on (4). Let ψ∗ denote the best matching order. A spatial
context weighted Mahalanobis distance is defined by

C(GA, GB)=(1−S(GA, GB))·
m∑
i=1

(
F i
g(GA)−Fψ∗(i)

g (GB)
)T

×A−1
(
F i
g(GA)−Fψ∗(i)

g (GB)
)

(7)

where A ∈ R19×19 is the covariance matrix over all geometri-
cal features.ψ∗(i) represents the best match between the feature
region in GB and feature region i (i = 0, 1, 2) within GA.
F i
g(GA) is the geometrical information for feature region i

within GA. Fψ∗(i)
g (GB) is the geometrical information for the

best matching feature region in GB .
4) Generation of Contextual Visual Vocabulary: To generate

a contextual visual vocabulary, we first vector-quantize the
constructed contextual feature groups into a number of clusters
Ci (i = 0, 1, . . . , N , and N is the number of clusters) based
on the spatial contextual similarity defined in (4). To reduce
computational complexity, the contextual feature group G∗

i ,
with the shortest distances to the other contextual groups in Ci,
is selected as the updated center.

To further improve computational efficiency, in practice,
we store a group-to-group distance matrix for each cluster to
rapidly update the cluster center. Once the distance matrix
of a cluster is computed, the clustering operation in its cor-
responding subclusters is completed efficiently. After vector
quantization, each cluster center is taken as a distinctive con-
textual visual word. Finally, such contextual visual words form
a contextual visual vocabulary. Because the contextual visual
vocabulary is generated using contextual feature groups rather
than single feature regions, each word in the vocabulary pre-
serves rich, salient, and distinctive spatial contextual informa-
tion. In addition, a stop list analogy [23] is used to discard the
most frequent contextual visual words that occur in almost all
scenes.

B. Pole-Like Road Object Detection Stage

Based on the generated contextual visual vocabulary from
50 training data sets, a bag-of-contextual-visual-words is con-
structed to detect pole-like objects from the filtered off-ground
points.

To generate bag-of-contextual-visual-words representations
from the filtered off-ground points, individual objects are first
obtained through the following steps: 1) a Euclidean distance
clustering approach, with a clustering distance of dc, is applied,
followed by a voxel-based normalized cut (Ncut) segmenta-
tion method [7]. In [7], the Ncut method effectively segments
connected, but not seriously overlapped, clusters into separated
semantic objects. 2) Based on the generated contextual visual
vocabulary from the training data, a set of contextual visual
words is formed for each semantic object. 3) Finally, a bag-of-
contextual-visual-words is represented for each semantic object
by a standard “term frequency-inverse document frequency”
weighting [23]. The bag-of-contextual-visual-words represen-
tation, in detail, is as follows: first, we define a semantic object
as a document d and the number of words in a contextual visual
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vocabulary as D. Accordingly, each document is represented by
a D-dimensional vector of weighted word frequencies

Γd = (t1, t2, . . . , ti, . . . , tD)T (8)

where ti is the weighted word frequency of the ith word in the
vocabulary and represented by

ti =
nd
i

D∑
j=1

nd
j

log
N

Ni
(9)

where nd
i is the number of occurrences of the ith word, N is

the total number of documents in the database, and Ni is the
number of documents containing word i. This weighting is a
product of two terms: word frequency and inverse document
frequency. In this way, the segmented semantic objects are
represented by a bag-of-contextual-visual-words.

To detect pole-like objects from the segmented semantic
objects, a clean and completely scanned pole-like sample is also
selected, supervoxelized, characterized, and quantized to form
bag-of-contextual-visual-words representation. Then, with the
representation, we use the normalized histogram intersection
distance metric [24] to measure the similarity between the pole-
like sample and a selected semantic object. As a result, a series
of similarity measures between the pole-like sample and the
segmented semantic objects is calculated and then thresholded
to obtain pole-like road objects of interest.

IV. RESULTS AND DISCUSSION

A. Parameter Sensitivity Analysis

A test data set obtained over an 11-km-long road segment
(Section II) was used to investigate the applicability of our
method. The following parameters were used: dc, Sr, Ss, m,
and D. dc was empirically set to 0.15 m. An Sr of 0.05 m
and an Ss of 0.1 m were used to generate supervoxels from
a set of separated semantic objects. The parameters, contextual
visual vocabulary size D and contextual feature group size m,
have a significant impact on the detection performance of pole-
like objects. Thus, we designed two groups of experiments
to investigate the sensitivity of the proposed algorithm to the
selections of D and m.

Comparing the extracted pole-like objects with the manually
interpreted ground truth, we quantitatively assessed the pole-
like object detection results according to the following three
measures: percentages of correctness (Ecrt), omission (Eomi),
and commission (Ecomi) [4], [20]. Ecpt indicates the correctly
detected objects, Eomi evaluates the number of missing pole-
like objects, and Ecomi evaluates a portion of nonpole-like
objects being misclassified as pole-like objects.

In the first group, we held m constant and varied D from
90 000 to 140 000 in intervals of 10 000. As shown in Table I,
the detection performance improves as the vocabulary size
increases. This is because, the greater the number of contextual
visual words in the vocabulary, the higher the degrees of dis-
tinction between different categories of objects. However, when

TABLE I
PARAMETER SENSITIVITY ANALYSIS: VOCABULARY

SIZE D AND FEATURE GROUP SIZE m

vocabulary size exceeds 120 000, performance changes very
slightly. In addition, an increase in the vocabulary size causes
great computational burden at the vocabulary generation stage.
Thus, to balance detection performance and computational
complexity, we set the vocabulary size at D = 120 000.

In the second group, we kept D = 120 000 and varied m
from 1 to 6 in intervals of 1. m = 1 means that single feature
regions (without spatial contextual information) are used to
generate the contextual visual vocabulary. As shown in Table I,
when m ≤ 4, detection performance improves as the contextual
feature group size increases. This is because, by considering
spatial contextual information in feature regions, the quantized
contextual visual words are more likely to obtain salient dis-
tinctive feature encodings, thereby able to differentiate objects
in different categories. However, when m > 4, detection per-
formance drops dramatically. If too many local feature regions
are combined, the repetition of the combination decreases
accordingly, leading to a decrease in detection performance. In
addition, an increase ofm slows down the generation of the con-
textual visual vocabulary. Therefore, to obtain promising detec-
tion performance, we set the contextual feature group size to 3.

B. Pole-Like Object Detection

To evaluate the performance of our proposed pole-like object
detection algorithm, we applied it to the mobile LiDAR data set.
After parameter sensitivity analysis, we set D = 120 000 and
m = 3. In this letter, two types of pole-like objects, light poles
and traffic signposts, were tested. The clean and completely
scanned light pole and traffic signpost samples were selected
as query objects to generate bag-of-contextual-visual-words
representations. Then, the query objects were compared with
the segmented sematic objects from the filtered point clouds.
We manually checked the accuracy assessment of pole-like
object detection (Table II). The labeled ground truth is a total of
888 pole-like objects, including 647 light poles and 241 traffic
signposts. For the whole data set, the correctness, omission, and
commission attained 88.9%, 11.1%, and 2.8%, respectively. As
shown in Table II, 48 out of 99 pole-like objects were really
missed, and the left includes 44 light poles misclassified as
traffic signposts and 7 traffic signposts misclassified as light
poles. Due to serious incompleteness and serious overlapping
with other objects, which cannot be effectively segmented,
some pole-like objects failed to be detected. In addition, the
misclassification was mainly caused by the high geometric
similarities of other objects to the pole-like objects.
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TABLE II
ACCURACY OF POLE-LIKE OBJECT DETECTION

C. Computational Complexity

The proposed algorithm was implemented using C++ and
tested on an HP Z820 8-core-16-thread workstation. Accord-
ingly, time complexity analysis was divided into two stages: the
generation of contextual visual vocabulary and the detection
of pole-like objects. The algorithm took approximately 39 min
to generate the contextual visual vocabulary containing 120 000
contextual visual words and approximately 42 min to detect
pole-like objects from the filtered off-ground points. To effi-
ciently process the mobile LiDAR data, we segmented it into
segments with about a road length of 50 m each. Accordingly,
a multithread computing environment containing 16 parallel
threads was adopted. Such a parallel computing strategy dra-
matically improves the computational efficiency and reduces
the time complexity of the proposed algorithm.

V. CONCLUSION

In this letter, we have presented a novel pole-like object
detection method by using supervoxel segmentation and bag-
of-contextual-visual-words representations. The major tasks
include feature training and pole-like object detection stages.
The method was tested on a mobile LiDAR data set (collected
over an 11-km-long road segment). Correctness, omission, and
commission of 88.9%, 11.1%, and 2.8%, respectively, were
achieved. Due to high similarities, the major errors occurred
between light poles and traffic signposts. Computational effi-
ciency analysis shows that the multithread computing strategy
with 16 parallel threads contributes to the improvement of pole-
like object detection from mobile LiDAR data.
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