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Abstract—In this paper, we present a novel aperiodic directional
structure measurement (ADSM) toward road network extraction.
Based on the observations from Cognitive Psychology regarding
the aperiodicity and local directionality, ADSM can well charac-
terize roadlike structures independent of the spectral character
and contrast. By exploiting such measurement as guidance, we
construct a mask to denote potential road regions. Then, by com-
bining with some common morphology operators, our approach
is able to provide robust road centerlines efficiently. We evaluate
our approach with data from various satellite sensors and make
comprehensive comparisons with previous state-of-the-art meth-
ods. Experimental results demonstrate the merit using our ADSM
as a metric to identify potential road structures, as well as the
effectiveness and efficiency of our road network extraction system.

Index Terms—Road network extraction, road network topology
analysis, road structure measurement.

I. INTRODUCTION

ROAD network extraction is a fundamental but long-
standing problem in remote sensing image processing.

Robust road extraction systems make it possible to save much
labor for transportation data acquisition and can also provide
valuable prior knowledge for the detection and recognition of
vehicles, buildings, or other objects.

Road network extraction has been gaining much attention in
recent years, where a common assumption of many solutions is
that roads are often characterized as high-contrast regions with
low curvature and specific spectral behavior [1]. Therefore, the
extraction boils down to determining the appropriate features
to describe the “high contrast long and thin regions” [2].
However, as pointed by previous work [3], such an assumption
may be limited in two cases. First, the spectral behaviors of
data from different sensors appear differently, as shown in
Fig. 1(a) and (b), which are two remote sensing images from
Pleiades-1A and GeoEye satellite, i.e., the spectral intensity of
road regions is bright for (a) and dark for (b). Such difference
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Fig. 1. Remote sensing images from different satellite sensors. (a) and (b)
Examples with different spectral performance. (c) Example with low-contrast
road regions.

may lead to an additional recognition step such as simple
interactions [4] or leaning-based classification [5]. Second, the
road regions are of low spectral contrast, as shown in Fig. 1(c).
Most works are able to extract the regular road network with
strong spectral intensity contrast; however, for the zoomed-in
area (as shown in the right part), when the contrast is not high
enough, the detection becomes more challenging. To address
these limitations, recent works [4]–[6] have been able to pro-
duce impressive results by introducing “assistant information”
such as simple interaction [4], 3-D road surface model [6], or
training samples [5].

On the other hand, we find that, for most human experts,
these roads are easily marked. Such an observation provides
an interesting clue that human perception about a road does
not just rely on spectral behavior or contrast. In view of these
problems, inspired by the human cognitive process, this paper
attempts to explore a road extraction method without any
information beyond the image itself. According to the theory of
Cognitive Psychology, in addition to intensity contrast, saliency
of prominent structures also relies on organized arrangement
and “low social conformity” [7], which means that salient
structures do not repeat periodically. Most previous works focus
on the first two parts and employ various spectral behavior
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and local directionality descriptors for road detection but pay
less attention to the third aspect. Hence, in this approach, road
regions are assumed to have the following two characters. First,
they always align closely in a local area, i.e., have fine local
directionality. Second, they do not repeat periodically often,
i.e., have fine aperiodicity.

Based on these assumptions, we present a novel road structure
measurement, which not only considers the geometry features
but also includes an aperiodicity measurement term to evaluate
the “low social conformity” of potential road regions. Such mea-
surement provides valuable guidance for the followed road
topology analysis and network extraction. Benefitting from this,
based on just the image itself, our system is able to provide spec-
tral and contrast independent road extraction results, efficiently.

The main contribution of this paper is a novel aperiodic direc-
tional structure measurement (ADSM)-guided road extraction
scheme. Such a measurement provides a cheap but efficient
characterization of road structures, whereupon the roadlike
structures can be constructed independently with spectral char-
acter and contrast. Specifically, the novelty lies in the following
two aspects.

1) A robust and efficient structure measurement (ADSM),
which can capture potential low-contrast road regions
embedded in heavy textures of buildings or residential
areas, is established to evaluate not only the geometry
features but also the aperiodicity of road structures.

2) A road region mask (a binary mask to denote potential
road regions) construction scheme, which enables explicit
constraint to guide the road extraction process, is designed
to describe the road network topology, thus resulting in
high-correctness and high-quality detection results.

II. RELATED WORK

In recent years, works on road network extraction have
shown remarkable progress, with many of them investigating
the road network extraction problem from different views.
Inspired by previous surveys [3], [8]–[10] and latest road
extraction works [4], [5], [11], in accordance with whether
“assistant information” are employed, we divided current road
extraction works into two types.

Works with “assistant information” rely on pretrained classi-
fiers, such as large-scale neural networks [1], locally excitatory
globally inhibitory oscillator networks (LEGIONs) [11], higher
order conditional random field model [12], spectral–spatial clas-
sifiers [5], [13]–[15], or prior guidance such as Geographic
Information System (GIS) data [16].

Early works of this kind focus on the classification of specific
features (such as spectral or spatial features) of the road regions.
By synthetically considering the spectral and spatial statistics
of local structures [13], spectral–spatial classification-based
road detection methods [14], [15] can acquire better robustness
compared with pixelwise classification methods. Inspired by
this idea, researchers widely applied mathematical morphology
(MM) [17]–[19] to produce image spatial structures. To better
cover the curved and rectilinear structures [20], general adap-
tive neighborhood (GAN) MM (GANMM) [21] is proposed to
perform spectral–spatial classification.

Recent works tend to employ large-scale learning networks
[1], [12], [16] to directly label the road pixels. Mnih and Hinton
[1] first proposed a Graphics Processing Unit (GPU)–based

deep learning network with local spatial coherence constraint;
such network works well when there are sufficient labeled train-
ing samples. Works of Wegner et al. [12], which also require
large amount of training samples, presented a higher order con-
ditional random field model along with a superpixel-based la-
beling scheme; then, by the assistance of road network topology
analysis, such work significantly improves both the accuracy
and the topological correctness of the extracted roads. On the
other hand, by the learning of existing road networks from GIS
data, Peng et al. [16] proposed a statistical method, which is
suitable for certain applications such as road map updating.

With the guidance of various learning networks, these meth-
ods are able to provide high-accuracy and robust detection
results. However, in practical applications, these approaches are
limited by two issues. First, a certain training model is often
specific to certain kind of roads with similar features, and it may
fail for test samples with different appearances. Second, recent
large-scale learning networks always require large amount of
training samples; sometimes, these samples are difficult to
acquire, such as the foreign region. In view of these problems,
other kinds of methods are devoted to explore the visual charac-
ters of roads.

Works based on the image aim to detect roads by their visual
or geometric features, or some defined high-level knowledge.
With the assumption that road regions often appear as thin, low–
curvature, and high-contrast structures, various methods de-
veloped different line detectors for road extraction, such as
morphological filters [22], line segment matching [23], Gibbs
point [24], directional filters [25], Kalman filtering [26], and
line primitive connection [27]–[30]. Knowledge-based methods
aim to detect road regions by investigating high-level features.
With the observation that low-level road extraction methods
are fragmented, Steger et al. [31], [32] proposed to construct
road network topology according to graph theory. In addition,
benefitting from graph representation, Peteri and Ranchin [33]
developed a road shape extraction scheme by defining the active
contours. Poullis and You [34], employing Gabor filtering and
tensor voting for geospatial feature inference classification,
followed by orientation-based segmentation, extracted road
centerlines to describe the road network. Inspired by this work,
Grote et al. [35] extracted road networks, by integrating the
radiometric and geometric features of road regions, and then, by
constructing a subgraph, connected potential road segments to
form the detection results. Based on the definition of pixelwised
polygonal areas, Hu et al. [36] and Zhang et al. [37] explored
the pixel footprint detector to extract road areas. By utilizing
the LEGIONs, Yuan et al. [11] extracted the road automati-
cally by clustering the well-aligned pixels according to their
directionality.

More recently, image-based approaches tend to employ
multistage [4], [5] or multimodel [6] schemes to further im-
prove the detection performance. Ünsalan and Sirmacek [4]
utilized spectral, shape, and gradient features to generate rough
road primitives and then proposed a graph-based topology
analysis scheme to refine the road map. Such approach is able to
provide high-quality detection results with just simple interac-
tion. Based on a pretrained spectral–spatial classifier, the latest
road detection work [5] developed a road centerline extraction
scheme, which is significantly improving the detection robust-
ness, by hybridizing various road characters. Ziems et al. [6], by
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Fig. 2. Test examples in Cognitive Psychology. (a) Example to show the local
directionality of salient structures. (b) Example to show the aperiodicity of
salient structures.

employing different road detection methods, proposed a fusing
scheme to combine the results of different models. Benefitting
from the multimodel manner, such approach presents impres-
sive robustness and detection performance.

However, as mentioned earlier, to address the limitation of
the basic assumption about the road regions, recent works
often require some information beyond the image to get high-
quality detection results, such as simple interaction [4], 3-D
road surface model [6], or pretrained classifiers [5]. Second, the
multistage or multimodel scheme may produce more computa-
tional burden to reduce the efficiency of the whole system.

On the other hand, recent structure-aware image processing
techniques [38]–[41] have already made some efforts for seek-
ing more flexible metrics. These methods exhibit commend-
able strength, in dealing with structures free of contrast or
spectral assumption, and provide interesting heuristics for road
extraction.

III. LOCAL DIRECTIONAL STRUCTURE MEASUREMENT

Despite the fact that spectral behaviors are not actually
salient for some of the road regions, most people, as shown in
Fig. 1(c), can still figure out these structures. Such an observa-
tion implies that, except for spectral behavior or contrast, the
roadlike structures do follow some perception rules. Our goal is
to extract roads by exploiting their visual saliency in terms of
perception, while not relying on any assistant information such
as GIS data or training samples.

Fig. 2(a) and (b) shows two famous test images in Cognitive
Psychology. For Fig. 2(a), most people can figure out a nose
contour, which can be attributed to its fine local directionality,
although the short lines are messy [42], [43]. Each line in
Fig. 2(b) has the same size and intensity, but the thwartwise
and left-slanting lines are much more noticeable, because the
perception of the other lines is suppressed by their social
conformity [7]. Inspired by these perception observations, we
develop the ADSM to describe roadlike structures. Specifically,
such measurement is based on the following observations:

1) Aperiodicity. As opposed to texturelike elements, roadlike
structures present less oscillation of intensity and do not
distribute periodically and regularly in a local area.

2) Local directionality. Intensity variation of roadlike struc-
tures has more consistent local directionality than textures,
in a local area.

Then, our ADSM is composed of mainly two parts: the
aperiodicity measurement Lp, which is designed to suppress
texturelike periodic elements, such as residential area, and the
directionality measurement Dp, which is designed to analyze
the local directionality of potential road structures. Next, the
input image is preprocessed by Gaussian and bilateral filters.
Since the results are not much sensitive to such filters, the
parameters are set at fixed values. Specifically, radii are set at
5 for both filters; the σG for Gaussian filter is set at 3.0; the σs

and σc for bilateral filter are set at 5.0 and 15.0, separately. With
the filtered image, we elaborate on the details for formulating
these measurements.

To distinguish dominant roadlike structures from the textures
with similar contrast scales, inspired by a previous structure-
aware image smoothing method in [39], we first employ the
aperiodic measurement as

Lp =

∣∣∣∣∣∣
∑

q∈N(p)

wp,q · ∇xIq

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

q∈N(p)

wp,q · ∇yIq

∣∣∣∣∣∣ (1)

where wp,q is defined as

wp,q = exp

(
−|xp − xq|2 + |yp − yq|2

2σ2

)
. (2)

For pixels p and q, ∇xIq and ∇yIq represent the gradient com-
ponents along the horizontal and vertical directions, respectively;
wp,q is the Gaussian weight; N(p) denotes the neighborhood of
pixel p, and in our experiments, radius of N(p) is set at a con-
stant value of 5 (pixels) for images with 4-m resolution, since
such value is tested sufficiently large for all the experiments.
The periodic structures often show intense gradient oscillations;
such measurement essentially suppresses the periodic texture-
like elements by allowing counteraction of the gradients.

The local directionality Dp is derived from structure tensor,
i.e., a sophisticated tool in image processing [44], [45]. It
not only implies the intensity distribution at each pixel but
also summarizes the predominant directions of the gradient
magnitude in a local neighborhood. Formally, a structure tensor
at a pixel p is defined as

Sp =

⎛
⎜⎝

∑
q∈N(p)

〈∇xIq,∇xIq〉
∑

q∈N(p)

〈∇xIq,∇yIq〉∑
q∈N(p)

〈∇xIq,∇yIq〉
∑

q∈N(p)

〈∇yIq,∇yIq〉

⎞
⎟⎠ (3)

where N(p) is the neighborhood of a pixel p with a specified
radius, 〈·, ·〉 denotes the scalar product, and ∇x(·) and∇y(·) are
partial derivatives computed by using the Sobel operator. Math-
ematically, Sp is a positive semidefinite symmetric matrix,
which has two eigenvalues λ1,p ≥ λ2,p with the corresponding
eigenvectors �ηp and �ξp.

The local directionalityDp is computed by the orthogonality
distribution of eigenvectors �ξ corresponding to directions with
minimum eigenvalues in a local neighborhood. Concretely, it is
defined as

Dp =

∑
q∈N(p)

Aq ·
∣∣∣〈�ξq,�ξp〉∣∣∣∑

q∈N(p)

Aq
. (4)
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Fig. 3. Responses of gradient magnitude and ADSM. (a) Input image.
(b) Gradient magnitude map calculated by the Sobel operator. (c) Visualized
result of local directionality measurement. (d) Visualized result of ADSM.

The absolute value of scalar product |〈�ξq,�ξp〉| has a range of
[0, 1], and it increases as the two vectors align closely, i.e., the
angle between them approaches 0 or π, and equals 0 as the two
vectors get orthogonal. To suppress the influence of the flat-
tened area, pixels with high anisotropy are encouraged to con-
tribute more; hence, a measurement Aq is applied as weight to
better capture the primary direction. Specifically, it is defined by

Ap =
λ1,p − λ2,p

λ1,p + λ2,p
. (5)

This anisotropy measurement, which shows potential in cap-
turing local nonuniformity of intensity variance, has been ex-
ploited since the pioneering work in [46]. Ap has a range of
[0,1]; a larger value indicates structures with a predominant
trend of intensity variation at the pixel.

With these definitions, the ADSM can be written as

Mp = Dp ·
1 + tanh (λ · (Lp −Lmean))

2
(6)

where parameter λ is designed to tune the sharpness of the
curve of function tanh(·); in our experiments, it is set as the
fixed value of 3.3, empirically. Lmean is the mean value of
the aperiodic measurement map defined in (1). In (6), Dp, with
the range of [0,1], is designed to indicate potential roadlike
structures with high local directionality. The normalized aperi-
odic measurementLp is designed to further suppress the texture
like areas; thus, regions such as building groups or residential
areas would have a low response.

Fig. 3 shows an example of the ADSM, where Fig. 3(a)
shows a complex urban remote sensing image; Fig. 3(b) shows
the gradient magnitude map of Fig. 3(a) (acquired by the

Sobel operator), where identification of the real road regions
is difficult; Fig. 3(c) shows the visualized result of the local
directionality measurement D defined by (4), where some
visible residential areas are also involved; Fig. 3(d) shows the
ADSM result defined by (6), where the potential road regions
have higher responses while the interferences from residential
areas are significantly suppressed.

Compared with previous road detection works, the proposed
ADSM relies on the aperiodicity and directionality of road
regions implied by perception theories, rather than the use of
spectral behavior or intensity contrast. Benefitting from such
characteristics, our system, without assistant information such
as training samples or user interactions, is able to detect road
regions (as highlighted in Fig. 1) with inconspicuous spectral
features.

IV. ADSM-GUIDED ROAD NETWORK EXTRACTION

ADSM provides the probability that a pixel belongs to the
edge of road regions. Guided by such a measurement, the
detected road primitives construct a mask to describe the road
network topology; then, in combination with some morphology
operators, road regions can be extracted. Thus, our road network
extraction algorithm includes mainly three parts: road primitive
detection, topology description, and network extraction.

A. ADSM-Based Road Primitive Detection

Inspired by the work of Von Gioi et al. [47], our line segment
detection scheme, by the guidance of ADSM, first generates
line- support regions (regions whose pixels share roughly the
same minimal gradient change orientation). The line segments
are then defined by a fitted rectangle.

The line-support region is generated by the greedy algorithm,
with a start point (the left top pixel in the image); the region ori-
entation θ(�ξR) is set to the weighted mean orientation of the min-
imal gradient change direction on each pixel, which is written as

θ(�ξR) = θ

(∑
p∈R M(p) · �ξp∑

p∈R M(p)

)
(7)

where Mp is the ADSM of a pixel p, and �ξp denotes the
minimal intensity change direction at pixel p. Here, we use the
orientation of the weighted average vector to denote the region
orientation, where the weights are the ADSM values. Such
weight is designed to suppress the contribution of the pixels in
smooth or texture area. Then, the four connected pixels adjacent
to the seed point are evaluated. The pixels with orientation
similar to the mean direction of the region (i.e., the orientation
difference |〈�ξR,�ξp〉| larger than a user-specified tolerance τ )
are added to the region. The range of τ is [0,1], and a smaller
value leads to “more” detected roads. In our experiment, it is
set at the fixed value of 0.75; however, such parameter can
be manually adjusted for different applications. After each
iteration, the mean orientation of the region is updated, and
the process is repeated until no new point can be added. We
traverse the whole image from the left top pixel until each pixel
is assigned a line-support region.

With the roughly defined line-supported regions, a rectangle
is employed to fit each region to form the line primitives.
Inspired by the idea of Kahn et al. [48], we use the weighted
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Fig. 4. Examples of the road mask construction. (a) Input image. (b) Response
of ADSM. (c) Detected line segments. (d) Road region mask after consolidation
and connection.

centroid to define the center of the rectangle, and the ADSM
value is taken as the weight. The orientation is calculated
by the direction of the mean eigenvector of the region [see (7)].
The length is chosen as the maximum length of the region, and
the width is set as a fixed value to cover the line-support region.
With the rectangular approximation of the line-support region,
the validation scheme proposed in [47] is applied to confirm the
line segments. Specifically, for each line segment, the number
of aligned points is counted, and the segments which satisfy a
threshold criterion based on their length and their number of
aligned points are kept as valid detections.

Fig. 4 shows an example of the road mask construction;
Fig. 4(a) shows the input remote sensing image where; within
the highlighted area, it is a challenge to detect the road regions.
Fig. 4(b) shows the visualized result of ADSM. Fig. 4(c) shows
the detected line primitives (white lines) that indicate the poten-
tial road regions.

B. Road Network Extraction

The road primitives are scattered and messy, and some gaps
are also observed. Thus, a road network topology refinement
scheme is proposed to form a mask for better description of the
entire road network topology. The refinement scheme consists
of two steps: consolidation and connection.

Consolidation: Our consolidation scheme aims to reduce the
false alarm. Specifically, for line segments, we find a target one
with minimum cost to them in a predefined neighborhood and
then merge them. Specifically, the merging scheme aims to find
a pair of points with longest distance between the following
four points: the terminal points of the longer line and the
projection points from the shorter line to the longer line. Such
process is repeated until there is no neighbors for each line
segment in the neighborhood.

The definitions of neighborhood and cost are based on three
criteria: 1) direction similarity evaluating whether two line
segments are aligned closely in the same direction, which is
calculated by the normalized vector of two line segments θs =
〈 �ξl1 · �ξl2〉 , as shown in Fig. 5(a); 2) the distance perpendicular

Fig. 5. Illustration of the consolidation criteria. (a) Angle definition between
two lines. (b) Perpendicular distance definition between two lines. (c) Horizon-
tal distance definition between two lines.

to the direction of the longer one of the two line segments,
denoted by Dp(l1, l2), which is calculated by the distance
between the midpoint of the shorter line and its projection
on the longer line, as shown in Fig. 5(b); 3) the normalized
distance along the direction of the long line segment, denoted
by Dn(l1, l2) = Da(l1, l2)/length(l1), which is calculated by
the ratio between the distance of the projection point (from the
short to the long segments) and its nearest terminal point in the
longer line segment (denoted by Da(l1, l2)), and the length of
the shorter line segment, as shown in Fig. 5(c).

Considering the aforementioned criteria, the neighborhood
of the centerline segments is defined by the empirical thresh-
olds N(lc) = {(θs, Dp, Dn)|θs < τs, Dp < τDp

, Dn < τDn
},

and the cost is written as

El1,l2 = θs ·Dp(l1, l2) ·Dn(l1, l2). (8)

The cost function is designed to favor the merger of the line
segments with roughly the same direction and smaller distances
of Dp and Dn. The parameters τs, τDp

, and τDn
are set at the

experimental values τs = 20 (degree), τDp
= 20 (pixel) (with

4-m image resolution), and τDn
= 5. Such configuration is

sufficient for all our experiments. Details of the consolidation
scheme are shown in Algorithm 1.

Algorithm 1 Line segments consolidation

Input: A set of line segments lk ∈ L.
Output: Consolidated road mask lines l̃k ∈ L̃.
1 L̃ ← L;
2 mergingFlag = TRUE;
3 while (mergingFlag = TRUE) do{
4 mergingFlag = FALSE
5 foreach line segment l̃k ∈ L̃ do
6 if (N(l̃k) �= φ) then
7 foreach neighbor l̄k of l̃k do
8 find ln s.t. Eln,l̃k

= infEl̄k,l̃k
;

9 end
10 mergeTwoLineSegments(ln, l̃k)
11 mergingFlag = TRUE
12 end
14 UpdateLineSegmentsSet(L̃)
13 end;
15 }

Connection: Inspired by previous tensor-voting-based ap-
proaches [49], [50], to fully cover the curving part of the roads
with the consolidated line segments, adjacent line primitives
are connected to form the road mask. More specifically, two
lines are favored to be connected if they are: 1) near each other;
2) aligned closely in the same direction; 3) their terminal points
are not connected with any other lines.
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According to the aforementioned considerations, to deter-
mine which lines should be related, each pair of detected line
segments is connected by an edge with a designed cost. Then,
the desired connection is defined by a label set le ∈ {−1, 1},
which indicates whether an edge should be preserved (le = 1)
or not (le = −1). Our goal is then to solve a binary labeling
problem by minimizing the following energy function:

argmin
lep

⎛
⎝∑

ep

Olep + α
∑

eq∈N(ep)

Slep ,leq

⎞
⎠ (9)

where α, whose typical range is (1.0, 5.0), is the weight for
in-between tradeoff of data term O and smoothness term S.

The data term O evaluates whether an edge should be pre-
served, and it is defined by

Olep = −sign(lep) + λ · L(ep)
/(∣∣∣〈�ep · �l1〉∣∣∣ · ∣∣∣〈�ep · �l2〉∣∣∣+ ε

)

+ C · f

⎛
⎝2−

∑
ew∈V (ep)

(lew + 1)

⎞
⎠ (10)

where L(ep) is the length of an edge; sign(·) is the standard sign
function, i.e., sign(x) = 1 if x > 0, sign(x) = −1 if x < 0,
and sign(x) = 0 is x = 0; �l1 and �l2 denote the normalized
vectors of line segments connected by edge ep; ε is a sufficient
small constant to prevent zero division. λ, with a typical range
of (0.005, 0.1), is the user-defined parameter denoting the
relaxation of the connection. A smaller value indicates more
connections between the road primitives. For the third term,
C is a large enough constant, which is set at 999999.0 in our
program; V (ep) is the set of edges sharing the same vertex;
function f(a) equals 0 if a ≥ 0; otherwise, it equals to 1. Such
term guarantees that no more than one of the edges sharing
the same vertex is allowed to be marked as 1. The data term
is designed to encourage shorter edges, which connect two
roughly aligned line segments, to be preserved.

The smoothness term S is defined as

Slep ,leq =
∑

eq∈N(ep)

∣∣lep − leq
∣∣

d(ep, eq) + ε
(11)

where the function d(ep, eq) denotes the distance of two edges,
which is calculated by the distance between their middle points;
ε is a sufficient small constant to prevent zero division; N(ep)
is the K-nearest neighborhood of edge ep. Of course larger size
of neighborhood provides better results but will significantly
increase the computational cost. Hence, an 8-nearest neighbor-
hood is employed in our experiment for better balance between
quality and efficiency. The smooth term Slep ,leq , which encour-
ages an edge and its close neighbors to have the same label, is
designed for the spatial coherence.

The objective function of (9), which has the classical form
of Markov random field problem, has been demonstrated solv-
able by the graph cut optimization in previous work [51].
Fig. 4(d) shows an example of the road mask after consolidation
and connection, where the scattered road primitives are clus-
tered to a long and continuous road mask, and as indicated by
the green lines, gaps are also well filled.

Fig. 6. Pipeline of the centerline extraction according to the road region mask.
(a) Input image. (b) Canny edge map. (c) Visualized result of road region mask.
(d) Rough road map acquired by overlapping (c) to (b). (e) Dilation version of
(d). (f) Road network extraction result. (g) Visualized result of overlapping the
network extraction map to the input.

Extraction: With the established road mask, we use some
simple image processing operations to get the road information,
as indicated by step results (a)–(g) in the pipeline shown in
Fig. 6. Specifically, the Canny operator, because of its scal-
ability and robustness [4], is first applied to extract a basic road
map. The road network topology is described mainly by the
mask; hence, to obtain sufficient potential roads, we can relax
the edge detector parameters. In our experiments, the higher
and lower thresholds of Canny operator are set at 80 and 50,
respectively; the experimental result is shown in Fig. 6(b). The
edge image is multiplied by the Gaussian blurred version of
the constructed mask, as shown in Fig. 6(c), to form a rough
road map, as shown in Fig. 6(d). Then, to extract the centerline,
the rough road map is first dilated by the morphology operator,
then binarized, as shown in Fig. 6(e), and thinned to form
the skeleton, as shown in the white part of Fig. 6(f). Finally,
according to connectivity analysis, the isolated short lines are
removed, as highlighted in red in Fig. 6(f), to form the final
pixelwised binary road map, as shown in Fig. 6(g). Such map
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can be easily transformed to vector form by recent commercial
software such as ARCGIS or Adobe Illustrator.

V. RESULTS

Our approach is implemented based on C++ program-
ming on a PC with a 3.2-GHz Intel Core i5-3200 CPU and
4-G RAM. To comprehensively evaluate the algorithm, several
experiments are designed here. First, images from different
satellite sensors, such as Ikonos, GeoEye, QuickBird, and
aerial, are applied for testing, where various terrains, such as
urban, rural region, mountain, etc., are involved. The corre-
sponding road reference map is generated by a hand drawing
method. We also evaluate our approach on the Pleiades-1A re-
mote sensing image of an entire city of China (Shaoshan City),
where the reference data are obtained by ground survey. Finally,
the proposed method is compared with some of the latest
road extraction works in both quality and efficiency, and the
reference is provided by previous works.

On the parameter setting phase, to further adjust the results
for specific application, values of the sharpness factor λ in
(6) and tolerance τ in Section IV-A can be adjusted (lower
values for higher completeness and higher values for higher
correctness) for different types of results.

A. Evaluation on Images From Various Sensors

The evaluation is first applied on images from four sen-
sors, including GeoEye, QuickBird, Ikonos satellites, and aerial
images. Ten samples for each sensor are selected for testing.
The resolutions of the GeoEye, QuickBird, Ikonos, and aerial
images are 0.5 m, 0.5 m, 1 m, and 1 m, respectively. The
high-resolution images show the terrain or objects in great
detail, which may interfere in the detection of roads; therefore,
similar to the previous work [4], all the test images are first
appropriately downsampled to 4-m resolution.

In the evaluation phase, the ground truth data are manually
generated; then, followed by the classic accuracy measurements
[29], [52], three criteria are applied as follows:

completeness =
TP

TP + FN

correctness =
TP

TP + FP

quality =
TP

TP + FN + FP
(12)

where TP, FN, and FP denote true positive, false negative, and
false positive, respectively. For each sensor, the average quanti-
tative evaluations over all ten test images are listed first. Then,
for better comparison, we test our method on two additional
examples, which have been applied in recent road extraction
work [4].

Test on GeoEye Satellite Image: We have selected ten
GeoEye images (including seven city region images, two rural
region images, and one mountain region image, and most of
them are about 1000 × 1000 patches) with 13 627 789 pixels,
and the length of all the roads is about 480 km. The average
detection results are listed in the second row of Table I. We also
test our method on two additional examples, which are applied

TABLE I
STATISTICS OF REMOTE SENSING IMAGE RECORDING BY GEOEYE

SATELLITE. THE SECOND ROW IS THE AVERAGE RESULT FOR

TEN TESTED IMAGES; THE THIRD AND FOURTH ROWS ARE

RESULTS FOR TWO EXAMPLES IN FIGS. 7 AND 8

Fig. 7. Road extraction results on GeoEye image. (a) Input image. (b) Re-
sponse of ADSM. (c) Result of the detected line segments. (d) Road region
mask. (e) Edge detection by Canny operator. (f) Our extraction result. The
green, blue, and red lines represent the true positive, false positive, and false
negative detections.

in [4] (corresponding results are listed in the last two rows of
Table I); as shown in Figs. 7 and 8, these figures are the step-by-
step results of our approach, where (a) is the input image; (b)
is the visualized result of the ADSM, in which roadlike regions
have higher responses; (c) is the road primitive detection result,
in which the roadlike structures are well covered by the short
line segments; (d) is the road network mask after consolidation
and connection, where the short and scattered lines are clustered
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Fig. 8. Road extraction results on GeoEye image. (a) Input image. (b) Re-
sponse of ADSM. (c) Result of the detected line segments. (d) Road region
mask. (e) Edge detection by Canny operator. (f) Our extraction result. The
green, blue, and red lines represent the true positive, false positive, and false
negative detections.

and connected to acquire complete road network topology
description. Then, combining with the Canny edge detector
[as shown in (e)] along with some commonly used image
processing operators, we can get the final road network map.
As shown in (f), the green, blue, and red lines represent the true
positive, false positive, and false negative detections.

Test on QuickBird Satellite Image: The selected ten Quick-
Bird satellite images (including three mountain region images
and three city region images) involve 10 516 297 pixels, and
the length of all the roads is about 310 km. Corresponding
results are listed in Table II. In previous work [4], tests using the
QuickBird satellite sensor did not perform well because the im-
ages are JPEG compressed. In contrast, because our approach
relies on the structures of the road region rather than the image
details, the results are not sensitive to JPEG compression. The
examples of this sensor are two rural region images; the road is
a set of curvelike structures and is rather simple. In Fig. 9, oc-

TABLE II
STATISTICS OF REMOTE SENSING IMAGE RECORDING BY QUICKBIRD

SATELLITE. THE SECOND ROW IS THE AVERAGE RESULT FOR

TEN TESTED IMAGES; THE THIRD AND FOURTH ROWS ARE

RESULTS FOR TWO EXAMPLES IN FIGS. 9 AND 10

Fig. 9. Road extraction results on QuickBird image. (a) Input image.
(b) Response of ADSM. (c) Result of the detected line segments. (d) Road
region mask. (e) Edge detection by Canny operator. (f) Our extraction result.
The green, blue, and red lines represent the true positive, false positive, and
false negative detections.

clusions are observed in some parts of the road, leading to lower
completeness. In Fig. 10, the terrain boundary is misidentified
as road; hence, the correctness is not satisfactory. To handle
such a situation, some semantic information is helpful.

Test on Ikonos Satellite Image: The selected ten Ikonos
satellite images (including six rural region, two city region, and
two mountain region images) involve 11 638 971 pixels, and the
length of all the roads is about 370 km. Limited by the license
of the data, we do not present the comparison with the work
in [4]. The completeness, correctness, and quality of this test,
which show well robustness, are 0.8109, 0.7866, and 0.6648,
separately, and there is not much difference comparing to the
results of GeoEye and QuickBird sensors.

Test on Aerial Image: The selected ten aerial images (in-
cluding five city region images, four rural region images, and
one mountain region image) involve 16 948 971 pixels, and the
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Fig. 10. Road extraction results on QuickBird image. (a) Input image.
(b) Response of ADSM. (c) Result of the detected line segments. (d) Road
region mask. (e) Edge detection by Canny operator. (f) Our extraction result.
The green, blue, and red lines represent the true positive, false positive, and
false negative detections.

TABLE III
AVERAGE STATISTICS OF DATA FROM DIFFERENT SENSORS

length of all the roads is about 450 km. In addition, limited
by the license of the data, we do not present the comparisons.
Statistics of completeness, correctness, and quality are 0.7955,
0.8381, and 0.6895 separately. Because the samples of this
sensor contain some rural region images, the roads suffer from
more occlusion and shade; hence, the completeness is slightly
lower than that for the GeoEye and Ikonos sensors, but the
overall quality is fairly good.

Overall Performance: The average measurements of our ap-
proach over all the 44 images are listed in Table III. Generally,
the performance of our approach is stable around different
sensors and is not sensitive to resolution or the encoding com-
pression. The overall variance is also satisfactory. The major
factor influencing the effect is the occlusion or shading of road
regions. To solve this problem, prior semantic information is
consider to be involved in our system in the future.

Fig. 11. Road extraction results on Pleiades-A image of Shaoshan City.
(a) Input image. (b) Benchmark from ground survey. Different colors denote
different regions of Shaoshan City. (c) Selected typical patch. (d) Response of
the ADSM. (e) Result of the road region mask. (f) Our detection result.

B. Evaluation on the Remote Sensing Data of Shaoshan City

We also applied our method on the remote sensing im-
age of Shaoshan City recorded by Pleiades-1A satellite with
0.5-m resolution [as shown in Fig. 11(a)]; the technical data
of Pleiades-1A satellite are given in Table IV. The experiment
are applied in divided image patches. Then, to merge the road
network extraction results of different patches(i.e., a binary
pixel map), for the edge pixel of the road in each patch, in its
neighborhood (radius of 20 pixels for 4-m resolution), if there
are other edge pixels in the adjacent patches, we calculate their
gradient change direction, and if their directions are roughly
the same, these two roads are considered continuous, and we
connect them.

As shown in Fig. 11(b), the ground truth is acquired by
ground survey. Shaoshan is a classical mountainous city cov-
ering about 250 km2. The size of the satellite image is 28 648 ∗
37 929 pixels. To test the performance of our method, the image
is divided into 1000 ∗ 1000 patches with 30% overlap. Evalu-
ations are applied in each patch; then, the results are combined
together. The overall testing time is about 15 518 s, and the
corresponding results are listed in the first row of Table V.
Compared with the experiments in Section V-A, all of the three
measurements decrease by different degrees, as shown in the
second row of Table V. The major variation is the extraction
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TABLE IV
TECHNICAL PARAMETERS OF PLEIADES-1A SATELLITE

TABLE V
STATISTICS ON THE REMOTE SENSING IMAGE OF SHAOSHAN AREA

correctness, which decreases more than 10%. We guess that the
first reason is that, for experiments in Section V-A, we always
select images with roads, to guarantee the correctness to some
degree; however, for some image patches of the Shaoshan City
image, there are no roads but only the mountains, thus leading
to high false positive rate. On the other hand, the road reference
of this test is acquired by ground survey rather than manual
creation; hence, some of the hidden roads (due to shading or
occlusion) are also involved, and this also slightly affects the
performance of our method.

The spectral features of the road regions in this data set are
quite good. However, we found that, in the experiments, such
features are not that reliable. The spectral performance of the
road can differ significantly from data set to data set. Hence,
as mentioned earlier, our approach focuses mainly on the struc-
tural features of the road to obtain better adaptiveness. We also
conducted an experiment, taking the spectral information of the
road region into account. Here, a simple intensity threshold is
applied to help improve the detection performance. The overall
completeness increases about 5% (0.8198), and the correctness
increases about 8% (0.7716).

Due to the licenses of these data, we just choose a typi-
cal area to visualize our road extraction results, as shown in
Fig. 11(c)–(f), where Fig. 11(c) shows part of an image patch,
Fig. 11(d) shows the visualized result of our ADSM measure-
ment, Fig. 11(e) shows the generated road network mask, and

Fig. 12. Our extraction results on Ikonos1-Sub1. (a) Input image. (b) Response
of ADSM. (c) Result of the detected line segments. (d) Road region mask.
(e) Edge detection by Canny operator. (f) Our extraction result.

Fig. 11(f) shows the extraction result. Limited by the copyrights,
we are not allowed to visualized the ground truth in the image.
The measurements of completeness, correctness, and quality of
this patch are 0.8519, 0.8377, and 0.7311, respectively.

C. Comparison

To compare our road extraction approach with the other re-
lated works, evaluations on the aspects of quality and efficiency
are applied.

Quality Evaluation: For the quality evaluation, we tested our
methods on three classic Ikonos satellite images provided by
Prof. H. Mayer. In their previous work [53], road centerline de-
tection results of six different methods on three Ikonos satellite
images (Ikonos1-Sub1, Ikonos3-Sub1, and Ikonos3-Sub2) are
carefully evaluated, and the quantitative measurements are also
collected. Based on this, many followed road extraction works
reported their results on these images; thus, our quality evalua-
tion is tested on the same data set. The version of these images
that we obtained is of grayscale with 4-m resolution. Although
the resolution is not very high, it is sufficient for our testing.
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Fig. 13. Our extraction results on Ikonos3-Sub1. (a) Input image. (b) Response
of ADSM. (c) Result of the detected line segments. (d) Road region mask.
(e) Edge detection by Canny operator. (f) Our extraction result.

Figs. 12–14 show the results of our methods on these images.
In each of these three figures, (a) is the input, (b) is the visual-
ized result of the ADSM, (c) is the line segment detection result,
(d) is the road network mask, (e) is the Canny edge detector,
and our extraction result is shown in (f). For the first example
(image Ikonos1-Sub1), the road network is rather complicated,
which is a very challenging example for road detection. Our
method also misses some of the roads, but the correctness is ba-
sically satisfactory. For the other two examples (image Ikonos3-
Sub1 and Ikonos3-Sub2), our method performs fairly well.

The quantitative measurement of our approach along with the
reports of ten other related works are listed in Table VII, where
the highest two values are emphasized. Based on the definition
of quality in (12), we also calculate such measurement of
each method for a comprehensive comparison. Specifically, the
quality is calculated by the following equation:

quality =
comp · corr

comp + corr − comp · corr
. (13)

The results show that, in most cases, among the ten methods,
the performance of our approach is in the top two. We also cal-

Fig. 14. Our extraction results on Ikonos3-Sub2. (a) Input image. (b) Response
of ADSM. (c) Result of the detected line segments. (d) Road region mask.
(e) Edge detection by Canny operator. (f) Our extraction result.

TABLE VI
TIME PERFORMANCE COMPARISON OF DIFFERENT METHODS

culate the relative difference between the best method and ours.
Corresponding results are shown in the last row of the table.
For image Ikonos1-Sub1, our method has the best performance
in either completeness or correctness. For image Ikonos3-Sub1,
our correctness and quality, which ranked second, are slightly
lower than those in the work of Bacher [54]. For image Ikonos3-
Sub2, we have the third highest completeness and the highest
correctness and quality. In general, the performance of our
approach is fairly stable and has balanced completeness and
correctness. In Mayer’s work [53], values of 60% and 75%
for completeness and correctness are recommended as the
baseline for practice. In this respect, our method passes both
the thresholds for all the images.
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Efficiency Evaluation: Our implementation is based on C++
programming. For an image size of 1000 × 1000, our approach
takes about 6 s for whole processing. The major bottleneck of
our algorithm lies in the step of line segment consolidation and
connection Section IV-B, which consumes almost 50% of the
processing time. The other parts of our work are very efficient
and have a linear complexity O(kn). We also compare our
time performance with the latest road extraction works [4], [5],
where all the methods are programmed with MATLAB 2013b
(for a fair comparison, we also prepare a MATLAB version
code for testing) and tested on ten images with sizes of 1000 ∗
1000. The average running times along with the implementation
environments are listed in Table VI. Time cost of our approach
is about 16.7% and 11.6% of previous works [4] and [5].

VI. CONCLUSION

We have presented a novel road network extraction approach,
which is able to produce stable and efficient detection results
on data from various satellite sensors. The qualified adaptivity
stems from a robust local directional aperiodic road structure
measurement, which is inspired by Cognitive Psychology. Such
a measurement combines the main properties of the local direc-
tionality and aperiodicity for spectral-behavior- and contrast-
independent road structure characterization. Guided by such
measurement, we designed a road region mask construction
scheme to analyze the road network topology. Then, in combi-
nation with some common morphology operators, road center-
lines are able to be extracted. Experimental results demonstrate
the effectiveness and efficiency of our approach to produce
high-quality road extraction results (see Table VII).

On the other hand, in our experiments, it is found that most
of the errors occurred in road regions with shade or occlusion,
since both the spectral or geometric features were affected
in different degrees. Such a case can be difficult for purely
computer-vision-based solutions. Thus, in the future, with the
aid of semantic information or training samples, we plan to
specifically focus on the analysis of these cases.
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