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Abstract—This paper proposes a novel algorithm for detecting
road scene objects (e.g., light poles, traffic signposts, and cars) from
3-D mobile-laser-scanning point cloud data for transportation-
related applications. To describe local abstract features of point
cloud objects, a contextual visual vocabulary is generated by inte-
grating spatial contextual information of feature regions. Objects
of interest are detected based on the similarity measures of the bag
of contextual-visual words between the query object and the seg-
mented semantic objects. Quantitative evaluations on two selected
data sets show that the proposed algorithm achieves an average
recall, precision, quality, and F-score of 0.949, 0.970, 0.922, and
0.959, respectively, in detecting light poles, traffic signposts, and
cars. Comparative studies demonstrate the superior performance
of the proposed algorithm over other existing methods.

Index Terms—Bag-of-contextual-visual-words, car, light pole,
mobile laser scanning (MLS), road scene object, traffic signpost.

1. INTRODUCTION

ITH rapid urbanization, effective management and

maintenance of urban road facilities (e.g., light poles,
traffic signposts, etc.), on a regular basis, play a critical role
in providing convenient and safe driving environments to the
road users. To facilitate management and improve efficiency,
automated, cost-effective detection and measurement of road
scene objects are urgently demanded by the transportation
agencies. Accurate category and localization information of road
scene objects also forms important inputs to many intelligent
transportation-related applications, including driver assistance
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and safety warning systems [1], [2], autonomous driving
[3]-[5], and traffic flow monitoring and prediction [6]-[8]. In
addition, accurate, real-time information regarding current road
conditions, traffic flow, and the surrounding environment is of
great significance and necessity to the Intelligent Transportation
Systems.

Traditionally, the statistics, localization, and measurement of
road scene objects were mainly accomplished based on field
work, where field specialists from transportation agencies con-
ducted on-site inspections and measurements on a regular basis.
Such field measurements were time consuming, labor intensive,
costly, and inefficient to inventory large-scale, complicated
urban road networks. Specifically, it is even greatly dangerous
to work on highways, overhead roads, or in tunnels. Recently,
mobile mapping systems (MMS) mounted with digital cam-
era(s) or video camera(s) [9], [10] have emerged as an effective,
promising tool for a wide range of transportation-related ac-
tivities. However, optical imaging-based MMS suffer greatly
from environmental illumination conditions, thereby limiting
mapping missions to only the daytime. In addition, distortions,
motion blurs, and color imbalance of images, occlusions caused
by nearby pedestrians and moving vehicles, shadows cast by
buildings and trees, and lack of accurate georeferencing also
limit the use of the MMS in transportation-related activities.

Since last decade, with the integration of laser scanning and
position and orientation technologies, mobile laser scanning
(MLS) systems have emerged and been widely used in fields of
transportation, road planning, heritage documentation, forestry,
and basic surveying and mapping. MLS systems [11] adopt
an active sensing pattern to measure surface topologies of
visual targets with near-infrared laser spectra. Compared with
optical imaging-based MMS, MLS systems are immune to
the impact of environmental illumination conditions, and can
acquire highly dense and accurate undistorted 3-D point cloud
data with real-world coordinates and reflected intensities over
a large area in a short time period. Therefore, MLS systems
provide a potential and promising solution to detecting road
scene objects to assist in rapid update of road databases and
intelligent transportation-related applications. However, there
are still some challenges in handling 3-D point clouds toward
effective road scene object detection, such as irregular sam-
pling, object variations, incompleteness of objects caused by
occlusions, density variations caused by different sensor-object
distances, non-equal noise/error levels, distortions of moving
objects, etc.

In this paper, we propose a bag-of-contextual-visual-words
(BoCVWs) model for detecting road scene objects from MLS
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data. The proposed algorithm includes two stages: contextual
visual vocabulary generation and road scene object detection.
At the contextual visual vocabulary generation stage, first,
the training data are preprocessed to remove ground points.
Then, the off-ground points are supervoxelized to construct
feature regions based on first-order supervoxel neighbors. Next,
contextual feature groups are formulated and a distance metric
is designed to measure their distances. Finally, the contex-
tual feature groups are clustered and quantized to generate a
contextual visual vocabulary, where each cluster center forms
a distinct contextual visual word. At the road scene object
detection stage, first, a search scene is preprocessed to filter out
ground points. Then, the off-ground points are clustered and
segmented into individual semantic objects through Euclidean
distance clustering and extended voxel-based normalized cut
segmentation. Next, the query object and the semantic objects
are supervoxelized, featured, and quantized to form BoCVWs.
Finally, the objects of interest are detected based on the similar-
ity measures between the BOCVWs of the query object and the
semantic objects.

The contributions of this paper are as follows: 1) a
supervoxel-based BoOCVWs model is proposed for representing
point cloud objects; 2) an extended voxel-based normalized cut
segmentation method is developed for segmenting connected
and overlapped semantic objects.

II. RELATED WORK

MLS systems have realized rapid collection of 3-D geospa-
tial data used for a wide range of transportation-related applica-
tions [12]. The highly dense and accurate 3-D point cloud data
have been a leading source for highway mapping [13], urban
road distress assessment [14], [15], and road feature inventory
[16], [17]. This trend is keeping increasing. In the following
sections, we present a detailed literature review of existing
methods for detecting light poles, traffic signposts, cars, and
other road scene objects from MLS data.

A. Light Pole Detection

Light poles, a typical kind of road infrastructure, are an
important component of the city lighting system. On one hand,
light poles provide illumination to pedestrians and vehicles at
night for a clear visibility of the road environment. On the
other hand, light poles can effectively reduce criminal activities
and terrible accidents at night for a safe driving and living
environment. Most of existing methods for detecting light poles
basically consider their pole-like structures.

By considering both shape and context features of light poles,
a point classification based on principal component analysis
(PCA) [18] was proposed to detect light poles. Similarly, an
eigenvalue analysis-based method was proposed in [19] to
detect light poles. Generally, the eigenvalue-based methods
show high computational efficiencies. However, caused by the
interference of other pole-like objects (e.g., trees, utility poles,
and traffic signposts) in the scene, such methods often gen-
erate many false alarms. By using prior knowledge of shape,
height, and size of light poles, a percentile-based method was
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developed in [16]. In this method, considering the impact of
the bottom shrubs, as well as other attachments to the pole
(e.g., advertising boards and traffic signs), the third quartile was
selected and sliced into horizontal profiles for recognizing pole-
like structures.

In [20], a pairwise 3-D shape context descriptor was devel-
oped to detect light poles. The detection of light poles was
achieved through a prototype-based shape matching. A 3-D
object matching framework was proposed in [17] for detecting
light poles of varying shapes, completeness, with attachments,
or hidden in trees. In [21], a voxel structure-based method was
developed to detect light poles. The recognition of light poles
was accomplished through 3-D voxel neighborhood analysis.

Currently, to simplify data processing, some research con-
verted 3-D point clouds into 2-D representations. In [22], a
2-D point density segmentation method was proposed to detect
light poles. In [23], the points of an object were first projected
onto a horizontal plane. Then, the distribution of the projected
points was analyzed to detect objects with pole-like structures.
A density of projected points method was used in [24] to detect
light poles. In addition, scan line-based methods [25]-[27] were
also developed for detecting light poles.

B. Traffic Signpost Detection

As a greatly important transportation infrastructure, traffic
signposts play a critical role in transportation, traffic safety, and
route guidance. First, traffic signposts provide road users with
detailed road information. Second, traffic signposts function to
regulate and control traffic activities. Thus, detection and mea-
surement of traffic signposts have attracted increasing attention
in the literature. Most of existing methods are based on the pole-
like, vertical plane, and high retro-reflectivity features of traffic
signposts.

Generally, to provide optimal views and clear visibilities
to the road users, traffic signposts are placed on the sides of
and near the boundaries of the road. Consequently, such prior
knowledge was used in [23] to detect traffic signposts. In this
method, traffic signposts were detected by inferring linear fea-
tures from the horizontal projection of clustered spatial objects.
A Laplacian smoothing and PCA method was developed in
[28] for detecting traffic signposts. In [29], a Hough forest
model with a circular voting strategy was used to detect traffic
signposts. Similarly, a supervoxel neighborhood-based Hough
forest framework [30] was also proposed to detect traffic sign-
posts. In addition, a LiDAR and vision-based real-time traffic
signpost detection method [31] was developed for intelligent
vehicle applications.

Traffic signposts usually exhibit high retro-reflectivity in the
MLS data. Consequently, intensity information becomes an
important clue for distinguishing traffic signposts from other
objects. In [32], a processing chain of retro-intensity filtering,
elevation filtering, lateral offset filtering, point regrouping, and
hit count filtering was developed to detect traffic signposts. In
[33], first, a point cloud was segmented into isolated objects.
Then, eigenvalue analysis was performed to extract objects with
linear structures. Finally, retro-reflectivity properties of traffic
signposts were considered to refine the detection results. In
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[34], intensity information and vertical plane structures were
utilized to detect traffic signposts. Similarly, a template-driven
method was developed in [35] to detect traffic signposts with
the prior knowledge of symmetric shapes and highly reflective
planes perpendicular to the direction of travel.

C. Car Detection

Cars are very common and important tools in current trans-
portation activities. Detection of cars provides essential in-
formation to a variety of applications such as traffic flow
monitoring, intelligent transportation, autonomous driving,
business analysis of shopping malls, etc. Existing methods for
car detection are basically divided into the following three
categories: 1) segmentation and feature recognition based meth-
ods, 2) model-driven methods, and 3) machine learning based
methods.

In [36], a marked point process based method was pro-
posed to detect cars in crowded urban areas. In this method, a
marked point process of 2-D rectangles, simulated by a multiple
birth-and-death algorithm [37], was configured to describe the
positions, sizes, and orientations of cars. Similarly, two-level
point processes of rectangles [38] were also developed to detect
cars. In [39], on-road cars were located based on detecting the
changes of slopes on the transversal profiles of the road. In [40],
a context-guided method was developed to detect cars based on
the geometric model of cars.

In [41], an adaptive 3-D segmentation method was proposed
to detect cars for motion state and velocity estimation. The
detection of cars was achieved using a binary classification
based on object-oriented features. In [42], an object-based
point cloud analysis method was proposed for car detection.
In this method, first, 3-D connected component analysis was
performed to generate potential car candidates. Then, cars
were detected based on area, rectangularity, and elongatedness
features. In addition, Hough forest frameworks [29], [30],
3-D object matching [43], invariant parameters of polar line-
segments [44], grid-cell method [45], and bottom-up and top-
down descriptors [46] were also exploited for car detection.

D. Detection of Other Road Scene Objects

In addition to light poles, traffic signposts, and cars, a number
of methods for detecting other common road scene objects,
such as buildings, trees, utility poles, etc., have also been
exploited in the literature. In [47], a mathematical morphol-
ogy and supervised learning method was proposed to detect,
segment, and classify urban scene objects. In this method,
the entire processing was carried out using elevation images
generated from 3-D point clouds. In [48], a fully automated and
versatile semantic labeling framework composed of neighbor-
hood selection, feature extraction, feature selection, and classi-
fication was developed to segment point clouds into semantic
objects. A super-segments based method was proposed in [49]
to interpret an urban street scene into semantic objects. Sim-
ilarly, a supervoxel segmentation based approach was used in
[50] for classifying urban scene objects. In addition, some other
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Fig. 1. Contextual visual vocabulary generation workflow.

segmentation and classification methods were also exploited to
detect and classify road scene objects [S1]-[53].

In [54], a PCA and random sampling consensus method
was proposed to detect building facades. The detected building
facades were further projected onto the ground to generate
building footprints. Region growing and Hough transform were
used in [55] to extract vertical walls for solar energy assess-
ment. In [56], a pairwise 3-D shape context descriptor was
adopted to model the entire structures of point cloud objects.
The extraction of trees was achieved based on a prototype-
based shape matching process. A deep learning based method
was developed in [57] for extracting and classifying urban road
trees. In addition, some studies have been conducted to detect
power lines [58], road markings [59], and road manhole covers
[15] from MLS point clouds.

However, there are still some problems in the existing
methods. On one hand, the existing methods lack of effective
object-oriented descriptors to model the entire features of point
cloud objects. On the other hand, the existing methods still
cannot obtain promising performance when handling over-
lapped objects, objects of varying sizes, objects of varying
geometric topologies, and objects of different levels of data
incompleteness. Therefore, it is greatly important to exploit new
techniques to solve the above problems toward effective point
cloud object detection. In this paper, we propose a BoOCVWs
model for representing point cloud objects, which can effec-
tively model the abstract features of point cloud objects. The
proposed road scene object detection framework based on the
BoCVWs model shows promising performance in dealing with
overlapped objects, objects of varying sizes, objects of varying
geometric topologies, and objects of different levels of data
incompleteness.

III. CONTEXTUAL VISUAL VOCABULARY GENERATION

In this section, we present the technical and implementation
details for the supervoxel-based contextual visual vocabulary
generation from MLS point clouds (see Fig. 1). Such a con-
textual visual vocabulary can be further used to construct
BoCVWs for representing 3-D point cloud objects.

A. Training Data Preprocessing

To generate the contextual visual vocabulary, we randomly
select a group of training data, each of which has a road
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Fig. 2. Two typical training samples. (a) Raw point clouds. (b) Off-ground points obtained after voxel-based upward growing filtering. (c) Supervoxelization

results of off-ground points.

segment of approximately 50 m, from the collected MLS point
clouds. Fig. 2(a) shows two typical samples of the selected
training data. Due to the properties of MLS systems in direct
ground views and high laser measurement rates, ground points
account for a great portion of the collected point clouds in a
survey scene. Such large-volume ground points almost exist in
all scenes and contribute very little to the generation of the
contextual visual vocabulary, since the objects of interest are
usually off-ground objects. Therefore, a preprocessing is first
performed on the training data to remove ground points.

In our previous study, we develop a voxel-based upward
growing filtering method [17] that can rapidly and effectively
filter out ground points from a raw point cloud. First, consider-
ing the ground fluctuations, a point cloud is vertically divided
into a set of data blocks, which are processed separately to
remove ground points. Then, each of the data blocks is vox-
elized based on the octree partition structure. Finally, an upward
growing strategy is applied to the voxels to label them into
ground and non-ground voxels. The points in the ground voxels
are regarded as ground points and further removed. This method
has the capabilities of effectively handling large scenes with
strong ground fluctuations and preserving the completeness of
off-ground objects from their bottoms. Thus, in this paper, we
adopt this voxel-based upward growing filtering method [17] to
remove ground points from the training data. Fig. 2(b) shows
the visual examples of the off-ground points obtained after
voxel-based upward growing filtering.

B. Feature Region Generation

In this paper, we propose a supervoxel over-segmentation
strategy to generate feature regions from the training data. Such
feature regions form salient and distinctive local geometric
representations of objects in the scene. To this end, each of the
training data is first over-segmented into supervoxels using the
voxel cloud connectivity segmentation (VCCS) algorithm [60].
There are two important parameters in the VCCS algorithm:
voxel resolution and seed resolution. The voxel resolution is
used to construct the voxel-cloud space, which is a simplifi-
cation of the continuous point-cloud space; whereas the seed

()

Fig. 3. (a) Adjacency graph construction and feature region generation.
(b) Contextual feature group construction.

resolution is used to select seed points for constructing initial
supervoxels. Fig. 2(c) shows the supervoxelization results using
the VCCS algorithm with a voxel resolution of 0.05 m and
a seed resolution of 0.1 m, respectively. Then, after super-
voxelization, an adjacency graph G = {V, E} is constructed
for all supervoxels in each of the training data, as shown in
Fig. 3(a). In the adjacency graph G, the vertices V = {v;}
are represented by the supervoxel centers; the edges E =
{ei;} are directly connected between each pair of neighboring
supervoxels.

For two supervoxels centered at v; and v;, we define the
graph distance between v; and v; as follows:

dis(vs, vj; G)

1, €ij e FE !
o mkindis(vj,vk;G) +1, e ¢ ENey € E. M
This graph distance defines the minimum number of edges
connecting supervoxels v; and v;. Then, as shown in Fig. 3(a),
based on the adjacency graph and the graph distance metric, for
each supervoxel centered at v, the associated feature region is
defined as a supervoxel set containing supervoxel v and its first-
order neighbors on the adjacency graph. Here, the first-order
neighbors of supervoxel v is defined as follows:

Ni(v; G) = {v;]dis(v,v;; G) =1, v; € V'} 2)
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that is the supervoxels directly connected to supervoxel wv.
The center of the feature region is assigned as the center of
supervoxel v. As demonstrated in [30], such a feature region
generation strategy by embedding first-order supervoxel neigh-
bors achieves higher saliencies and distinctiveness than directly
treating single supervoxels as feature regions.

C. Feature Region Description

We propose a structural-spectral descriptor to describe fea-
ture regions. This structural-spectral descriptor encodes three
kinds of information for each feature region. Specifically, for
a feature region centered at v, its corresponding structural-
spectral descriptor is a triad P, = (f,, 0y, S, ), wWhere f, repre-
sents a 20-dimensional (20-D) feature vector for modeling both
geometric and intensity characteristics of feature region v; o,
denotes the orientation of feature region v; s, is the scale of
feature region v.

First, f, contains five main components and is defined as
fv = (a1p,a2p,asp, hrpru, I,), where aip, azp, and asp
are the linear, planar, and volumetric geometric features, re-
spectively [61]; hppry is a 16-dimensional fast point feature
histograms (FPFH) descriptor [62]; I, is the interpolated nor-
malized intensity. FPFH has been proven to be a promising
descriptor for rapidly and saliently depicting discrete 3-D point
clouds. Thus, in this paper, the FPFH descriptor is selected as
a component for designing f,,. To compute a1p, a2p, and asp,
first, we construct a covariance matrix for the points in feature
region v as follows:

1 & _ 7
Caxg = — > (pk = Pe)(px — Do) €)

Y k=1

where n,, is the number of points in feature region v; py is the
kth point in feature region v; and

RS
Pe=—> Dk )
et

stands for the centroid of the points in feature region v. Then,
after eigenvalue decomposition on covariance matrix Csy3, we
obtain three eigenvalues A1, A2, and Az (A1 > A2 > A3 > 0).
Finally, the linear, planar, and volumetric geometric features are
defined using these eigenvalues as follows:

VAR

ai1p \//\—1 (5)
VR -VE
agp = ———F—— (6)

VAL
Vs

azp = ——-. (N

VAL

The interpolated normalized intensity I,, € [0, 1] is computed
based on the normalized intensities of the points in feature
region v, and it takes the following form:

Ny
Z wka
I =5— @®)
> w
k=1

where Ij, € [0, 1] is the normalized intensity of the kth point
in feature region v; wy is the intensity weight of I, and it is
computed as follows:

I _Imin
wy = o ©)

I max — I min
where I.in and I, are the minimum and maximum normal-
ized intensities in feature region v, respectively. In this way, the
points with higher normalized intensities contribute more to the
calculation of 1,,.

Second, the orientation o, is determined using the scatter
matrix of the points in feature region v. To this end, first, we
construct a scatter matrix for the points in feature region v as
follows:

1 &

Ssxz = — D ok =) (pr — )"

Y k=1

(10)

where ¢, denotes the center of feature region v. Then, through
eigenvalue decomposition on S3 3, we obtain three eigenvalues
A1, A2, and A3 (A1 > A2 > A3) and the associated eigenvectors
e1, €2, and es. Finally, the orientation o, is assigned as eq, i.e.,
the eigenvector associated with the largest eigenvalue of the
scatter matrix Ss3ys.

Finally, the scale s, is defined as the longest Euclidean
distance between the centers of the central supervoxel and its
first-order neighbors in feature region v.

D. Contextual Feature Group Construction

Spatial contextual information exhibits richer, more salient,
and distinctive representations than only using local feature
regions. Thus, in this paper, to take advantage of spatial con-
textual information, we construct a contextual feature group
for each of the feature regions. Generally, the following four
factors should be properly considered for constructing contex-
tual feature groups [63]: 1) the contextual feature group should
be scale and rotation invariant; 2) the contextual feature group
should be repeatable; 3) the number of feature regions in each
contextual feature group should be small; and 4) the construc-
tion of contextual feature groups should be computationally
efficient. As for the second and third requirements, according
to [63] and [64], if too many feature regions are combined,
the repeatability of the combination might decrease. In addi-
tion, a large contextual feature group with too many feature
regions will produce more feature-to-feature matching orders
between two contextual feature groups, thereby leading to high
computational burdens for measuring spatial contextual simi-
larities between two contextual feature groups in Section III-E.
Therefore, to simultaneously meet the aforementioned four
requirements, we fix the maximum number of feature regions
in each contextual feature group as three. To make a tradeoff
between efficiency and effectiveness, for each feature region
centered at v, we construct its corresponding contextual feature
group G, = {P,, P1, Py, ..., P;} by including feature region
v and its k-nearest neighboring feature regions. Fig. 3(b) shows
an illustration of the constructed contextual feature group
with k = 2.
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E. Discriminant Group Distance Formulation

Rather than a single feature, a contextual feature group
contains several spatial context-related features. Thus, proper
metrics should be formulated in order to measure the distance
between two contextual feature groups. In this paper, we pro-
pose a discriminant group distance, which measures the spatial
context weighted Mahalanobis distance based on the features
in two contextual feature groups. In general, with m features
in each contextual feature group, a total number of m! possible
feature-to-feature matches exist between two contextual feature
groups. Here, we term each possible match as a matching order.
For instance, for an m = 3, there are 6 matching orders between
two contextual feature groups. Thus, the best matching order
that maximizes the spatial contextual similarity between two
contextual feature groups is used to compute the discriminant
group distance.

First, we define the spatial context of each contextual feature
group as the orientation and scale relationships between the
features within the group. Then, the spatial contextual similarity
between two contextual feature groups G; and G is defined as
follows:

1 er er
SCSim(G, G) = max 3 (OSim;G7,,GJ) i SSim;G7,,GJ>)
1D

where ) is a matching order; OSimbe"”G") and SSimé}G’”Gj ) are

the orientation and scale similarities under the matching order
1, respectively. Before giving the definitions of OSimi}G’”Gj )

and SSimf" i) , we first define the spatial orientation and scale

relationships contained within a contextual feature group G
under a matching order v as follows:

ORelEpGi) = Z arccos(0z” - 0y) (12)
rz=1,y>z
@) _ N s
SRel';"") = =
el,, Z log (1 + sy) (13)
rz=1,y>x

where ORelijG"') and SRelEpG"’) are the spatial orientation and
scale relationships, respectively; m is the number of features in
G;; o, and o, are the orientations of feature regions x and y
in Gy, respectively; s, and s, are the scales of feature regions
z and y in G, respectively. In fact, ORelEpG"’) and SRelijG"') are
defined based on the relative orientation difference and scale
ratio, respectively. Thus, they are obviously scale and rotation
invariant.

Then, based on the definitions of ORelEpG"’) and SRelEpG"’), we
define OSimi}G"’Gj) and SSimpr""GJ) as follows:
min (ORel{"™), ORel )
0Sim{ %) = (14)
My G0 @)
max (ORelw 9 ORel(® )
: (Gi) (G '))
min ( SRel),"*’, SRel "’
sim (G ) — . 1)

) <ral @Y’
max (SRelw , SRl )
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After computing the orientation and scale similarities under
all possible matching orders, we finally obtain the spatial
contextual similarity between contextual feature groups GG; and
G; based on (11). Here, we denote the corresponding best
matching order as ¢*, where ¢*(x) represents the feature in
G that matches feature x in Gj.

Since each contextual feature group contains both appear-
ance (i.e., a group of 20-D feature descriptors) and spatial
contextual information (i.e., orientations and scales), the se-
lected discriminant group distance should properly combine
the appearance and spatial contextual properties. To this end,
the discriminant group distance between two contextual feature
groups G; and G; is formulated through a spatial context
weighted Mahalanobis distance as follows:

DGDiS(Gi, G]) = (1 — SCSlm(Gz, G]))

zm: (75 - fsz<m>)T AT (7 - 1) ae)

r=1

where A € R209%20 i the covariance matrix over all features.

FE. Contextual Visual Vocabulary Generation

To generate the contextual visual vocabulary, we first vector-
quantize the contextual feature groups into a number of clusters.
In our implementation, the vector quantization of contextual
feature groups is carried out using k-means clustering based
on the discriminant group distance defined in (16). However, in
k-means clustering, to update the cluster centers of a cluster C
with the defined distance metric, we should properly solve the
following optimization problem:

D

G ;€ cluster C

G* = arg ming DGDis(G;, G). 17)

However, it is very time consuming to solve the above problem
in each iteration of the k-means clustering. Thus, to make a
tradeoff between efficiency and effectiveness, we simply treat
the contextual feature group with the maximum similarities to
the other members in the same cluster as the updated center:

D

G;,G € cluster CliFEj

DGDis(G;,G;).  (18)

G* = arg min
G;

i

To further improve computational efficiency, in practice, we
store a group-to-group similarity matrix for each cluster in
order to rapidly update the cluster center. Once the similarity
matrix of a cluster is computed, the clustering operation in its
corresponding sub-clusters can be accomplished efficiently. As
shown in Fig. 4, after vector quantization, each cluster center is
taken as a distinctive contextual visual word. Finally, such con-
textual visual words form a contextual visual vocabulary. Since
the contextual visual vocabulary is generated using contextual
feature groups rather than single feature regions, each word in
the vocabulary preserves rich, salient, and distinctive spatial
contextual information. In addition, a stop list analogy [65] is
used to discard the most frequent contextual visual words that
occur in almost all scenes.
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Clustered contextual feature groups

Contextual visual vocabulary

Fig. 4. Contextual visual vocabulary generation.
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Fig. 5. Road scene object detection workflow.

IV. ROAD SCENE OBJECT DETECTION

In this section, we present a road scene object detection
framework by using the generated contextual visual vocabulary.
As shown in Fig. 5, for a search scene, after ground point re-
moval, semantic objects are first segmented through a combina-
tion of Euclidean distance clustering and extended voxel-based
normalized cut segmentation. Then, the query object and each
of the segmented semantic objects are supervoxelized, featured,
and quantized to form BoCVWs representations. Finally, the
objects of interest are detected based on the similarity measures
between the BoOCVWs of the query object and the segmented
semantic objects.

A. Semantic Object Segmentation

For a search scene, a preprocessing is first performed to
remove ground points from the scene using the voxel-based
upward growing filtering method [17].

To group the discrete, unorganized off-ground points into
semantic objects, first, we apply a Euclidean distance cluster-
ing method [17] to the off-ground points to partition them into
isolated clusters. Euclidean distance clustering, a nearest neigh-
boring clustering approach, considers the relative Euclidean
distances between adjacent points to conduct clustering. Theo-
retically, an unclustered point was assigned to a specific cluster
if and only if its shortest Euclidean distance to the points in
this cluster lies below a clustering distance d.. Otherwise, a
new cluster is formed to include this point. Fig. 6(a) shows the
off-ground point clustering results using the Euclidean distance
clustering method with a clustering distance d. = 0.15 m. In
Fig. 6(a), different colors represent different clusters. However,

as shown by the two clusters in the black boxes, the overlapped
objects cannot be separated by the Euclidean distance clustering
method. Therefore, effective means should be developed to
further segment such clusters containing multiple overlapped
objects.

In our previous study, we propose a voxel-based normalized
cut segmentation method [17], which can effectively segment
connected and not seriously overlapped objects. However, by
considering only geometric features of voxels, this method can-
not achieve promising segmentation performance when dealing
with seriously overlapped objects. To improve segmentation
performance on clusters containing seriously overlapped ob-
jects, in this paper, we develop an extended voxel-based nor-
malized cut segmentation method, which integrates intensity
features of voxels. As shown in Fig. 7(a), generally, different
objects show different retro-reflectivities to near-infrared laser
spectra. Such retro-reflectivity difference is reflected by the
backscattered intensity information of the laser points in the
MLS point clouds. Therefore, intensity information is very
useful for semantic object segmentation.

First, the clusters containing multiple overlapped objects
are voxelized using the octree partition strategy with a voxel
resolution wg [see Fig. 7(b)]. Then, the generated voxels are
organized into a complete weighted graph G = {V, E'}, where
the vertices V' are formed by the voxels, and the edges E are
connected between each pair of voxels. The weights on the
edges are used to measure the similarities between the two
connected voxels. Such a weight is computed based on the
geometric and intensity features of the associated voxels as

follows:
—pJ || >~exp< p; _I)7| )

exp( lle# el
= R TR

0, otherwise.

wij =

where w;; is the weight on the edge connecting voxels i and
Js i = (%3, 94, %) and p; = (x;,y,,2;) are the centroids of
voxels ¢ and j, respectively. The centroid of a voxel can be
computed using (4). p = (z;,y;) and pf = (x;,y;) are the
coordinates of the centroids on the XY plane; p} = z; and
p}/ = z; are the z coordinates of the centroids; I;* and Ij” are
the interpolated normalized intensities of the points in voxels
¢ and j, respectively. The interpolated normalized intensity of
a voxel can be computed using (8). 0%, 0%, and o7 are the
variances of the horizontal, vertical, and intensity distributions,
respectively. dy is a distance threshold restraining the maxi-
mum valid horizontal distance between two voxels. Thus, if the
horizontal distance between two voxels exceeds d gz, the weight
on the edge connecting these two voxels is set to zero.

In the standard normalized cut segmentation method [66], the
cost function for partitioning graph G into two disjoint voxel
groups A and B by maximizing the similarity within each
voxel group and minimizing the similarity between two voxel
groups is defined as follows:

cut(A, B)
assoc(A, V)

cut(A, B)

Ncut(A, B) =
cut(A, B) assoc(B, V)

(20)
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Fig. 6. (a) Clustering results after Euclidean distance clustering. (b) Semantic object segmentation results after extended voxel-based normalized cut segmentation.

(c) Supervoxelization results of the semantic objects.

Low

(2) (b)

Fig. 7. (a) Cluster containing two overlapped objects rendered with intensity
information. (b) Voxelization of the cluster by using the octree partition
strategy. (c) Bipartition result of the cluster.

where cut(A,B) =3, 4 ;cpWwi; is the total sum of
weights between voxel groups A and B; assoc(A,V) =
D ic A, jev Wij is the total sum of weights of all edges ending
in voxel group A. The minimization of Ncut(A, B) is ac-
complished by solving a corresponding generalized eigenvalue
problem [66]. After eigenvalue decomposition, graph G can
be bipartitioned into voxel groups A and B by applying a
threshold to the eigenvector associated with the second smallest
eigenvalue [see Fig. 7(c)]. Fig. 6(b) shows the semantic object
segmentation results by using the proposed extended voxel-
based normalized cut segmentation method. As shown by the
clusters in the black boxes, such clusters containing multiple
overlapped objects are well segmented into disjoint semantic
objects.

B. Bag-of-Contextual-Visual-Words Quantization

Before carrying out object detection from the segmented
off-ground semantic objects, we perform a vector quantization
on a 3-D point cloud object to create a bag-of-contextual-
visual-words (BoCVWs) representation based on the generated
contextual visual vocabulary in Section III. To this end, first,
for a 3-D point cloud object, we over-segment it into a super-
voxel structure using the VCCS algorithm, and an adjacency
graph is constructed to represent adjacency relationships of
the supervoxels (see Section III-B). Fig. 8 shows three typical
point cloud objects and their corresponding supervoxelization
results using the VCCS algorithm. Then, for each supervoxel
on the point cloud object, a feature region is constructed by
including this supervoxel and its first-order neighbors on the
adjacency graph. These feature regions are characterized using
our proposed structural-spectral descriptors (see Section III-C).
Next, to take advantage of spatial contextual information, for
each feature region, a contextual feature group is constructed
by integrating this feature region and its k-nearest neighboring

—— . p———— gl

(b)

Fig. 8. (a) Three typical 3-D point cloud objects. (b) Corresponding supervox-
elization results.

feature regions (see Section III-D). Finally, a contextual visual
word is assigned to each contextual feature group. This vector
quantization is achieved by ascertaining the nearest cluster
center (i.e., the most similar contextual visual word) in the
contextual visual vocabulary to the contextual feature group
under the discriminant group distance metric.

After vector quantization, a 3-D point cloud object is com-
posed of a set of contextual visual words, each of which
encodes a distinctive feature on the point cloud object. Then, we
organize such a set of contextual visual words into a BoOCVWs
representation for depicting this point cloud object. In this
paper, we adopt the standard “term frequency-inverse document
frequency” weighting [65], [67] to construct the BoOCVWs.

Here, we denote a 3-D point cloud object as a document.
Given a contextual visual vocabulary of V' words, each docu-
ment d is represented by a V' -dimensional vector of weighted
word frequencies:

va = (ti,tay ooy tiy. s ty)? 1)
where ¢; denotes the term frequency-inverse document fre-
quency of the ith word in the vocabulary in document d, and
it takes the following form:

d
U3

ti = = log —
Zj:l n;j Ni

(22)
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Fig. 9. (a) Query object. (b) Supervoxelization of the query object. (c) Detected
objects of interest.

where n¢ is the number of occurrences of the ith word in
document d; N is the total number of documents in the data-
base; [V, is the number of documents containing word ¢. This
weighting is a product of two terms: the word frequency and
the inverse document frequency. Intuitively, the word frequency
well weights the words occurring more often in a particular doc-
ument; whereas the inverse document frequency downweights
the words appearing often in the database, thereby improving
the distinctiveness of different documents.

In this way, a 3-D point cloud object is represented by a
V-dimensional BoOCVWs for depicting its unique, distinctive
features. This representation is used for road scene object
detection in the following section.

C. Road Scene Object Detection

In this section, we conduct object detection from the seg-
mented off-ground semantic objects based on the BoOCVWs
representations in Section IV-B. To detect a specific category
of objects, first, a clean and completely scanned query object
is manually selected from the collected point cloud data [see
Fig. 9(a)]. Then, the query object and each of the semantic
objects in the search scene are supervoxelized, characterized,
and quantized to form BoCVWs. Figs. 6(c) and 9(b) present the
supervoxelization results of the query object and the semantic
objects in the search scene, respectively. Next, based on the
BoCVWs, we use the normalized histogram intersection dis-
tance metric [68] to measure the similarity between the query
object and a semantic object. For a query object Q and a
semantic object P, the similarity between them is defined as
follows:

v S
> min (v, v})
=1

V . .
Z; max (’UZQ, v%)

~.

Sim(Q, P) = (23)

where vy and vp are the BoCVWs of objects Q and P,
respectively. Consequently, we compute a series of similarity
measures between the query object and all the semantic objects

" (b)

Fig. 10. Surveyed areas and the collected point cloud data sets. (a) Ring Road
South data set. (b) Software Park Phase II data set.

in the search scene. Finally, the similarity measures from all se-
mantic objects are thresholded to obtain the objects of interest.
Fig. 9(c) shows the detected objects (cars) from the segmented
semantic objects in Fig. 6(b).

V. RESULTS AND DISCUSSION
A. MLS Point Cloud Data Sets

In this study, by using the RIEGL VMX-450 MLS system
[17], we collected two point cloud data sets on Ring Road
South (RRS) and in Software Park Phase II (SPP) in Xiamen
City, China (see Fig. 10). The RRS data set contains about
1728 million points and covers a road segment of approxi-
mately 11 km. The average point density in this data set is about
4082 points/m?. This is a typical urban road area containing a
great amount of road infrastructure (e.g., light poles and traffic
signposts). The SPP data set includes about 626 million points
and takes up a road section of approximately 2.5 km. The
average point density in this data set is about 4377 points/m>.
This is a typical information technology (IT) development
area containing hundreds of IT companies. A performance
evaluation on light pole, traffic signpost, and car detection was
conducted on the RRS and SPP data sets.

At the contextual visual vocabulary generation stage, we
manually, at random, selected a total number of 40 training
samples, each of which has a road length of approximately
50 m, from the collected point cloud data.

B. Point Cloud Segmentation

To segment off-ground points into separated semantic ob-
jects, we proposed a combination of Euclidean distance clus-
tering and extended voxel-based normalized cut segmentation.
Euclidean distance clustering rapidly separates isolated objects;
whereas extended voxel-based normalized cut segmentation ef-
fectively segments connected or overlapped objects. To evaluate
the segmentation performance of our proposed segmentation
method, we compared it with the following three segmenta-
tion methods: shape-based segmentation method [69], two-step
segmentation method [70], and voxel-based normalized cut
segmentation method [17]. As shown in Row 1 of Fig. 11, three
point cloud scenes were selected for performance comparison.
First, the three point cloud scenes were preprocessed to filter
out ground points by using the voxel-based upward growing
filtering method [17]. The obtained off-ground points after
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Fig. 11. Point cloud segmentation results on three selected scenes (a), (b), and (c) by using different segmentation methods. Row 1: Raw point clouds of the
selected scenes. Row 2: Off-ground points obtained after ground point removal. Row 3: Segmentation results obtained using the shape-based segmentation
method [69]. Row 4: segmentation results obtained using the two-step segmentation method [70]. Row 5: segmentation results obtained using the voxel-based
normalized cut segmentation method [17]. Row 6: segmentation results obtained using the proposed extended voxel-based normalized cut segmentation method.

ground point removal are shown in Row 2 of Fig. 11. Then,
the aforementioned three segmentation methods, as well as
our proposed segmentation method, were applied to the off-
ground points to perform segmentation. The segmentation re-
sults obtained using the shape-based segmentation method, the
two-step segmentation method, the voxel-based normalized cut

segmentation method, and our proposed segmentation method
are shown in Rows 3, 4, 5, and 6, respectively.

On the whole, these four methods all achieved promising
segmentation results on the three selected scenes. However,
as shown by the boxes labeled C, E, F, and G, these point
cloud clusters containing multiple trees of the same category
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failed to be segmented by using the shape-based segmentation
method; while such clusters were well separated into individual
trees by using the other three methods. As shown by the box
labeled D, this cluster contains two overlapped kapok trees.
The shape-based and the two-step segmentation methods were
not able to segment this cluster into two separated kapok trees.
On the contrary, the voxel-based normalized cut segmentation
method and our proposed segmentation method worked well
in segmenting such clusters. Moreover, as shown by the box
labeled A, a light pole is hidden in a palm tree and seriously
overlapped with the palm tree. Such a cluster failed to be seg-
mented by using the two-step and the voxel-based normalized
cut segmentation methods. However, benefited from the use of
shape features and intensity features, respectively, the shape-
based segmentation method and our proposed segmentation
method both obtained superior segmentation performance in
dealing with such clusters. In addition, as shown by the box
labeled B, a sago cycas tree is connected very closely to a palm
tree. Thus, the two-step and the voxel-based normalized cut
segmentation methods all failed to segment them. Due to the
high similarities between the leaves of the sago cycas tree and
the palm tree, the shape-based segmentation method also failed
to handle this cluster. Comparatively, by considering retro-
reflectivity properties of objects, our proposed segmentation
method achieved a promising segmentation result and success-
fully segmented this cluster into two disjoint components.

In conclusion, the shape-based segmentation method well
segments isolated clusters and overlapped clusters containing
objects of different categories; however, it lacks of capability
to handle clusters containing closely overlapped objects of the
same category. The two-step and the voxel-based normalized
cut segmentation methods are able to deal with separated and
not seriously overlapped clusters; however, they have problems
in segmenting clusters containing seriously overlapped objects
from either the same or different categories. Comparatively,
our proposed segmentation method obtains relatively better
performance than the other three methods and it has the capa-
bility of tackling isolated clusters, connected clusters, and even
seriously overlapped clusters.

C. Parameter Sensitivity Analysis

In the proposed algorithm, the configurations of the follow-
ing three parameters have a significant impact on the road
scene object detection performance: feature region construction
pattern, contextual visual vocabulary size (V'), and contextual
feature group size (k -+ 1). In order to obtain an optimal
configuration for each of these parameters, we conducted a
group of experiments to test the performance of each para-
meter configuration on the road scene object detection re-
sults. For feature region construction, we tested the following
two construction patterns: using single supervoxels and using
the integration of supervoxels and their first-order neighbors.
For contextual visual vocabulary generation, we tested the
following six configurations: V' = 90,000, 100,000, 110,000,
120,000, 130,000, and 140, 000. For contextual feature group
construction, we tested the following six configurations: k£ = 0,
1,2, 3,4, and 5. Here, k = 0 means that single feature regions
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Fig. 12. Performances obtained under different parameter configurations.
(a) Feature region construction with and without first-order neighbors.
(b) Contextual visual vocabulary size. (c) Contextual feature group size.

(without spatial contextual information) are used to generate the
contextual visual vocabulary. The test results of these parameter
configurations were presented and analyzed using precision-
recall curves (see Fig. 12). As shown in Fig. 12(a), by using
first-order neighbors to construct feature regions, the detection
performance improves greatly than that of using only single
supervoxels as feature regions. This is because feature regions
with first-order neighborhood information can produce more
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TABLE 1
PARAMETERS AND THEIR CONFIGURATIONS

k v de Wy on oy o1 dy

2 120,000 0.15m 0.01m 2m 10 m 1.0 Sm

salient, distinctive features than that of using only local su-
pervoxels. Thus, we constructed feature regions by integrating
first-order neighbors of supervoxels in our experiments. As
shown in Fig. 12(b), the detection performance improves as
the vocabulary size increases. This is because the more the
contextual visual words in the vocabulary, the higher degrees of
distinctions between different categories of objects. However,
when the vocabulary size exceeds 120,000, the performance
changes very slightly. In addition, the increase of the vocabu-
lary size brings great computational burdens at the vocabulary
generation stage. Thus, balancing detection performance and
computational complexity, we set the vocabulary size at V =
120,000. As shown in Fig. 12(c), when k£ < 3, the detection per-
formance improves with the increase of the contextual feature
group size. This is because, by considering spatial contextual
information of feature regions, the quantized contextual visual
words are more likely to obtain salient, distinctive feature en-
codings, thereby capable of differentiating objects of different
categories. However, when k > 4, the detection performance
drops dramatically. In fact, if too many local feature regions
are combined, the repeatability of the combination decreases
accordingly, leading to a detection performance decrease. In
addition, the increase of k£ slows down the generation of the
contextual visual vocabulary. Therefore, to obtain acceptable
detection performance, we set the contextual feature group size
at3 (i.e., k = 2).

D. Road Scene Object Detection

To evaluate the performance of our proposed road scene
object detection algorithm, we applied it to the aforementioned
two point cloud data sets (i.e., RRS and SPP data sets). We
respectively conducted light pole, traffic signpost, and car de-
tection on the RRS and SPP data sets. After parameter sensi-
tivity analysis, the optimal parameter configurations used in the
proposed algorithm are detailed in Table I. To improve compu-
tational efficiency, first, these two data sets were preprocessed
to filter out ground points through voxel-based upward growing
filtering. Then, the remaining off-ground points were clustered
and segmented into individual semantic objects via Euclidean
distance clustering and extended voxel-based normalized cut
segmentation. To detect the objects of interest, a group of query
objects were selected from the collected point clouds. Next,
the query objects and each of the segmented semantic objects
were supervoxelized, featured, and quantized to form a set
of BoCVWs. Finally, the objects of interest were detected by
comparing the similarities between the query objects and the
semantic objects based on the BoOCVWs.

The road scene object detection results, along with the man-
ually labeled ground truth, on the two selected data sets are
shown in Table II. Fig. 13 shows two visual examples of parts
of the road scene object detection results on the two selected
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TABLE 11
GROUND TRUTH AND ROAD SCENE OBJECT DETECTION RESULTS
Ground Truth Detection Results
Data set Light Traffic Light Traffic False
Pole Signpost Pole Signpost Positive
RRS | 647 241 159 | 628 235 143 31
SPP 167 25 780 | 158 22 731 29
A%

M Light pole § «\1“’

M Traffic signpost
M False positive

W Car

Fig. 13. Parts of the road scene object detection results. (a) Light pole and
traffic signpost detection results on the RRS data set. (b) Car detection results
on the SPP data set.

data sets. As reflected in Table II and Fig. 13, the majority
of the road scene objects were correctly detected, including
different shapes of traffic signposts, light poles with and without
attachments (e.g., traffic signs and advertising boards), and
cars of different levels of completeness. However, as shown by
the object labeled A in Fig. 13(a), due to the high geometric
similarity of the traffic camera to the light pole, this traffic
camera was falsely detected as a light pole by using the pro-
posed algorithm. Moreover, as shown by the object labeled B
in Fig. 13(b), due to occlusions, a car was scanned with very
bad data coverage; thus, this car failed to be detected because
of insufficient features. In addition, as shown by the objects
labeled C and D in Fig. 13(b), caused by the Doppler Effect, two
moving cars were seriously distorted in the resultant point cloud
data; therefore, these two cars also failed to be detected because
of high geometric dissimilarities. On the whole, the proposed
algorithm obtained very promising performance in detecting
light poles, traffic signposts, and cars from large-volume point
cloud data.

To quantitatively assess the accuracy of the road scene ob-
ject detection results, we adopted the following four indices:
recall, precision, quality, and F'-score [17], [20]. Recall eval-
uates the ratio of the correctly detected objects to the ground
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TABLE III
QUANTITATIVE EVALUATION RESULTS
Data set | Recall Precision Quality F-score
RRS [0.961 0.970 0.933  0.965
SPP | 0.937  0.969 0.910 0.953
Average| 0.949  0.970 0.922  0.959
TABLE IV
COMPUTING TIME ON THE TWO SELECTED DATA SETS (UNIT: SECOND)
Ground Object BoCVWs Object
Dataset Removal Segmentation Quantization Detection Total
RRS 31 133 2318 29 2511
SPP 12 36 1585 17 1650

truth; precision measures the ratio of the correctly detected
objects to all the detected components; quality and F'-score
are two overall measures. The four indices are defined as
follows: recall =T P/(TP+ FN), precision=TP/(TP +
FP), quality =TP/(TP+ FN + FP), and F-score = 2 x
recall x precision/(recall 4 precision), where TP, FN, and
F'P denote the numbers of true positives, false negatives, and
false positives, respectively. The quantitative evaluation results
using these four indices are detailed in Table III. The proposed
algorithm achieved an average recall, precision, quality, and
F-score of 0.949, 0.970, 0.922, and 0.959, respectively, in
detecting light poles, traffic signposts, and cars on the two
selected data sets. Therefore, the proposed algorithm performs
efficiently in detecting road scene objects from MLS point
cloud data.

The proposed algorithm was implemented using C++ and
tested on an HP Z820 8-core-16-thread workstation. The com-
puting times at the contextual visual vocabulary generation and
the road scene object detection stages were recorded for time
complexity analysis. The total computing time for generating
the contextual visual vocabulary containing 120,000 contextual
visual words was approximately 39 min. At the road scene
object detection stage, each data set was first partitioned into
a group of data segments with a road length of about 50 m.
Then, all the segments were fed into a multithread computing
environment containing 16 parallel threads. Such a parallel
computing strategy dramatically improves the computational
efficiency and reduces the time complexity of the proposed
algorithm. The detailed computing time in each processing step
is listed in Table IV. As reflected in Table IV, the total time
cost for detecting light poles, traffic signposts, and cars on the
RRS data set was about 42 min; the total processing time for
detecting light poles, traffic signposts, and cars on the SPP data
set was about 28 min. Therefore, the proposed algorithm is
suitable for rapidly handling large-volume MLS point clouds
toward road scene object detection.

E. Comparative Studies

Comparative studies were also conducted to further compare
the detection performance between our proposed algorithm and
the following three existing methods: the Hough forest-based
method (HF) [30], the 3-D object matching-based method

TABLE V
CAR DETECTION RESULTS OBTAINED BY USING DIFFERENT METHODS
Detection Result Quantitative Evaluations
Data set | Method
TP FP |Recall Precision Quality F-score
HF [30] 138 10 |0.868 0.932 0.817 0.899
RRS OM [43] 141 8 0.887 0946 0.844 0916
BTD [46]| 139 7 0.874 0.952  0.837 00911
Proposed 143 8 0.899 0947 0.856 0.922
HF [30] 711 25 10912 0966 0.883 0.938
Spp OM [43] 723 20 | 0927 0.973 0.904 0.949
BTD [46] 718 23 0.921 0.969 0.894 0.944
Proposed | 731 21 10937 0972 0913 0.954
HF [30] 61 6 0.871 0910  0.803 0.890
OM [43] 65 5 0.929  0.929 0.867 0.929
PRM [71]
BTD [46] 63 4 0.900 0.940  0.851 0.920
Proposed 66 4 0943 0943  0.892 0.943

(OM) [43], and the bottom-up and top-down descriptors-based
method (BTD) [46]. A performance evaluation on car detection
was conducted on the RRS and SPP data sets, as well as the
publicly available Paris-Rue-Madame data set (PRM) [71], by
using the above three methods, as well as our proposed algo-
rithm. The ground truths of cars are 159, 780, and 70, respec-
tively, in the RRS, SPP, and PRM data sets. The car detection
results and quantitative evaluation results obtained by using
these three methods, as well as our proposed algorithm, are
listed in Table V. The HF method used a pre-trained part-based
Hough forest model to detect cars. However, in the selected
data sets, some cars were scanned with serious incompleteness;
thus, such cars failed to be detected by using the HF method.
Moreover, the OM method relied greatly on the off-ground
semantic object segmentation results. However, in the selected
data sets, some cars are hidden in the trees and overlapped
seriously with the trees. The voxel-based normalized cut seg-
mentation method proposed in this method could not effectively
segment such clusters into individual components; thus, such
cars failed to be detected by using the OM method. The BTD
method performed well on the cars with good completeness.
However, it also failed to detect cars scanned with serious
incompleteness. Comparatively, benefited from the use of the
retro-reflectivity properties of objects in our proposed extended
voxel-based normalized cut segmentation method in this paper,
our proposed algorithm is able to deal with those cars seriously
overlapped with the trees. Therefore, our proposed algorithm
attained more true positives and relatively less false positives
than the other three methods. However, some moving cars
distorted seriously in the selected data sets failed to be detected
by using all these four methods. In conclusion, our proposed
algorithm outperformed the other three methods in accurately
and completely detecting cars from MLS point clouds.

VI. CONCLUSION

In this paper, we have presented a novel algorithm for
detecting road scene objects in MLS data based on BoOCVWs.
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The proposed algorithm was evaluated on two point cloud data
sets for detecting light poles, traffic signposts, and cars directly
from large-volume 3-D MLS point cloud data. Quantitative
evaluations showed that the proposed algorithm achieved an
average recall, precision, quality, and F-score of 0.949, 0.970,
0.922, and 0.959, respectively, in detecting light poles, traffic
signposts, and cars on the two selected data sets. Through
computational efficiency analysis, by adopting a multithread
computing strategy, the proposed algorithm can rapidly handle
large-volume MLS point clouds toward road scene object de-
tection. In addition, comparative studies also demonstrated that
the proposed algorithm outperformed the other three existing
methods in accurately and completely detecting cars of varying
conditions. In conclusion, by using MLS point cloud data,
we have provided a promising and effective solution to rapid,
accurate detection of road scene objects toward transportation-
related applications.
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