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The quality of point clouds obtained by RGB-D camera-based indoor mobile mapping can be limited by
local degradation because of complex scenarios such as sensor characteristics, partial occlusions, clut-
tered backgrounds, and complex illumination conditions. This paper presents a machine learning fra-
mework to assess the local quality of indoor mobile mapping point cloud data. In our proposed fra-
mework, a point cloud dataset with multiple kinds of quality problems is first created by manual
annotation and degradation simulation. Then, feature extraction methods based on 3D patches are
treated as operating units to conduct quality assessment in local regions. Also, a feature selection
algorithm is deployed to obtain the essential components of feature sets that are used to effectively
represent local degradation. Finally, a semi-supervised method is introduced to classify quality types of
point clouds. Comparative experiments demonstrate that the proposed framework obtained promising
quality assessment results with limited labeled data and a large amount of unlabeled data.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Indoor 3D models are essential sources in acquiring informa-
tion for many applications such as earthquake rescue tasks, cul-
tural heritage protection, and intelligent building design. The
quality and accuracy of creating an indoor 3D model are influ-
enced by the quality of data collected from the real world. Point
cloud data, a way to describe the 3D indoor environment, are
widely exploited in building indoor 3D models [1–5]. With the
rapid development of indoor mobile mapping systems (IMMSs),
many IMMSs have been used to collect indoor point cloud data
[6–10]. Typical IMMSs include wheeled mobile systems, back-
packed mobile systems, and hand-held devices, etc. The wheeled
mobile system smoothly integrates multi-sensors, including cam-
eras, laser scanners, and inertial measurement units on a mobile
platform, e.g., pushcart or robot. In the backpacked mobile system,
the user backpacks a multi-sensor integrated system to collect
data in motion. In the hand-held system, a data acquiring device,
e.g., Kinect, is held by users when acquiring data. This way, it is
convenient for these hand-held devices to collect data under cer-
tain conditions, especially in areas that are difficult for other
m (F. Huang),
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IMMSs to access. In our proposed framework, the dataset is col-
lected by a Kinect camera mounted on a mobile robot [7].

Some quality problems, or data degradation, such as missing
data, occluded data, sparse data, blurred data, and very dark or
very bright data, are inevitable for IMMS point clouds. Causes of
data degradation include the characteristics of the sensing device,
large rotation angle of the mobile platform in motion, and uneven
illumination distribution in an indoor environment. Compared
with image degradation, the reasons for the degradation of point
clouds differ in different local areas, leading to an uneven dis-
tribution of point cloud quality. Moreover, different reasons of
degradation lead to a diverse degradation of point clouds. There-
fore, the qualities of point clouds have the characteristics of
diversity and locality for indoor mobile mapping.

The local quality assessment of point clouds are to handle the
data quality assessment by considering the diverse and local
degradation of the IMMS point clouds. In general, good indoor
point cloud data should not only have complete structure infor-
mation but also maintain consistency between the appearance and
structural information. Poor quality data need to be discriminated
because they will not provide effective and sufficient information.
However, in our dataset, there is an imbalanced problem, i.e., the
amount of low-quality data is much greater than high-quality data.
The local quality assessment of point clouds can classify these data
into different degradation types and prepare for the further repair
of these data based on different strategies. One main challenge for
automated quality assessment of IMMS point clouds is the
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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establishment of a training dataset in terms of time and cost. On
one hand, it is difficult to classify different quality types in one
point cloud by manually labeling because of the diverse and local
degradation of point clouds. On the other hand, it is difficult, or
impossible, to obtain the ground-truth (or reference data) without
degradation, which indicates that our quality assessment problem
needs to be considered in the absence of reference situations.
Thus, it is essential to know how to use limited labeled data to
predict the labels of a large number of unlabeled data. A semi-
supervised learning method, i.e., a method requiring only a small
amount of labeled training data, provides an efficient way to
address this challenge.

In this paper, we propose a new framework to assess the local
quality of indoor mobile mapping point clouds. First, we describe
the IMMS point cloud degradation by geometric feature descrip-
tors. To effectively analyze the essential components of these
geometric feature descriptors, a feature selection method is inte-
grated into the proposed framework to reduce the redundancy of
these used features. To avoid the intensive labor costs of manual
labels, a semi-supervised method, named Safe Semi-supervised
Support Vector Machines (S4VMs) [11], is integrated into our
proposed framework to conduct quality assessment tasks by
manually labeling a small portion of the training dataset. Addi-
tionally, we establish a point cloud dataset (benchmark) with
multiple kinds of quality problems to evaluate the proposed
framework.

The rest of this paper is organized as follows: first, Section 2
reviews the related work; next, Section 3 details our proposed
framework in three parts, including the establishment of a dataset
with multiple kinds of quality problems, the feature description of
the degraded data, and the local quality assessment of indoor
point clouds; then, Section 4 reports the experimental results and
presents the comparative experiments; finally, Section 5 concludes
the entire paper.
2. Related works

Most recent works on data quality assessment focused on 2D
images [12–16]. Xue et al. [12] established a codebook to assess the
quality of images by computing quality-aware centroids of each
patch in the training images. Ref. [13] presented a sparse feature
representation method to learn a dictionary on the spatial corre-
lations between training images. Two deep neural network
methods in Refs. [15] and [16] were introduced to address non-
referenced image quality assessment by incorporating a semi-
supervised method and multi-scale directional transform,
respectively. Compared with the great achievements of image
quality assessment, the quality assessments of point clouds have
been mainly focused on positioning accuracy [17–20]. Sander et al.
[17] analyzed the relationships between the geometric quality of
input point cloud data and the corresponding generated 3D
models. In [18], a deviation analysis between the building infor-
mation models and point cloud data was proposed to assess the
quality of the models. In [19], the quality assessment of point
clouds was considered as a spatial structure projection in coordi-
nate planes and positioning accuracy, which represented the
deviation between sign coordinates collected by a laser scanner
and precise coordinates collected by the total station. Many
researchers have conducted investigations on the quality assess-
ment of Kinect depth data in recent years [21–22]. However, few
research results have presented a systematic quality assessment of
IMMS point clouds, thus raising the demand to establish a suitable
benchmark for IMMS point cloud quality assessment metrics.

In the past decades, semi-supervised learning has attracted
increasing attention [23–31] because only a part of the sample is
Please cite this article as: F. Huang, et al., Local quality assessment of p
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required to be manually labeled for learning a statistical model. In
[23], semi-supervised discriminant analysis (SDA) was exploited
for both labeled and unlabeled data to reduce the dimensionality.
Yu et al. [24] presented an adaptive hypergraph method for image
classification by simultaneously learning the labels of unlabeled
data and optimizing the weights of hyperedges. In [25], a sto-
chastic learning method was proposed to address the image
classification problem by acquiring a high-order distance from
hypergraph and integrating labeling information from different
views. Liu et al. [28] proposed a hypergraph model with adaptive
probability to find related media content for media event enrich-
ment task. In [27,30], and [31], hypergraph combined with sparse
representation was introduced to address prediction or classifica-
tion problems. In [11], S4VMs were presented to generate a mul-
tiple low-density separator pool and to maximize the performance
of each candidate separator. S4VMs mainly focused on producing a
safe model by a training dataset containing both labeled and
unlabeled data. Compared with other methods, S4VMs have the
advantage of a safe generalization performance. The safe of S4VMs
is that its generalization performance is never statistically sig-
nificantly worse than these fully supervised methods. In our pro-
posed framework, we only use a small portion of labeled data to
reduce labor costs and exploit S4VMs for considering both labeled
and unlabeled data to learn a statistical classifier for quality
assessment tasks.
3. Proposed method

3.1. Point clouds acquisition

An IMMS integrating a 2D laser scanner and a RGB-D camera is
adopted for collecting 3D indoor point clouds in this paper [7]. The
2D laser scanner and RGB-D camera are used to build 2D map and
to obtain point clouds, respectively. Moreover, this IMMS can
achieve a 2D trajectory of the mobile platform while building the
maps. However, the acquired data have some quality problems,
such as missing data, occluded data, too sparse data, blurriness,
and too much darkness or brightness. To deeply delve into these
problems, the main reasons that lead to data degradation are
detailed as follows.

The characteristics of the Kinect sensor include the limited
measurement range of the sensor and the low image resolution of
the camera (Fig. 1(a)). Unlike a hand-held camera system, our
mobile robot-based IMMS acquires data while exploring the
environment. In this case, when the moving speed of the mobile
robot is too fast, data quality may be decreased because it is dif-
ficult to ensure that the RGB and depth images are synchronous.
This RGB information drift may result in blurred data (Fig. 1(b)).
Moreover, when the mobile robot is too close to (or too far away
from) perceived objects in the measuring range, the acquired data
density will be too dense (or too sparse) (Fig. 1(c)). Uneven illu-
mination in an indoor environment is shown in Fig. 1(d). For
example, some place may separate into different areas with dif-
ferent illumination conditions by object occlusions or by being
close to (or far away form) the light source when acquiring data in
motion. Certain perceived objects, such as transparent and
refractive objects (e.g., glass, monitors, etc.), possess obvious
degraded quality problems, while the smooth surfaces and non-
refractive objects are almost invisible (Fig. 1(e)). The structure and
feature details of the perceived objects are incomplete (Fig. 1(f)).
For example, the bent arm of a chair will not be detected because
of its irregular structure. Furthermore, detailed structural infor-
mation of a small table pot will be missing because of the com-
plicated structure of the pot.
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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Fig. 1. Examples of degradation in IMMS point cloud data. (a) Data missing due to the low image resolution of the camera. (b) Data blurred due to the fast moving speed of
the mobile platform. (c) Sparse data due to the far distance from the mobile platform to the perceived objects. (d) Data missing due to the uneven illumination. (e) Data
missing due to the surface characteristics of the perceived objects. (f) Data missing due to the complicated structure and feature details of the perceived objects.

Fig. 2. Green points represent the NARF key points extracted. (a) 61 and 45 NARF key points extracted from two our data. (b) 63 and 54 NARF key points extracted from two
Cornell data [37–39]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Feature description

In the proposed framework, geometric feature descriptors are
used to describe the IMMS point cloud data. To effectively analyze
the essential components of these geometric feature descriptors, a
feature selection method is integrated into the proposed frame-
work to reduce the redundancy of these used features. In the
remainder of this section, both feature extraction and selection are
detailed.

In the feature extraction stage, it is observed that the point
clouds from corner and edge regions are vulnerable for degrada-
tion during acquisition. In practice, 3D patches are treated as
operating units to conduct quality assessment in local regions.
Therefore, we first extract key points using the normal aligned
radial feature (NARF) [32] method (see Fig. 2). Then, each key
point based on a 3D patch is described by a geometric feature set,
including fast point feature histograms (FPFH) [33], spin image
Please cite this article as: F. Huang, et al., Local quality assessment of p
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[34], spectral features [35], orientation of spectral feature, and
bounding box. Specifically, the FPFH and spin image use a statis-
tical way to output all results to histograms. Spectral features [35]
capture the scatter-ness, linear-ness and flat-ness of the local
geometry of the point distribution. Orientations, i.e., directions
against the vertical and horizontal planes, are used as the direc-
tional features. The bounding box descriptor calculates the
eigenvalues of the principle, middle, and smallest eigenvectors in
the principal component space [36].

In the feature selection stage, the importance of feature com-
ponents in these extracted geometric features is measured and
analyzed [40–42]. Because the redundancy of features in the fea-
ture set may influence the performance of these classifiers such as
SVM and random forest. Here, the importance Dj of the jth bin in
feature set (variable importance) is used as an indicator to mea-
sure the importance of the corresponding feature component. It is
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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computed as follow:

Dj ¼
1
B

XB

b ¼ 1
ðRb�Rbj Þ ð1Þ

where Rb is the number of correct classifications while Rbj is the
number of correct classifications without considering the jth fea-
ture. B is the number of instances. Eq. (1) determines the score of
variable importance. Therefore, the rank of variable importance is
obtained by these scores. Besides, an optimized feature subset can
be built by reducing the features with low importance scores from
this rank. Finally, these selected features are adopted as a new
feature set to train a learning model.

3.3. Quality assessment by a semi-supervised framework

The quality assessment of IMMS point clouds is a challenging
task because it is time consuming to obtain a large amount of
labeled data. Also, the reference data are difficult to obtain without
degradation. To recognize the quality types, our local quality
assessment is considered as quality type classification. Here, we
choose a S4VM method [11] to solve classification problem
because of its safe generalization performance. S4VM trains the
model with limited labeled data and a large amount of unlabeled
data. Compared to SVM, S4VM has following two advantages. First,
S4VM is rarely inferiors to SVM on classification accuracy because
it fully exploits the unlabeled data based on SVM in the training
process; second, S4VM has the advantage of higher robustness
because of its multiple representative separators. The repre-
sentative separators of S4VM is that these separators not only have
large-margin decision boundary but also pass through the low-
density regions of data distribution. In our experiments, these
representative separators are extracted by adopting K-means
algorithm [43]. We briefly introduce the principal of S4VM here,
and give the details for integrating S4VM into our quality assess-
ment framework.

Formally, a binary classification is defined here. Given a training
dataset Dn ¼ xi; yi

� �l
i ¼ 1 [ xj

� �lþu
j ¼ lþ1

n o
, where l represents labeled

quality instances and u represents unlabeled quality instances.
Denote Y ¼ ynA71

� �lþu
n ¼ 1 as the label space of quality instances,

whereas {þ1} represents the positive quality type and {�1}
represents the other negative quality types. And, let y¼
y lþ1;…; y lþu

n o
AB be the label assignment of unlabeled quality

instances. Here B is a set of label assignments in Eq. (2):

B¼ yA 71f gu �βr
Plþu

j ¼ lþ1 y j
u

�
Pl

i ¼ 1 y i
l

rβ

�����
)(

ð2Þ

where β is a constant to control the proportion of positive and
negative samples. Thus, the quality assessment aims to find the
optimal label assignment y with the least cost of objective func-
tion. The objective function of a representative separator is
described in Eq. (3):

h f ; ŷ
� �¼ 1

2
J f J2þC1

Xl

i ¼ 1
Lðy i; f ðx iÞÞþC2

Xlþu

j ¼ lþ1
Lðŷ j; f ðx jÞÞ ð3Þ

where the function f : X-Y and function LðY ; f ðXÞÞ compute
the hinge loss on SVM. C1 and C2 are two constants denoting
impact factors. If C2 is equal to 0, the model will degenerate to
inductive SVM.

To search for a pool of diverse representative separators ff tgTt ¼ 1
and their corresponding label assignments fŷtgTt ¼ 1, the optimal
objective function of S4VM model is given in Eq. (4):

min
f t ;ŷ t Aℬf gTt ¼ 1

XT

t ¼ 1
h f ; ŷt

� �þMΩð ŷt

� �T
t ¼ 1Þ ð4Þ

where Ω is a penalty function used to measure the diversities
of the separators. T is the number of separators while M is a large
Please cite this article as: F. Huang, et al., Local quality assessment of p
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constant to guarantee large diversities. In our experiments, T and
M are set at 10 and 105. In this process, K-means algorithm is
exploited to extract T representative separators. Meanwhile, the
value of K is equal to T. Thus, each cluster outputs a representative
separator with a minimum objective value. To determine the
optimal separator, Eqs. (5–7) are applied to evaluate these repre-
sentative separators.

y; ŷ and ySVM are denoted as the goal of label assignment,
the label assignment of S4VM model, and the label assignment of
inductive SVM, respectively. Set gain y; ŷ; ySVM

� �
and loss y; ŷ; ySVM

� �
as the gained and loss functions:

gain y; ŷ; ySVM
� �¼ Xlþu

j ¼ lþ1
I y j ¼ ŷ j

� �
I ŷ jaySVMj

� �

¼
Xlþu

j ¼ lþ1

1þy jŷ j
2

1�ySVMj ŷ j
2

: ð5Þ

loss y; ŷ; ySVM
� �¼ Xlþu

j ¼ lþ1
I y ja ŷ j

� �
I ŷ j ¼ ySVMj

� �

¼
Xlþu

j ¼ lþ1

1�y jŷ j
2

1þySVMj ŷ j
2

: ð6Þ

To obtain the maximized gained function value and the mini-
mized loss function value under identical situations, Eq. (7) is
proposed as follows:

maxyAℬ gain y; ŷ; ySVM
� ��λ loss y; ŷ; ySVM

� � ð7Þ
where λ is a constant (e.g., 3 in our experiment) to control the

degree of risk. As there are multiple representative separators, the
optimal separator is the one that can achieve the optimal solution.
The final prediction, denoted as y, is given by:

y¼ argmaxyAℬminŷϵfŷt gTt ¼ 1
gain y; ŷ; ySVM

� ��λ loss y; ŷ; ySVM
� � ð8Þ

To generate the label assignment ̅y, the label assignment of
unlabeled quality instances y is first generated randomly. Then, the
predicted labels y are continuously updating under iterations.
Meanwhile, K-means algorithm is used to search for multiple
representative separators. On a iteration, a new S4VM model
should be updated based on y; ŷ and ySVM . Thus, the perfor-
mance of S4VM is improved and is rarely inferior to that of
inductive SVM. Finally, the optimal representative separator with
the smaller value of objective function is determined using Eq. (8).
Furthermore, the labels with unlabeled quality instances can be
obtained in y for quality assessment.
4. Experiments and results

The proposed framework was coded with Cþþ , and imple-
mented on a personal computer with a single core 3.2 GHz and a
RAM of 16 GB. To assess the data quality of local regions of a point
cloud, the local search radius of 3D patch is set to 6 cm. According
to [11], the regularization parameters C1, C2, and β, are set to 100,
0.1 and 0.1, respectively. Besides, the sampling size N, cluster
number T , and risk parameter λ, are set to 100, 10, 3, respectively.
The kernel type of S4VM is KBF.

4.1. Experimental data

Our experiments are performed on two datasets: Cornell RGB-
D dataset [37–39] and our dataset collected by the system [7]
(dataset available on: http://rssi.xmu.edu.cn/contents/download_
en.html). In this paper, we focus on the good type and two
degraded types. Each dataset contains three quality types of point
clouds, namely good, missing, and sparse types (see Fig. 3). The
good type not only have complete structure information but also
maintain consistency between the appearance and structural
information. The missing type miss structure information. The
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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Fig. 3. Three quality types in our dataset and the Cornell dataset. (a) Good type. (b) Missing type. (c) Sparse type.

Table 1
Instances of our dataset and the Cornell RGB-D dataset.

Samples Our dataset Cornell RGB-D dataset

Good Missing Sparse Good Missing Sparse

Positive 804 1140 1140 1000 900 1200
Negative 804 1140 1140 1000 900 1200
Total 1608 2280 2280 2000 1800 2400
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sparse type have an uneven density of points in a local region. In
particular, the sparse type can also be obtained from the good type
point clouds by a simulation method, i.e., we use a uniform sam-
pling filter to reduce the number of points and maintain the
geometric shape of the point cloud in the PCL1.7.2 library [44].

The instances from the two datasets are shown in Table 1. The
negative instances of one quality type point cloud consist of the
other two quality types’ point cloud instances with an equal
number. For example, the number of the good type's positive
instances is 804 in our dataset; thus, its negative instances consist
of 402 missing instances and 402 sparse instances. In the Cornell
dataset, the total instances of good, missing, and sparse types are
2000, 1800, and 2400, respectively. In our dataset, the total
instances of good, missing, and sparse types are 1608, 2280, and
2280, respectively.

4.2. Variable importance analysis

In our experiments, FPFH (16 dimensions), spin image (208
dimensions), spectral feature (three dimensions), orientation (two
dimensions), and bounding box (three dimensions) descriptors are
extracted as a feature set (in that order). Thus, a 232 dimensional
feature set was extracted at the NARF key points in a local region
of each point cloud based on 3D patches. Afterwards, to reduce
some unimportant or noisy components of the features, we use
random forest algorithm to analyze variable importance of bins in
feature set. Based on the variable importance estimation, we select
the significant bins in feature set with high scores of variable
importance.

To select the essential components of the features, we first
apply Eq. (1) to compute the importance score of bins in feature
set (variable importance). Fig. 4(a) and (b) shows the variable
importance scores of the good, missing, and sparse quality types
on our dataset and the Cornell dataset, respectively. In Fig. 4, the
higher the variable importance is, the more important the corre-
sponding bin is to classify the defined three quality types from
each other. We observe that the variable importance scores have
obviously difference among three quality types at the same bin in
the feature set. Except for the sparse type in the Cornell dataset, a
Please cite this article as: F. Huang, et al., Local quality assessment of p
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commonality exists in the other quality types is that the first
sixteen bins in the feature set (which represents FPFH descriptors)
have lower variable importance, which causes the corresponding
features will be reduced in the next feature selection process. The
main reason is that FPFH descriptors are computed rapidly using
global and local information, and global information will lead to
some similar feature variables in most key points. Additionally, the
spectral shape, orientation, and bounding box descriptors, namely
the last eight bins, have relatively high variable importance and
are regarded as very important features in the feature selection
process. In Fig. 4(a) and (b), the variable importance of FPFH in the
Cornell dataset's sparse type obtains a higher score than the
variable importance of FPFH obtained in other quality types
among the two datasets. Because the objects’ structure is damaged
after degradation simulation. In the spin image descriptors (bins
from 17 to 225), the variable importance of bins in our dataset and
the Cornell dataset obtains rather different scores. Hence, we
conclude that different datasets and quality types lead to different
variable importance at a same bin in feature set. Thus, feature
selection is a significant process to select discriminated features
for the quality assessment task.

To verify the effectiveness of selected features with high vari-
able importance scores, we construct an optimal feature subset for
the quality assessment task by computing the accumulated vari-
able importance. Here, the accumulated variable importance adds
up the variable importance scores of selected bins which have top
ranking in all bins. Fig. 5 shows the relationship between the
feature number selected and the corresponding accumulated
variable importance for the defined three quality types. In the four
figures, the blue, red and green lines represent good, missing and
sparse quality types, respectively. As shown in Fig. 5(a), the good
type has a higher accumulated variable importance than other two
quality types using selected features with numbers ranging from
20 to 75. On the contrary, the sparse type has the lowest accu-
mulated variable importance among three types. From this result,
we deduce that the good type is easier to be identified than the
others, and the sparse type is the most difficult to be identified.
Compared to the curve which feature number selected is smaller
than 60, when the feature number selected is larger than 60, all
the three curves present relatively smaller increase. Besides, the
accumulated variable importance scores of 60 feature number
selected are larger than 0.5 in all the three curves. For the selected
features with numbers of 30, 45, and 60, the corresponding
accumulated variable importances of good type are 0.52, 0.64, and
0.72, respectively; on the other hand, the sparse types obtains
0.44, 0.54, and 0.62, respectively. The above results illustrate that
60 numbers of the selected feature are sufficient for the identifi-
cation tasks in our dataset. In Fig. 5(b), the accumulated variable
importances of the sparse type are the highest while the
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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Fig. 4. The variable importance of each bin on good, missing, and sparse quality types. (a) Our dataset. (b) Cornell dataset.

Fig. 5. The relationship between the feature number selected and the corresponding accumulative variable importance on good, missing, and sparse quality types. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The accuracies of feature number selected on good, missing, and sparse quality types with 50 labeled data. (a) Our dataset. (b) Cornell dataset.
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accumulated variable importances of the missing type are the
lowest. For feature numbers of 30, 45, and 60, the corresponding
accumulated variable importances of the sparse type are 0.38,
0.49, and 0.58, respectively; on the other hand, the corresponding
accumulated variable importances of the missing type are 0.36,
0.46, and 0.54, respectively. The accumulated variable importances
of 60 feature number selected are larger than 0.5 in all the three
curves. The above results in Fig. 5(b) also illustrate that 60 feature
number selected are sufficient for the identification tasks in the
Cornell dataset. To obtain the best performance, we finally test the
best feature subsets with 30, 45, and 60 dimensions as the training
data for the quality assessment task.
Please cite this article as: F. Huang, et al., Local quality assessment of p
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4.3. Model parameter effect on assessment

To evaluate our proposed framework, we introduced four eva-
luation measurements, including accuracy, precision, recall, and
F1-measure. In our experiments, we focused on testing the influ-
ence of feature number selected and the number of labeled
training data on our quality assessment results. Fig. 6 shows the
influence of different feature number selected on accuracy mea-
surement when 50 labeled training data are used. In our dataset,
for the missing and sparse types, the highest score is achieved
when 45 dimensions of feature subset is selected, while the
similar results are obtained in the Cornell dataset. For the good
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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Fig. 7. The training time vs. feature number selected on good, missing, and sparse quality types with 50 labeled data. (a) Our dataset. (b) Cornell dataset.

Fig. 8. The precision, recall, and F1-measure using different numbers of labeled data on the good type. (a) Our dataset. (b) Cornell dataset.
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type, the optimal feature subset with 60 dimensions achieves the
highest score in our dataset compared to the optimal feature
subset with 232 dimensions in the Cornell dataset. As a conclu-
sion, when the optimal feature subset with 60 dimensions is used,
the test results on our dataset and the Cornell dataset have
achieved accuracies higher than 93% and 86%, respectively. The
achieved accuracies prove that the optimal feature sets with
dimensions of 45 and 60 are enough to achieve satisfactory
assessment results after our feature selection process. The above
analyses show that the feature selection method is effective for the
proposed quality assessment framework.

Fig. 7 represents the training time for the good, missing and
sparse types with different feature number selected when 50
labeled training data are used. As illustrated in Fig. 7, as the feature
number selected decreases, the training time declines. Thus, to
improve the time efficiency of proposed framework, it is very
important to select a significant feature subset to reduce the fea-
ture dimensions. Comprehensively considering time efficiency and
classification accuracy, we finally chose an optimal feature subset
with 45 dimensions as the input of training data for our
assessment task.

To analyze the influence of the number of labeled data on
assessment results, we used the optimal feature subsets of the
quality types with fixed 45 dimensions. Figs. 8–10 shows precision,
recall, and F1-measure of our method with different number of
labeled training data. In Figs. 8–10, five settings of labeled training
data are used to present the experimental results of all the three
Please cite this article as: F. Huang, et al., Local quality assessment of p
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quality types with 45 feature number selected. In all these figures,
the horizontal axis represents the number of labeled training data,
i.e. 30, 50, 80, 100, and 160 labeled data. Meanwhile, the remain-
der of the unlabeled data are also used for the training model. As
illustrated in Figs. 8–10, three measurements: precision, recall, and
F1-measure, vary with the number of labeled data used in training
our S4VM model on classifying the good, missing and sparse types.
The value of F1-measure ascends with the increase of labeled data
when classifying the good types (see Fig. 8). Moreover, the values
of F1-measure staying above 0.93 on our dataset and 0.83 on the
Cornell dataset show the stable performance of S4VM in our
proposed framework. As seen in Fig. 9, the F1-measure of the
missing type changes slightly as the number of labeled data
increases on our dataset. On the Cornell dataset, the F1-measure of
the missing type increases obviously from 0.79 to 0.89 when the
number of labeled data ranges from 30 to 50. In Fig. 10, the F1-
measure illustrates that S4VM model has a stable performance
with the value staying above 0.86 for the sparse types on our and
the Cornell dataset. Thus, we can conclude that the number of
labeled data is a significant factor to classify the quality types in
the proposed framework.

To assess the performance of proposed framework, we ana-
lyzed the impact of the number of labeled data on the corre-
sponding training time when classifying the quality types in
Fig. 11. As illustrated in Fig. 11(a), the training time of good type is
less than other quality types because of its less samples. For sparse
type in Fig. 11(b), the training time with 100 labeled data is longer
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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Fig. 9. The precision, recall, and F1-measure using different numbers of labeled data on the missing type. (a) Our dataset. (b) Cornell dataset.

Fig. 10. The precision, recall, and F1-measure using different numbers of labeled data on the sparse type. (a) Our dataset. (b) Cornell dataset.
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than the training time with 80 labeled data. The possible reason is
that more iterations required with 100 labeled data than 80
labeled data in the experiment. As a consequence, for Figs. 8–11,
the results show that high assessment accuracies are achieved
with a small number labeled data (e.g., 30 or 50) using this
training model. Furthermore, the more the labeled data are used,
the higher the accuracy are achieved and the less training time are
required in the experiment. Thus, those figures show that our
proposed quality assessment framework can obtain satisfying
results in our dataset and the Cornell dataset.

4.4. Performance comparison

In this section, S4VM with supervised and semi-supervised
machine learning methods, including Random Forest, Logistic
Regression, Bayes Net, KNN, SDA [23], and Hypergraph [24], are
compared. To compare the above methods, the same labeled and
unlabeled data are used in our experiments. For S4VM, labeled
data were first used to learn the labels of unlabeled data; then,
updated labels from those unlabeled data were formed in the next
iteration. When all of the predicted labels or the optimal separator
remain unchanged, or the value of iteration is larger than a default
value (e.g., 200 in our experiments), the S4VM training process is
terminated. For the Random Forest, Logistic Regression, Bayes Net,
and KNN methods, the labeled data are used to train a model.
Then, the training model was exploited to predict the labels of
unlabeled data. Tables 2 and 3 present the precision, recall and
Please cite this article as: F. Huang, et al., Local quality assessment of p
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F1-measure results using 45 feature number selected and 50
labeled data in our dataset and the Cornell dataset, respectively.

As shown in Table 2, the S4VM obtains precision, recall, and F1-
measure with values of 96.6%, 95.0%, and 95.8% on the good type.
Furthermore, the S4VM achieves values of 98.1%, 94.5%, and 96.3%
on the missing type, and S4VM achieves 95.5%, 95.2%, and 95.3%
on the sparse type. SDA achieves a precision value of 98.3%, which
is higher than the other methods on the good type. Hypergraph
achieves a precision value of 98.4%, which is higher than the other
methods on the missing type. On the sparse data type, S4VM
obtains the highest precision of 95.5%, which is higher than the
other methods. Additionally, the S4VM outperforms all of the
other methods on the recall and F1-measure values. However,
S4VM requires longer time to train a model, while the other
methods require less time. Hence, S4VM consumes more time to
attain the highest performance on our dataset.

Table 3 shows that S4VM obtains the highest recall and F1-
measure values on the good and missing types. Hypergraph has
the highest precisions of 87.1% and 86.8% on the good and missing
types, respectively. For the sparse type, Bayes Net has the highest
precision of 87.9%, while Random Forest has the highest recall of
85.8%, and S4VM has the highest F1-measure of 85.8%. The results
show that S4VM outperforms all other methods on the F1-measure
values. Additionally, S4VM performs slightly better than Random
Forest in the sparse type. The possible reason is that the degra-
dation simulation cannot accurately simulate the actual sparse
type. Furthermore, S4VM requires a longer time to train a model,
oint clouds for indoor mobile mapping, Neurocomputing (2016),
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Fig. 11. The relationship between number of labeled data and the corresponding training time on the good, missing, and sparse types. (a) Our dataset. (b) Cornell dataset.

Table 2
Assessment precision, recall, and F1-measure values using different learning
models on our dataset.

Type Method Precision (%) Recall (%) F1-measure
(%)

Time (s)

Good Random Forest 86.8 86.5 86.5 0.15
Logistic 87.7 86.4 86.3 0.28
Bayes Net 88.8 88.6 88.6 0.14
KNN 90.6 89.6 89.5 0.01
SDA 98.3 90.9 94.4 0.36
Hypergraph 94.2 92.7 93.4 138.58
S4VM 96.6 95.0 95.8 194.81

Missing Random Forest 88.7 86.8 86.7 0.18
Logistic 87.3 87.3 87.3 0.31
Bayes Net 88.4 86.9 86.7 0.15
KNN 91.3 91.3 91.3 0.01
SDA 95.1 92.4 93.7 0.49
Hypergraph 98.4 92.2 95.2 146.09
S4VM 98.1 94.5 96.3 576.57

Sparse Random Forest 86.1 84.8 84.7 0.16
Logistic 84.4 83.3 83.1 0.27
Bayes Net 82.9 82.9 82.9 0.16
KNN 92.2 91.0 90.9 0.01
SDA 94.9 83.0 88.5 0.51
Hypergraph 88.6 92.4 90.4 141.57
S4VM 95.5 95.2 95.3 508.41

Table 3
Assessment precision, recall, and F1-measure values using different learning
models on the Cornell dataset.

Type Method Precision (%) Recall (%) F1-measure
(%)

Time(s)

Good Random Forest 83.3 83.2 83.2 0.23
Logistic 67.4 67.1 67.0 0.07
Bayes Net 83.3 82.2 82.1 0.04
KNN 82.9 82.9 82.9 0.01
SDA 81.5 84.9 83.0 0.34
Hypergraph 87.1 70.8 78.1 109.27
S4VM 85.0 85.1 85.0 453.54

Missing Random Forest 81.2 80.2 80.0 0.05
Logistic 78.6 78.5 78.5 0.07
Bayes Net 69.8 69.8 69.8 0.04
KNN 85.6 85 84.9 0.01
SDA 77.4 80.3 78.7 0.29
Hypergraph 86.8 78.2 82.3 87.32
S4VM 84.7 93.4 88.8 549.73

Sparse Random Forest 87 85.8 85.7 0.05
Logistic 77 76.1 75.9 0.07
Bayes Net 87.9 84 83.6 0.03
KNN 82.7 82 81.9 0.01
SDA 82.9 83.2 82.8 0.49
Hypergraph 80.9 84.1 82.4 162.78
S4VM 86.9 84.7 85.8 572.16
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while the other methods require less time. Hence, we can con-
clude that S4VM has the highest F1-measure value but consumes
more time on the Cornell dataset.

The above analyses indicate that S4VM is effective and exhibits
promising performance for IMMS point cloud quality assessment.
However, to build a training model, S4VM requires a longer time
than the other methods. The reason is that S4VM has a large
iteration time, and each iteration consumes several minutes to
update the labels of unlabeled data when generating multiple new
representative separators. For example, when the sample size is
100 and each sample process requires 200 iterations, the training
process will execute 20,000 iterations in the experiment.
5. Conclusion

In this paper, we proposed a semi-supervised learning frame-
work to solve the problem of local quality assessment of IMMS
point clouds with limited labeled data and a large amount of
unlabeled data. First, we collected IMMS point cloud data by a
Please cite this article as: F. Huang, et al., Local quality assessment of p
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depth camera mounted on a mobile robot, and created a point
cloud dataset with multiple kinds of quality problems. Next, we
used feature extraction and feature selection methods to obtain
optimal feature sets that are exploited to describe local degrada-
tion. Finally, we introduced a semi-supervised machine learning
method to predict the labels of unlabeled data by learning from
limited labeled data and a large amount of unlabeled data. Our
experimental results demonstrated significant effectiveness and
efficiency in the proposed quality assessment framework for
indoor mobile mapping point clouds. Future work will be focused
on repairing low quality point clouds based on the point cloud
quality assessment results, in which different repair strategies will
be utilized based on the different degraded types.
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