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Abstract—Semantic labeling of road scenes using colorized mo-
bile LiDAR point clouds is of great significance in a variety of
applications, particularly intelligent transportation systems. How-
ever, many challenges, such as incompleteness of objects caused
by occlusion, overlapping between neighboring objects, interclass
local similarities, and computational burden brought by a huge
number of points, make it an ongoing open research area. In this
paper, we propose a novel patch-based framework for labeling
road scenes of colorized mobile LiDAR point clouds. In the pro-
posed framework, first, three-dimensional (3-D) patches extracted
from point clouds are used to construct a 3-D patch-based match
graph structure (3D-PMG), which transfers category labels from
labeled to unlabeled point cloud road scenes efficiently. Then, to
rectify the transferring errors caused by local patch similarities in
different categories, contextual information among 3-D patches is
exploited by combining 3D-PMG with Markov random fields. In
the experiments, the proposed framework is validated on colorized
mobile LiDAR point clouds acquired by the RIEGL VMX-450 mo-
bile LiDAR system. Comparative experiments show the superior
performance of the proposed framework for accurate semantic
labeling of road scenes.

Index Terms—Semantic labeling, 3D-PMG, Markov random
field, colorized mobile LiDAR point clouds.

I. INTRODUCTION

S EMANTIC labeling of road scenes automatically assigns a
category label to each basic element (eg. pixel or point) in

road scenes and has increasingly attracted the attention of re-
searchers because of its importance in a variety of applications,
such as urban planning, environmental impact assessment, cul-
tural heritage documentation, etc. Particularly, in intelligent
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transportation systems (ITS), for example, semantic labeling of
road scenes may assist Advanced Driver Assistance Systems
(ADASs) in making correct decisions and responses by inter-
preting the surrounding environment of the host vehicle and
understanding objects in the context of a traffic scene. Many
researches regarding ITS have mainly focused on exploiting
road-related information, including road structure [1]–[3], road
curbs [4]–[6], and road markings [7]–[11]. In fact, the context
information surrounding the road, such as the locations of light
poles, trees, and vehicles, may also provide important cues
for understanding complex road environments, even with little
road-related context information. These surrounding context
information can be obtained through road scene labeling.

In the past decades, semantic labeling based on 2D im-
ages has achieved great success [12]–[18]. However, in tradi-
tional optical imaging-based systems, the intrinsic deficiencies,
including lack of accurate geospatial information, image dis-
tortions caused by camera lens, image qualities influenced by
illumination conditions, and severe occlusions, limit the exten-
sive use of on-image semantic labeling in ITS applications.

With the rapid development of light detection and ranging
(LiDAR) technologies in recent years, the acquisition of large
volumes of highly dense and accurate colorized point clouds
with geospatial information over a large area is easily and
rapidly accomplished by mobile LiDAR systems [19]. Com-
pared with traditional optical imaging-based systems, mobile
LiDAR systems can capture real-world coordinates of road
scenes in a short time period. Mobile LiDAR systems are im-
mune to impacts of illumination conditions, occlusions, and im-
age distortions. Therefore, semantic labeling based on colorized
mobile LiDAR point clouds (see Fig. 1) of road scenes can
effectively alleviate the above problems of semantic labeling
based on images. Moreover, compared to mobile LiDAR point
clouds without color information, colorized mobile LiDAR
point clouds provide not only geometric information but also
texture information that is greatly essential to on-image seman-
tic labeling. Semantic labeling using colorized mobile LiDAR
point clouds can be an effective alternative to road scenes
labeling.

In spite of these advantages of colorized mobile LiDAR point
clouds, semantic labeling of road scenes based on colorized
mobile LiDAR point cloud is still an open issue because of
its challenges, including incompleteness of objects caused by
occlusions, overlapping between neighboring objects, inter-
class local similarities, and computational burden brought by a
huge number of points. In this paper, we propose a novel patch-
based framework for accurate semantic labeling of colorized
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Fig. 1. Example of semantic labeling of road scene using colorized mobile
LiDAR point clouds: (a) road scene of colorized mobile LiDAR point cloud;
(b) semantic labeling results.

mobile LiDAR point clouds of road scenes. In the proposed
framework, firstly, 3D local patches extracted from labeled
point clouds are used to train a novel 3D patch-based match
graph structure (3D-PMG). Then category labels are trans-
ferred from labeled to unlabeled point clouds by the trained
3D-PMG. Finally, in order to refine the incorrect category labels
caused by local 3D patch similarity in different categories, a
Markov Random Field (MRF) [20] model is integrated into the
proposed framework to consider contextual information. The
proposed framework can effectively handle the aforementioned
challenges by introducing patch-based matches and contextual
information among patches. Also, our proposed framework
classifies the points into seven challenging categories: palm
tree, cycas, brushwood, vehicle, light pole, grass, and road.

The remainder of this paper is organized as follows. Section II
introduces some related work. Section III presents the imple-
mentation details of the novel framework. Section IV reports
and discusses the comparative experimental results on colorized
mobile LiDAR point clouds acquired by RIEGL VMX-450
system. Finally, Section V gives the concluding remarks.

II. RELATED WORK

In the last few years, research on semantic labeling of road
scene mainly focused on 2D images [12]–[18]. Kang et al. [12]
exploited multiband images to address the semantic segmen-
tation tasks of road scenes by introducing a hierarchical bag-
of-textons method to consider a pixel’s larger visual context.
In [17], a semantic labeling method was proposed for image
sequences captured by a camera mounted on a car driving along
streets. Based on these image sequences, spatial information of
road scenes was explored by 3D scene reconstruction with the
Structure from Motion [21] algorithm. The work [18] presented
a novel framework for (1) enforcing temporal consistency
between consecutive video frames and (2) considering locally
reconstructed 3D geometry information when conducting se-
mantic labeling tasks of road scenes. In [13], [14], nonparamet-
ric approaches were introduced to address the multiclass pixel

labeling problem. Transferring annotations from labeled to un-
labeled image sets, these nonparametric approaches accomplish
promising labeling results on 2D road scene images. In spite of
the success of on-image semantic labeling, the problems caused
by object occlusions and image distortions still exist.

Semantic labeling of 3D point cloud road scenes has become
an important problem because of its extensive use. Probabilistic
graphical models such as Conditional Random Field (CRF)
were widely exploited to solve this problem [22]–[27]. The
CRF with a pairwise model was applied to ensure category
label consistency between neighboring points [22], [26]. In
[24], the Potts model [28], a high-order graphical model, was
used to keep labels homogeneous in a clique. To allow a portion
of inhomogeneous labels in a clique [23], Munoz introduced
robust Potts model [29] into Max-Margin Markov Network
(M3N). In [27], a set of non-associative context patterns were
devised to describe geometric relationships between different
category labels within the cliques. It is difficult for these CRF
based methods to train a good model when incomplete objects
exist in complex road scenarios. Some other methods did not
use graphical models [30], [31]. In [30], a shape-based method
was to (1) segment objects out of the point cloud scenes and
(2) use global features to recognize objects in point cloud road
scenes. Yang proposed a segmentation method to classify point
clouds according to their geometric features and extract objects
by merging the similar points and segments based on a set
of empirical rules [31]. The performance of the two methods
is influenced by segmentation results. Moreover, without local
information, only global object information is not suitable for
classifying these incomplete objects caused by occlusion and
overlapping in point cloud road scenes.

III. PROPOSED FRAMEWORK

As illustrated in Fig. 2, the proposed framework contains two
stages: training and labeling stages. The training stage is carried
out as follows: (1) extracting 3D patches from colorized mobile
LiDAR point clouds and representing each 3D patch with
rotation-invariant features, spatial coordinates, a category label,
and a scene identifier (Section III-A); and (2) constructing a
3D-PMG by establishing correspondences between labeled 3D
patches from different scenes (Section III-B). At the labeling
stage, the trained 3D-PMG is first used to transfer category
labels from labeled to unlabeled 3D patches (Section III-C).
Then, in order to rectify the incorrect labeling of 3D patches,
which is mainly caused by local 3D patch similarity in different
categories, a MRF model is integrated into the proposed frame-
work to consider contextual information (Section III-D).

A. 3D Patch Extraction and Description

There is a high point density of colorized mobile LiDAR
point clouds acquired by mobile LiDAR systems, which results
in computational burdens for labeling such huge numbers of
points into specific categories. To alleviate such a burden,
instead of labeling individual points, in this paper, 3D patches
are extracted from the point clouds and treated as operating
units for multi-category labeling tasks. Moreover, by using 3D
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Fig. 2. Proposed semantic labeling framework: (a) training stage, (b) labeling stage. In 3D patch description, the cycle represents the category label and color
indicates different categories. The triangle denotes the identifier of scene and different colors show different scenes. The rectangle denotes the coordinates of the
centroid of the points containing in a 3D patch.

local patches to describe local features of objects, the problem
for labeling incomplete objects might be alleviated.

For extracting 3D local patches, an Octree-based method
is adopted. Specifically, after applying the Octree algorithm
to partition point clouds spatially, each non-empty leaf node
in the Octree structure [32] is treated as a 3D patch (see
Fig. 2). To meet the requirements of the 3D-PMG (see details in
Section III-B), each 3D patch is described with the following
four kinds of information: category label, scene identifier,
spatial coordinates, and feature description. Category label is
selected as the majority label with labeled points in a 3D patch.
At the labeling stage, the category labels of 3D patches are
unknown in unlabeled scenes and can be inferred through label
transfer. To distinguish 3D patches from different scenes, a
unique identifier for each scene is assigned to 3D patches. To
achieve rotation invariance, rotation-invariant feature descrip-
tors are chosen to depict the geometric and texture features of
a 3D patch. In our approach, Fast Point Feature Histograms

(FPFH) [33] descriptors, the mean vector of the RGB channels,
and the height information of the centroid of the points in
a patch are exploited to describe shape, texture, and spatial
information of a local patch, respectively.

B. 3D-PMG Construction

The 3D-PMG construction algorithm, an extension of the
PatchMatchGraph algorithm [14] that is used for semantic
segmentation in 2D images, is developed for transferring labels
from labeled to unlabeled colorized mobile LiDAR point cloud
scenes. The core of 3D-PMG construction algorithm is to
find the approximate k-nearest neighboring 3D patches in the
other scenes for each 3D patch extracted from each scene,
while minimizing the cost between corresponding patches. To
realize it, the 3D-PMG construction algorithm constructs a 3D-
PMG via a set of move searches that exploit intrinsic and
contextual properties of objects to effectively and efficiently
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propagate 3D local patch matches among scenes. Combining
with the local object information that is represented by 3D
local patch, the intrinsic and contextual properties of objects
assist in handling incompleteness of objects when transferring
labels. To effectively organize these 3D patches, the Octree
and KDTree algorithms are applied. To alleviate the challenge
of category imbalance, the prior information such as category
label is introduced into the proposed algorithm to guide move
searches. Before introducing the implementation details of the
3D-PMG construction algorithm, we first define 3D-PMG and
the objective function for constructing a 3D-PMG.

1) Definition and Objective Function: The 3D-PMG is for-
mally defined over a set of 3D patches extracted from different
colorized LiDAR point cloud scenes. The definition of 3D-
PMG is as follows:

Definition 1: Let S = {S1, . . . , Sns
} be a set of ns colorized

LiDAR point cloud scenes and L be the size of each 3D patch.
A 3D-PMG defined over S is a directed graph GL(S) = 〈V , E〉,
where each node u ∈ V represents a distinct 3D patch extracted
from one of the scenes in S and each edge (u, v) ∈ E denotes a
match from node u to node v.

To measure the quality of the match between node u and
node v, a cost function c : E → R is introduced. From the
perspective of minimizing the cost of 3D patch matches, the
objective function for constructing a 3D-PMG is as follows:

min
∑

(u,v)∈E
c(u, v)

s.t. ∀u ∈ V : deg(u) = K

∀ (u, v) ∈ E : S(u) �= S(v)

∀ (u, v), (u,w) ∈ E
s.t. v �= w : S(v) �= S(w) (1)

where deg(u) is the outdegree of node u; S(u) represents the
scene to which node u belongs; c(u, v) is the matching cost
between u and v. The cost function c(u, v) is defined as follows:

c(u, v) =αc · cc(u, v) + αf · cf (u, v) + αh · ch(u, v) (2)

cc(u, v) =

3∑
k=1

|Cu(k)− Cv(k)|
255

(3)

cf (u, v) =

16∑
k=1

[Fu(k)− Fv(k)]
2

Fu(k) + Fv(k)
(4)

ch(u, v) =
|Hu −Hv|

Hmax
(5)

where αc, αf , and αh are the cost weights for cc(u, v), cf (u, v),
and ch(u, v), respectively. Fu denotes a 16-D FPFH descriptor
for a 3D patch u; Cu represents a RGB color vector of a 3D
patch u; Hu represents height information of a 3D patch u;
Hmax is a constant to normalize the height information. Eq. (4)
computes the shape similarity cost between 3D patches u and v
using the χ2 distance [34].

The requirement on matches being from different scenes
results in a diversity of matches. Such diversity in matches
is important to ensure our proposed algorithm to escape local

optima quickly. Therefore, the objective function implies a set
of constraints to ensure a diversity of matches. These con-
straints include: (1) 3D patches extracted from the same scene
will not be matched for avoiding a 3D patch matching itself;
(2) A 3D patch is constrained to match at most one 3D patch
from the same scene; (3) A 3D patch should ascertain a total of
K matches from all point cloud scenes.

The huge number of 3D patches results in high computa-
tional complexity and large memory requirements to find the
optimal solution of Eq. (1). Instead of an optimal solution,
an approximate optimal solution is obtained by applying the
3D-PMG construction algorithm.

2) 3D-PMG Algorithm: The 3D-PMG construction algo-
rithm needs to search 3D patch matches under the constraints in
Eq. (1). For the purpose of searching good candidate matches,
the algorithm defines a set of match rules called search moves
which contain: initialization, propagation, local search, inverse
and forward enrichments, and exhaustive search. The details are
explained in the following:

Initialization: There are two methods for initialization.
(1) Graph G is initialized by each node u ∈ V with K random
matches under the constraints in Eq. (1). Specifically, u ∈ V
is firstly initialized with all valid 3D patches extracted from
point cloud scenes and E is set to be an empty set. Then,
for each node u ∈ V , K nodes v1, . . . , vK ∈ V are randomly
selected from K different scenes, and K edges (u, vi), i =
1, . . . ,K are added to E . (2) To make the algorithm converge
quickly, height information is introduced as an indicator to
conduct the initialization. Concretely, for each node u ∈ V ,
firstly, K different scenes are randomly selected. Then, for
each scene, a node v is randomly selected among the 3D
patches with approximately identical height to u. Finally, the
edge (u, v) is added to E . The proposed approach combines
these two methods and selects the current best K matches
satisfying the constraints in Eq. (1). Initialization is performed
only once.
Propagation: In 2D images, it is observed that if a patch u
is a good match with patch v, then this implies that spatially
adjacent patches to u are also good matches with spatially
adjacent patches to v [35]. This observation also works well
in colorized mobile LiDAR point cloud scenes. However,
neighboring relationship of 3D patches in point cloud scenes
is difficult to define efficiently compared with images which
define 4-connected pixels as the neighbors. Thus, the pro-
posed framework exploits the KDTree algorithm to organize
these 3D patches. Neighbors of v are defined as those 3D
patches whose spatial distances to v are less than a searching
radius Rpro. After that, as illustrated in Fig. 3(a), for each
neighbor v′ of v and each neighbor u′ of u, edges (u′, v′) are
considered as good candidate matches. This move propagates
good matches across the space of 3D patches.
Local search: The local search move shown in Fig. 3(b) aims
to search a better match locally. Considering an existing edge
(u, v) ∈ E , for all 3D patches v′ whose spatial distance to v
is less than the radius Rloc, edges (u, v′) are considered as
good candidate matches. Local search costs less time than
propagation.
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Fig. 3. Search moves: (a) propagation, (b) local search, (c) inverse enrichment,
(d) forward enrichment. Each cube box represents a 3D patch. The solid line
represents the edge already existing in the graph. The dashed line represents
the candidate edge.

Inverse enrichment: Fig. 3(c) depicts the procedure of in-
verse enrichment. The inverse enrichment is motivated by the
observation that if node v is a good match to node u, then
inversely, node u may be a good match to node v. Thus, for
an edge (u, v) in E , edge (v, u) is also regarded as a good
candidate match. To prevent cycles (and enforce constraints
in Eq. (1)), we skip edges that match back to the same scene.
Forward enrichment: As illustrated in Fig. 3(d), for forward
enrichment, if there are edges (u, v) and (v, w) ∈ E , then edge
(u,w) is a good candidate match. This move strategy makes
the good matches likely to spread over the entire graph.
Exhaustive search: Exhaustive search, which assists in es-
caping local optima, is a brute-force search method. For a
node u ∈ V in a scene, all edges (v, u), whose node v come
from other scenes, are considered as good candidate matches.
This move requires much more time than the aforementioned
search moves. In the proposed framework, a few nodes are
selected to conduct an exhaustive search during the 3D-PMG
construction procedure. Many alternative strategies can be
used to select nodes for exhaustive search. The proposed
framework introduces the following two strategies: (1) A
node is selected with a probability proportional to the cost
of its best current match. This helps the 3D-PMG improve
poor matches. (2) The prior information, category label, is
chosen as an indicator to select nodes. Because, in most cases,
the 3D patches extracted from some objects, which account
for minority categories in the scenes, are inclined to fall
into local optima, thereby resulting in a failure to find good
matches. Thus, to solve such a problem caused by category
imbalance, we randomly select the 3D patches from these
minority categories to perform an exhaustive search.

Algorithm 1 Updating a 3D-PatchMatchGraph with a candi-
date match

Input: old graph G = 〈V , E〉 and new edge e = (u, v)
Output: G∗

1: Let e′ = argmax(u,v′)∈E

{
∞ if S(v′) = S(v)

c(u, v′) otherwise
2: if c(u, v) < c(u, v′) then
3: E ← E

⋃
{e} \ {e′}

4: end if
5: return G∗ = 〈V , E〉

The 3D-PMG construction algorithm is carried out as fol-
lows. First, a 3D-PMG is initialized with matches satisfying the
constraints in Eq. (1). Then, we start iterating. In each iteration,
all the nodes whose matches have changed in the previous
iteration are selected. The search moves including propagation,
local search, forward enrichment, and inverse enrichment, are
conducted for the changed edges associated with these nodes.
In addition, a few nodes are selected to perform an exhaustive
search in each iteration. Each of these search moves tries to find
candidate matches and progressively updates the matches in the
3D-PMG. The update is accomplished by using Algorithm 1.
Search moves are terminated when an iteration reaches a
maximum or the value of the objective function (see Eq. (1))
no longer changes. The procedure of applying 3D-PMG con-
struction algorithm at training stage is described as follows:
as shown in Fig. 2(a), for a set of labeled colorized LiDAR
point cloud scenes, firstly, labeled 3D patches are extracted
and characterized. Then, by using these labeled 3D patches,
a 3D-PMG is trained or built through the proposed 3D-PMG
construction algorithm.

C. Label Transfer With 3D-PMG

Transferring category labels from labeled to unlabeled scenes
is carried out at the labeling stage. As illustrated in Fig. 2(b),
for an unlabeled scene, 3D patches extracted from unlabeled
scenes are first described by three kinds of information: scene
identifier, spatial coordinates, and feature description. Then
these directional correspondences from unlabeled 3D patches
to labeled nodes in the trained 3D-PMG are established by the
3D-PMG construction algorithm. Based on these 3D patches
correspondences, label transfer is applied to infer the initial la-
bels of the unlabeled patches by Eq. (6) and Eq. (7). The search
moves applied in label transfer differ from those at the training
stage in the following two aspects: on the one hand, during the
establishment of the 3D patches correspondences, we consider
only the 3D patches from unlabeled scenes; on the other hand,
edges are unidirectional from the labeled 3D patches to the
trained 3D-PMG, thereby, resulting in the removal of inverse
enrichment in label transfer. The probability of an unlabeled
node u taking a label l is estimated as follows:

P (yu = l|G) ∝
∑

(u,v)∈E
wl

u(u, v)[Lv = l] (6)

where [·] is an indicator function. The value of [·] is 1 if its
argument is true, otherwise 0. Lv indicates the category label
of node v. wl

u(u, v) is a weight function which adjusts the
contribution of each match. There are many alternative methods
to define such a weight function. Here, the contributions of
matches are weighted by a means of their costs. We follow the
work [14] to define the weight function as 1/r2, where r is the
rank of the match in the sorted list of matches for node u.

The category label Lu of an unlabeled node u is inferred by
following:

Lu = argmax
l

P (yu = l|G). (7)
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To determine the category label of an individual 3D point p in
a colorized LiDAR point cloud scene, we refer to p as a center
point and Rarea as a radius for searching the spatial neighboring
nodes VN of p by the KDTree algorithm. The category label l
of point p is determined as follows:

lp = argmax
l

∑
v∈VNp

[Lv = l]. (8)

D. Label Refinement With MRF

As shown by the point cloud labeling results in label transfer
in Fig. 2(b), some incorrect labels are caused by local patch
similarities in different categories. We use the MRF model
to refine the labeling results with consideration of contextual
information among 3D local patches. The Graph Cuts [36]
algorithm is adopted to minimize the energy of the following
pairwise MRF:

E
(
y1, . . . , y|V|

)
=
∑
u∈V

Du(yu)+λ
∑

(u,v)∈Emrf

Bu,v(yu, yv) (9)

where yu is the label of a 3D patch u; Emrf constrains all edges
in the MRF; D is a unary energy term and B is a pairwise
energy term. λ is a parameter for controlling the weight of the
pairwise energy term.

The initial label probabilities of 3D patches P (yu|G) com-
puted in label transfer are used to formulate the unary energy
term Du

Du(yu) = 1 − log P (yu|G). (10)

To group 3D patches into specific categories with appearance
consistency and spatial adjacency, color information is used to
design the pairwise energy term Bu,v. However, because of
inter-category color similarities in our dataset, it is difficult to
distinguish between grass and vegetation, vehicle and ground
with only color information. In label transfer, ground is inclined
to be incorrectly labeled as grass in most conditions and vice
versa. Therefore, to solve the above issue, we incorporate the
patch’s label obtained in label transfer (initial label) into the
design of the pairwise energy term Bu,v

Bu,v(yu, yv) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, yu = yv

γ, yu �= yv ∧ y′u = lgrass ∧ y′v �= lground

γ, yu �= yv ∧ y′u = lground ∧ y′v �= lgrass

exp
(
−β ‖C(u)− C(v)‖2

)
, otherwise

(11)

where C(u) represents the RGB color vector of node u. lgrass
and lground are category labels of grass and ground, respec-
tively. y′u is the node u’s initial label inferred in label transfer. γ
is a penalty under the following two conditions: 1) the initial
label of a 3D patch labeled as grass is altered into another
category other than the ground, 2) the initial label of a 3D patch
labeled as ground is altered into another category other than
the grass. In our method, we simply set γ at zero. The pairwise
MRF only has two parameters λ and β, which are readily set by
cross-validations.

Fig. 4. Illustration of REIGL VMX-450 mobile LiDAR system and its
configurations.

IV. EXPERIMENT AND DISCUSSION

A. RIEGL VMX-450 System and Colorized Mobile LiDAR
Point Cloud Dataset

In this paper, the colorized mobile LiDAR point clouds were
acquired along the Ring Road in Xiamen, China, by a REIGL
VMX-450 mobile LiDAR system. The REIGL VMX-450
system [37] smoothly integrates two RIEGL VQ-450 laser
scanners, a global navigation satellite system (GNSS) antenna,
an inertial measurement unit (IMU), a distance measurement
indicator (DMI), and four high-resolution digital cameras (see
Fig. 4). This integrated set was mounted on the roof of a
minivan with an average speed of 40–50 km/h. After data acqui-
sition, RiProcess, a post-process software released by REIGL
corporation, is used to calibrate the images with point clouds
for the generation of colorized mobile LiDAR point clouds.

A colorized mobile LiDAR point cloud dataset with a point
density of about 7,000 points/m2 and covering a road section
of about 1,500 meters was selected to evaluate the proposed
framework. To evaluate the performance of our proposed
framework, we built a ground truth for the selected dataset by
manually and thoroughly classifying all points into the follow-
ing eight categories: road, grass, palm tree, cycas, brushwood,
light pole, vehicle, and others. Table I details the number of
points in each category. In order to conveniently handle the
huge number of points in the dataset, we partitioned it into
142 parts along the trajectory which was recorded by the
onboard navigation system. Each part, with a length of about
10 meters and a size of about 40 MB, was treated as an
individual scene. All the scenes were split into a training dataset
with 20 scenes and a test dataset with 122 scenes. Challenges,
such as objects overlapping, occlusions, incompleteness, and
category imbalance, commonly existed in the dataset. Specifi-
cally, Table I presents the number of objects in each category
and the number of overlapping objects in our dataset. The
statistical data show the challenges of objects overlapping and
category imbalance. Moreover, as illustrated in Fig. 5(f), the
light pole and palm trees are overlapped, and the palm trees
cluster. In Fig. 5(i), the vehicle is incomplete because of self-
occlusions. These challenges make the road scene labeling of
mobile LiDAR point clouds difficult.

B. Semantic Labeling of Road Scenes

A 3D-PMG is trained by using the 20 training scenes in our
dataset. Firstly, 3D patches are extracted from each training
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TABLE I
DESCRIPTION AND GROUND TRUTH OF THE DATASETS

Fig. 5. Semantic labeling results on a part of our dataset: (a) ground truth; (b) semantic labeling results; (c), (f), and (i) close-up views of the ground truths in
areas #A, #B, and #C; (d), (g), and (j) close-up views of the label transfer results in areas #A, #B, and #C; (e), (h), and (k) close-up views of the final semantic
labeling results in areas #A, #B, and #C.

scene with the same size, L, and each patch is as the illustration
in Section III-A. Then the 3D-PMG construction algorithm
is exploited to establish correspondence relationships among
these 3D patches and finally construct a trained 3D-PMG. In
the experiments, an exhaustive search, with the two following
strategies, is implemented by: 1) randomly selecting 0.1% 3D
patches in minority categories, including vehicle, cycas, and
light pole; 2) selecting ten 3D patches with a probability pro-
portional to the cost of the best current match in each iteration.
Search moves mentioned in Section III-B are all included in
the training stage. During construction of 3D-PMG, we set
iteration times to be 50. Several 3D-PMG construction related
parameters and their corresponding values are listed in Table II.
The two parameters λ and β in the MRF model are obtained by
applying a grid search method.

At the labeling stage, the 122 scenes in the test dataset were
used for evaluating the performance of the proposed frame-

TABLE II
PARAMETERS IN 3D-PMG CONSTRUCTION

work. After establishing directional correspondences from un-
labeled 3D patches to the labeled nodes in the trained 3D-PMG,
the initial label of each unlabeled 3D patch was inferred from
Eq. (6) and Eq. (7). We set Rarea as 0.3 m to determine neigh-
boring 3D patches for individual points and generated label
transfer results for individual points with Eq. (8). By applying
MRF, the refined labeling results are obtained.

The label transfer results of the road scenes are shown in
Fig. 5(d), (g), and (j). Although there are overlapping objects
and incomplete objects in the road scenes, the local patch-
based graph structure (3D-PMG) effectively exploits local
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TABLE III
EXPERIMENTAL RESULTS ON DIFFERENT APPROACHES

information, intrinsic and contextual properties of objects to
transfer category labels. In addition, for a small portion of
incorrect labels caused by the local similarities in different
categories (e.g. leaves of cycas and palm tree), MRF considers
contextual information to refine the labeling results as shown in
Fig. 5(e), (h), and (k)). Fig. 5(b) presents a part of the semantic
labeling results on the test road scenes, which shows that
our proposed framework performs promising semantic labeling
results on road scenes.

To quantitatively assess the accuracy and correctness of
the semantic labeling results on the test dataset, we selected
the following three measures including Precision, Recall, and
F1-measure [27]. Precision describes the percentage of true
positives in the ground truth; recall depicts the percentage of
true positives in the semantic labeling results; F1-measure is an
overall measure. The three measures are calculated on points
and defined as follows:

precision =
TP

TP + FN
(12)

recall =
TP

TP + FP
(13)

F1 − measure =
2 · precision · recall
precision + recall

(14)

where TP, FN, and FP represent the number of true pos-
itives, false negatives, and false positives, respectively. The
quantitative evaluation results using these three measures are
presented in Table III. The average label transfer results
(3D-PMG) achieved in precision, recall, and F1-measure are
0.746, 0.813, and 0.769, respectively. The proposed framework
(3D-PMG+MRF) achieves an average precision, recall, and
F1-measure of 0.84, 0.896, and 0.862, respectively, in labeling
road scenes. There is an improvement of performance by in-
corporating MRF model into our proposed framework, because
the contextual information among 3D patches is considered by
using MRF model.

C. Comparative Studies

To show the superiority of the proposed framework (3D-
PMG+MRF) in labeling road scenes, the performance of the
label transfer part in our proposed framework is first evalu-
ated. For comparing it with two classic classifiers: Random
Forest (RF) [38] and Support Vector Machine (SVM) [39], we
treated the label transfer part as a classifier in multi-category
classification of colorized mobile LiDAR point clouds. For the
SVM-based method, we used the LIBSVM [40] and selected
radial basis function as the kernel function. For the RF-based
method, we set the number of trees at ten and the depth of
each tree at fifteen. For RF and SVM classifiers, the size and
the feature descriptors of 3D local patches were the same as
the 3D-PMG-based method. To balance the training samples in
each category, we randomly sampled 10,000 patches for each
category from the training dataset to train the SVM and the
RF classifiers. After inferring the category labels of 3D patches
in the test dataset, the category label of each single point was
determined by Eq. (8). As shown by the quantitative evaluations
in Table III, compared with the SVM-based and RF-based
methods, label transfer by applying 3D-PMG algorithm obtains
the highest average F1-measure of 0.769 and precision of 0.813.
Although the SVM-based and the RF-based methods achieved
better results in precision in classifying points of some certain
categories, including brushwood, light pole, and vehicle, our
method (3D-PMG) attained the highest recall and F1-measure
in each category. This is because, compared with the SVM-
based and the RF-based methods that exploit only local object
information, label transfer in our proposed framework is per-
formed by, not only local object information, but also by the
objects intrinsic and contextual properties.

To further evaluate the performance of the proposed frame-
work (3D-PMG+MRF) in labeling road scenes, the M3N ap-
proach [23] and the shape-based approach [30] were selected
for comparison. The M3N approach adopted the robust Potts
model [29] where the cliques were defined to be the resulting
clusters from two k-means segmentations [41] with parameter
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Fig. 6. Semantic labeling results in comparison: (a) colorized mobile LiDAR point clouds; (b) ground truths; (c) results of the M3N approach; (d) results of label
transfer; (e) results of 3D-PatchMatchGraph with pairwise MRF.

configurations of k1 = 0.03 and k2 = 0.01, respectively. Con-
sidering the point density and the huge number of points, we
adopted the 3D patch extraction strategy aforementioned in
Section III-A to downsample the points. The shape-based ap-
proach included the following four steps: locating, segmenting,
characterizing, and classifying clusters of 3D points. As the
quantitative results in Table III shown, our proposed framework
yields an average F1-measure of 0.862, which outperforms
both two methods: the shape-based methods whose average F1-
measure is only 0.607, and the M3N method whose average
F1-measure is 0.784. The poor performance of the shape-based
approach demonstrates that it is not suitable for these scenarios
with severely overlapping and incomplete objects. The M3N
method outperforms the other methods except for our proposed
framework, and as seen in Fig. 6, the labeling results generated
by the M3N approach are not as smooth as it in our proposed
framework. This is because it is difficult for the M3N method
to train a probabilistic graphical model to fit complex scenarios
with unbalanced categories and incomplete objects.

The proposed framework and comparative studies were
coded with C++ and executed on a personal computer with a
single Intel core of 3.30 GHz and a RAM of 16 GB. The training
times for SVM-based, RF-based, Shape-based and M3N meth-
ods were 1.5, 0.5, 0.8, and 2.4 hours, respectively. The labeling
times of the whole test dataset for SVM-based, RF-based,
Shape-based and M3N methods were 4.4, 3.8, 4.2, and
5.8 hours, respectively. For our proposed framework, the train-
ing time was about 5.5 hours and the labeling time for the whole
test dataset was about 8.6 hours. The average time for labeling
an individual scene was about 4 minutes. Although our pro-
posed framework took more time than those of the other meth-
ods, it achieved a superior labeling performance than the other
methods. Moreover, in the 3D-PMG construction algorithm,
search moves such as propagation, inverse enrichment, and lo-
cal search moves can be implemented in parallel. The computa-
tional cost of these moves can be reduced to about 1/k times of
the non-parallel execution time. Here, k is the number of cores.

Fig. 7. Impact of 3D patch size on semantic labeling results.

D. Sensitivity of Our Proposed Framework

In this section, we analyze the impact of the following
parameters on the performance of the proposed approach: size
of 3D patch (L), and local search radius (Rloc).

To analyze the influence of 3D patch size on the proposed
approach, the following configurations were tested: 0.15 m,
0.2 m, 0.25 m, 0.3 m, and 0.35 m. The test results are shown
in Fig. 7. As seen in Fig. 7, the F1-measures for road, grass,
palm tree, and cycas, change slightly as the 3D patch size
increases. However, for vehicles, the F1-measure drops from
0.85 to 0.69 when the 3D patch size ranges from 0.2 m to
0.35 m. For light poles, the F1-measure decreases dramatically
from L = 0.3 m to L = 0.35 m. In fact, the number of 3D
patches will decrease with the increase of 3D patch size. As
a result, for those categories with minor number of points, the
possibility of matching correct 3D patches decreases as the 3D
patch size increases. Moreover, a large local 3D patch is not
suitable for describing simple structures like surfaces or lines
because of high possibility to introduce noisy points which
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Fig. 8. Impact of 3D patch size on training time.

Fig. 9. Impact of local search radius on semantic labeling results.

destroy these simple structures. As shown in Fig. 8, as the 3D
patch size increases, the training time decreases. This is because
the training time is influenced by the number of 3D patches. To
make a trade-off between the performance and the efficiency,
we set the 3D patches size at L = 0.2 m.

To analyze the impact of local search radius on the perfor-
mance of our proposed approach, the following configurations
were tested: 0.3 m, 0.5 m, 0.7 m, 1 m, and 1.5 m. As reflected
in Fig. 9, the F1-measures change very slightly with an in-
crease in the local search radius. This is because propagation
achieves a similar effect to local search at the expense of a
low convergence rate. The reason for conducting a local search
in the proposed framework is that a larger local search radius
ascertains good matches of the current node rapidly. In addition,
as reflected in Fig. 11, the values of the objective function in
Eq. (1) decreases as the local search radius increases at the
training stage, which shows that the larger local search radius
assists in finding better local matches. Moreover, the training
time varies with an increase in local search radius (see Fig. 10).

Fig. 10. Impact of local search radius on training time.

Fig. 11. Impact of local search radius on objective function value.

This is because the larger search radius requires more time to
search for candidate matches. To make a trade-off between the
performance and the efficiency of our proposed framework, we
set the local search radius at 1.0 m (see Fig. 11).

V. CONCLUSION

In this paper, in order to effectively conduct semantic la-
beling tasks on road scenes, we have presented a patch-based
framework that combines a 3D-PMG structure and a pairwise
MRF model by using colorized mobile LiDAR point clouds.
The 3D-PMG was used to transfer category labels from labeled
to unlabeled 3D patches by exploiting both intrinsic and con-
textual properties rather than local features only. The pairwise
MRF model was exploited to refine the label transfer re-
sults with contextual information. For evaluating the proposed
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framework, a ground truth with challenges including incomp
lete objects, overlapping objects, and inter-class local similar-
ities, was built. Quantitative evaluations demonstrated that our
proposed framework achieves an average precision, recall, and
F1-measure of 0.84, 0.896, and 0.862, respectively. In addition,
comparative studies also demonstrated the superior perfor-
mance of our proposed algorithm over the M3N method and
the shape-based method in semantically labeling complex road
scenes. Although our proposed framework obtained superior
performance, the labeling results still have space to be improved
by introducing higher-order [42] or co-occurrence potentials
[43] into the MRF model. We will try more complex potentials
to improve the labeling performance in our future work.

In addition, because of expensive computational costs, the
proposed framework is feasible and promising to some off-line
road labeling tasks. With the success in road scene labeling
based on colorized mobile LiDAR point clouds, the accurate
position and category information of objects may assist in ITS-
related applications to well interpret the road environments.
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