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Abstract: The paper focuses on a specific errors-in-variables (EIV) model named the linearly structured EIV (LSEIV) model in which all the
random elements of designmatrix are in a linear combination of an input vector with random errors. Two existing structured total least-squares
(STLS) algorithms named constrained TLS (CTLS) and structured TLS normalization (STLN) are introduced to solve the LSEIV model by
treating the input and output vectors as the noisy structure vectors. For comparison purposes, the weighted TLS (WTLS) method is also per-
formed based on the partial EIV model. Approximated accuracy assessment methods are also presented. The plane fitting and Bursa transfor-
mation examples are illustrated to demonstrate the accuracy and computational efficiency performance of the proposed algorithms. It shows
that the proposed STLS and WTLS algorithms can achieve the same accuracy if the dispersion matrix of the WTLS method is constructed
based on the partial EIVmodel.DOI: 10.1061/(ASCE)SU.1943-5428.0000190.© 2016 American Society of Civil Engineers.
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Introduction

The total least-squares (TLS) method and its extensions have
attracted widespread attention since the terminology of TLS was
presented by Golub and Van Loan (1980). It is a popular approach
for dealing with an overdetermined system of equations An � y
when both A and y are subject to errors, which is also known as an
errors-in-variables (EIV) model. Essentially, the ordinary TLS
(OTLS) does not depend on any prior stochastic assumption of the
random variables. Nevertheless, it is proven to be a maximum like-
lihood estimator (MLE) when the errors of all elements in [A y] are
independent and identically distributed (i.i.d.) (Van Huffel and
Vandewalle 1991) from statistic standpoints. However, the i.i.d.
assumptions are mostly unrealistic in applications. Therefore,
extended methods have been proposed to overcome the disadvant-
age of the OTLS (Markovsky and Van Huffel 2007). Until recently,
a large number of extended TLS methods have been proposed and
widely applied in a variety of fields, such as signal processing, sys-
tem identification, computer vision, geodesy, and so forth. New pro-
gress on EIV models with unknown variance components have
been published by Xu and Liu (2013, 2014).

The TLS and its extensions have been widely applied and have
become an active topic in the geodetic community. The most fre-
quently discussed extension of TLS in geodesy is weighted TLS
(WTLS), in which the full statistical knowledge of the designmatrix
is taken into account. Quite a number of approaches for solving the
WTLS problem have appeared in recent years. Schaffrin and
Wieser (2008) developed a WTLS solution to linear regression, in
which the cofactor matrix of design matrix (notationQA is used for
brevity) is restricted to a certain structure. Xu et al. (2012) extended
the ordinary EIVmodel into a partial one, and presented a nonlinear
TLS algorithm. Snow (2012) and Fang (2013) extended the WTLS
algorithms in the case of cross-correlation between the design ma-
trix and right-hand side (RHS) vector. Xu et al. (2014) presented a
bias-corrected weighted least-squares (LS) method for a partial EIV
model. Apart from the unconstrained cases, the constrained TLS
(CTLS) or theWTLS solution has also been developed by a number
of researchers (Mahboub and Sharifi 2013; Fang 2014a, b, 2015).

In contrast to the WTLS, the structured TLS (STLS) methods
take advantage of the special structure of the design matrix when
structuredmatrices are involved. The term STLSwas first presented
by DeMoor (1993) in which [A y] can be expanded as an affine ma-
trix function of a noisy component vector and a group of fixed basis
matrices. The structured matrices widely discussed are the Toeplitz
or Hankel matrices (De Moor 1993; Lemmerling and Van Huffel
2001; Markovsky et al. 2005). A number of algorithms have been
proposed to solve the STLS problems, in which CTLS (Abatzoglou
et al. 1991), the Riemannian singular value decomposition (RiSVD)
(De Moor 1993), and the structured total least norm (STLN) algo-
rithms (Rosen et al. 1996; Van Huffel et al. 1996) are most fre-
quently used. The extensions were also made to solve the nonlinear
(Rosen et al. 1996; Lemmerling et al. 1996, 2002) or multivariate
STLS problems (Kukush et al. 2005). In geodesy, the reformulation
of a partial EIV model proposed by Xu et al. (2012) as a nonlinear
adjustment problem automatically satisfies the requirement of struc-
ture preservation; thus it can be used to solve STLS problems.
However, the STLS methods have not been as significantly investi-
gated as the WTLS methods in geodetic literature. Schaffrin and
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Felus (2008) developed a STLS procedure for similarity transfor-
mation by following a Cadzow algorithm, in which a characteristic
matrix mapping a random vector to the design matrix is introduced
to preserve the structure. Felus (2006) performed a STLN algorithm
for similar and affine coordinate transformation by treating them as
STLS problems. However, these studies are restricted to homosce-
dastic cases and particular applications. Schaffrin et al. (2012)modi-
fied theCadzowstep togenerate theoptimal solutionwith thedesired
structure. However, it does not consider the cross-correlation
between A and y. Fang (2014a) modified the WTLS algorithm by
only considering the functionally independent errors to preserve the
structure. Yet, the solution is based on converting the STLS problem
into aWTLS framework.

The relationship between WTLS and STLS methods has also
attracted the interests of geodetic researchers. In this paper, the classi-
cal STLS methods, including the CTLS algorithm and the STLN
algorithm, are introduced but they are not familiar to geodesists yet.
Based on these STLS methods, the quality assessment for the param-
eter estimates has been developed. The derivation presented in this
paper on the unknown parameter accuracy is different from that by
Xu et al. (2012), which obtained the first-order accuracy formula
with the reformulation of EIV models for the first time. Furthermore,
the partial EIV model proposed by Xu et al. (2012) is revisited. With
their new reformulation, the structure is automatically kept; in addi-
tion it is shown that theirWTLSmethod provides the identical results
to the conventional STLSmethod.

There are two motivations for this paper: one is to establish a
general STLS adjustment method along with an accuracy assess-
ment method for a specific EIV model, and the other is to compare
the proposed WTLS and STLS methods on accuracy and computa-
tional efficiency.

Linearly Structured EIV Model Formulation

Because the notations are quite different from different literature,
the notations introduced by Schaffrin andWieser (2008) are closely
followed throughout this paper. Minor modifications are made if
necessary. The OTLS can be formulated as

min
EA ;ey;n

kEA ey k2F (1a)

s:t: :ðA� EAÞn5ðy� eyÞ (1b)

where kkF denotes the Frobenius norm; A 2 Rm�p (m> p) is the
design matrix affected by the random error matrix EA; n 2 Rp is
the parameter vector; and y 2 Rm is the RHS vector corrupted by
the random error vector ey. If one uses the F-norm, the weights of
observations are not taken into account. Actually, the probable
errors could be sampling errors, human errors, modeling errors, and
instrument errors (Golub and Van Loan 1980), which may be heter-
oscedastic and/or correlated. Here, one only considers the random
errors characterized by

eA
ey

� �
¼ vecðEAÞ

ey

� �
�N

0
0

� �
; s2

0
QA QAy
QyA Qy

� �� �
(2)

where vec() is the operator stacking one column of a matrix under-
neath the previous one (Schaffrin and Wieser 2008); Nðl;CÞ is the
normal distribution with expectation vector l and covariance matrix
C; s2

0 is an (unknown) variance component; Qy is the cofactor ma-
trix of ey, which is assumed to be a positive definite symmetric

matrix; QA is the cofactor matrix of eA, which is mostly singular
because of the fixed or repeated elements; and QAy is the cross
cofactor matrix of eA and ey. If QAy ¼ 0, it means A and y are
uncorrelated.

By investigating the structure of design matrix in geodetic appli-
cations, such as line fitting, affine transformation and Bursa trans-
formation, one can find that all the random elements in the design
matrix consist of coordinates with errors. These error-contaminated
coordinates can be equivalently treated as measurements with errors
(Xu et al. 2012). In other words, the design matrix is the function of
a measurement vector. In such cases, the well-known EIV model
can be expressed as (Zhou et al. 2014)

y�AðxÞn (3)

where x is also called an input vector or variable. The errors of x are
the functionally independent errors (Xu et al. 2012; Fang 2014a).
Provided that x is a vector of size q, A(x) is a function matrix that
maps x 2 Rq ! A 2 Rm�p. The elements of A may be constructed
in a linear, quadratic, or even higher degree of x in applications.
Here, the linear cases are restricted, such that

AijðxÞ ¼ z0ij þ zTijx; 8i ¼ 1 � � �m; j¼ 1 � � � p (4)

whereAij is the element in the ith row and jth column ofA; zij 2 Rq

is a constant vector; and z0ij is a fixed scalar. zij 5 0makesAij a fixed
element; otherwise, it is random. The model [Eq. (3)] with the con-
straint [Eq. (4)] is a specific EIV model if the input and output vec-
tors are corrupted by errors. Here, the concept linear-structured
introduced by Beck and Ben-Tal (2005) is adopted and called a lin-
ear-structured EIV (LSEIV) model. It is a special form of the partial
EIV model proposed by Xu et al. (2012). The corresponding sto-
chastic model of LSEIV is given by

x5 x0 1 ex; y5 y0 þ ey (5)

ex
ey

� �
~N 0

0

� �
; s2

0
Qx Qxy
Qyx Qy

� �� �
(6)

where x0, y0 are the true values of x, y; ex, ey are the additive error
vectors of x0, y0; s2

0 is the covariance of unit weight;Qx,Qy are the
cofactor matrices of x and y; andQxy is the cross cofactor matrix of
x and y. It can be proven that the stochastic model [Eq. (6)] can lead
to Eq. (2) in a LSEIVmodel.

Typically, the LSEIV model covers a wide range of geodetic
applications. Here, only a few examples are given:
1. For data fitting (or regression), taking line fitting as an example,

let there be m (m ≥ 2) points, and the general LSEIV is given by

AðxÞ5
1 x1
..
. ..

.

1 xm

0
B@

1
CA;y¼

y1
..
.

ym

0
B@

1
CA; x¼

x1
..
.

xm

0
B@

1
CA;n¼ a

b

� �
(7)

2. Geodetic transformation, such as two-dimensional (2D) simi-
larity transformation (Neitzel 2010) or affine transformation
(Felus 2004; Tong et al. 2011), and the Bursa datum transfor-
mation (Yang 1999;Grafarend and Awange 2003), in which the
input vector consists of the coordinates in the source coordinate
system and the output vector, are the corresponding coordinates
in the target coordinate system. Taking the affine transforma-
tion as an example, assuming that there are n (n ≥ 3) points alto-
gether, it then yields

© ASCE 04016019-2 J. Surv. Eng.
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AðxÞ ¼

1 x1 0 y10 0 0 0
0 0 0 1 x10 y10

..

. ..
. ..

. ..
. ..

. ..
.

1 xn 0 yn0 0 0 0
0 0 0 1 xn0 yn0

0
BBBBB@

1
CCCCCA; x ¼

x10

y10

..

.

xn0

yn0

0
BBBBB@

1
CCCCCAy ¼

x1
y1
..
.

xn
yn

0
BBBBB@

1
CCCCCA

n¼

a0
a1
a2
b0
b1
b2

0
BBBBBB@

1
CCCCCCA (8)

3. Dynamic data processing, such as linear time-invariant Kalman
filtering (De Moor 1993) or the autoregressive moving average
(ARMA) model parameter estimation, are more applications.
Consider the moving average time series model (Markovsky et
al. 2004) as an example

xin1 þ xi�1n2 ¼ yi; i ¼ 1;…;m (9)

where n ¼ ðn1 n2ÞT is the parameter vector; x ¼ ðx1; � � � ;xmÞT is the
input time series; y ¼ ðy1; � � � ;ymÞT is the output time series; and x0
is the initial condition. Suppose that the input, the output, and the
initial condition are measured with errors, the problem can be for-
mulated as a standard LSEIVmodel as

AðxÞ ¼
x1 x0
x2 x1
..
. ..

.

xm xm�1

0
BBB@

1
CCCA; n ¼ j 1

j 2

� �
(10)

From the definition of the LSEIV model with some typical
examples, one can find that the input and output vectors in geodesy
mostly are 2D or three-dimensional (3D) coordinates. For conven-
ience, measurements (or measurement vector) are used instead of
variables. The design matrix is of full column rank. Although the
previously mentioned problems belong to the LSEIV model, the
structure of each problem is different. Moreover, constraints of pa-
rameters may also be imposed if necessary.

GeneralWTLS Solution to LSEIV

As described previously, quite a few WTLS algorithms (Schaffrin
and Wieser 2008; Shen et al. 2011; Snow 2012; Xu et al. 2012;
Fang 2013) are available for solving the EIV model. In a LSEIV
model, the errors of [A y] are inherited from the measurement
errors. If the coefficient matrix is structured, one must extract non-
repetitive random elements (Xu et al. 2012). Xu et al. (2012) have
proposed a partial EIV model by selecting functionally independent
random elements within the coefficient matrix

y ¼ ðbT � InÞðhþ B�aÞ þ ey (11a)

a ¼ �a þ ea (11b)

where h is a deterministic constant vector with elements corre-
sponding to the nonrandom elements of A; and B is a given deter-
ministic matrix that represents the characteristic of matrix A. The
m-dimensional vector a collects all the independent random

elements ofA, and the true values of a are denoted by �a. The weight
matrix of a is usually denoted byx.

In the partial EIV model, all the variables to be estimated can be
written in the form of a compact vector ba ¼ ½bT; �aT�. Compared
with the existing EIV models, the partial EIV model proposed by
Xu et al. (2012) is advantageous in dealing with the structured coef-
ficient matrix and even generalizing the inequality and equality con-
straints for both the unknown parameter vector and the independent
random elements within the coefficient matrix. For the solution of
the partial EIV model, one can either regard the partial EIV model
as a standard nonlinear Gauss-Markov model to find the standard
nonlinear LS solution or use the TLS solution developed by Xu et
al. (2012). Therefore the formulation of the solution will not be pre-
sented here again.

STLS Formulation

In this section, the LSEIV model is formulated as a STLS problem
and solved by the existing STLS algorithms. The STLSmethod was
first introduced by De Moor (1993), in which A is known to have a
linear or affine structure. Ignoring the weight matrix, a STLS prob-
lem is given by (Markovsky et al. 2004)

min
EA;ey;n

kEA ey k2F (12a)

s:t:: ðA�EAÞn ¼ ðy�eyÞ (12b)

½EA ey� has the same structure as ½Ay� (12c)

Examining the definition of Eqs. (1a), (1b), and (12a)–(12c),
one can find that it is the constraint [Eq. 12(c)] that distinguishes
STLS from OTLS, allowing one to obtain an estimation of n
when [A y] are structured. Furthermore, different weights may
possibly be assigned to each element. Beck and Eldar (2010)
gave a clear description of the STLS problem, in which the
design matrixA can be expressed as

A ¼
Xq
i¼1

aiAi; ai 2 R;i¼ 1; � � � ; q (13)

whereA1;…;Aq 2 Rm�p are the fixed structure (or basis) matrices;
and a1;…;aq are the structure components containing errors, and
typically q is much smaller than m� p. Assuming Da1;…Daq are
the unknown perturbations of the structure vector a1;…;aq, it
yields

DA ¼
Xq
i¼1

DaiAi; ði¼ 1; � � � ; qÞ (14)

where DA stands for the true errors of A. Eqs. (13) and (14) mean
that A and DA have the same structures. From the definition of
STLS given earlier, an EIV model is a STLS problem only if the
design matrix can be expanded as in Eq. (13). From the definition of
Eqs. (3) and (4), the designmatrix can be expressed as

A ¼ A0 þ x1A1 þ � � � þ xqAq (15)

where

© ASCE 04016019-3 J. Surv. Eng.
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A0 ¼
z011 � � � z01p
..
. . .

. ..
.

z0m1 � � � z0mp

0
BB@

1
CCA Ai ¼ ∂A

∂xi

¼
zi11 � � � zi1p
..
. . .

. ..
.

zim1 � � � zimp

0
BB@

1
CCAði ¼ 1 � � � qÞ

It is clear that all the elements in Ai (i = 0…q) are fixed values
that consist of the basis matrices, and the input vector x is the noisy
structured components. Moreover, y can also be verified to be a
structured vector, although whether it is structured or not is not an
important issue. Considering the errors in x, it gives

Aijðx0 þ exÞ ¼ z0ij þ zTijðx0 þ exÞ ¼z0ij þ zTijx0 þ
Xq
k¼1

zkije
k
x (16)

where zkij and ekx are the kth element of the corresponding vectors.
As a result, the error counterpart of the designmatrix equals

EA ¼ e1x A1 þ � � � þ eqx Aq (17)

Eqs. (15) and (17) indicate that A and EA have the same struc-
tures. The CTLS (Abatzoglou et al. 1991), RiSVD (DeMoor 1993),
and STLN algorithms (Rosen et al. 1996; Van Huffel et al. 1996)
are the three most widely used approaches in signal procession
literature. Lemmerling (1999) had done an extensive survey and
detailed analysis. In geodetic literature, Xu et al. (2012) also
directly solved a STLS problem. Fang (2014a) proposed a
WTLS-like STLS algorithm, which can be regarded as a new
STLS algorithm. To solve a weighted LSEIV model, the CTLS
and STLN algorithms are briefly outlined in the following
subsections.

CTLSAlgorithm Formulation

The CTLS algorithm was presented by Abatzoglou et al. (1991).
Actually, the constraint referred by Abatzoglou et al. (1991) is not
the so-called constraint in geodetic literatures; it stands for the
model functions themselves. The CTLS formulation groups the
error components of design matrix and RHS vector into a compact
noisy vector e 2 Rk (k is the order of e).The structure in CTLS is
represented by a set of basis matrices Ti 2 Rm�k, in which the cor-
rections of the ith column are defined by Tie, such that the CTLS
formulation becomes

min
e;n

eTPle (18a)

s:t:: ðA�½T1e; � � � ;Tpe�Þn ¼ y�Tpþ1e (18b)

where e ¼ ð eTx eTy ÞT, Pl ¼ Q�1
l is the weight matrix of vector e. In

terms of the matrices Ti, it is the Jacobi matrix of the ith column in A
with respect to themeasurement vector l ¼ ð xT yT ÞT, namely

Ti¼∂Að:;iÞ
∂l

¼

∂Að1;iÞ
∂l1

� � � ∂Að1;iÞ
∂lk

..

. . .
. ..

.

∂Aðm;iÞ
∂l1

� � � ∂Aðm;iÞ
∂lk

0
BBBBB@

1
CCCCCAði¼1 � � �pÞ (19)

Tpþ1 ¼ ∂y
∂l

¼

∂y1
∂l1

� � � ∂y1
∂lk

..

. . .
. ..

.

∂ym
∂l1

� � � ∂ym
∂lk

0
BBBBB@

1
CCCCCA (20)

By introducing

B ¼ ½A y�; g¼ð nT �1 ÞT;H¼ �
Xp
i¼1

niTi Tpþ1

" #
(21)

Eq. (11b) is equal to

Heþ Bg ¼ 0 (22)

Performing the Lagrange multiplier method from Eq. (18a) sub-
ject to Eq. (22), the CTLS problem can be changed into an uncon-
strained minimization problem as seen in Eq. (23) after some simple
mathematic transformations (Abatzoglou et al. 1991)

min
n

gTBTðHQlH
TÞ�1Bg (23)

To solve Eq. (23), Abatzoglou et al. (1991) proposed a Newton’s
method by using analytically derived gradients. Zhou and Pierre
(2005) gave a simplified computation scheme of the algorithm.
Some minor modifications are made in this paper to make the algo-
rithm suitable for the LSEIV model. The computational procedures
are outlined as:
1. Get C from the Cholesky factorization of the measurement co-

variance matrix, that is CCT ¼ Ql, let Gi ¼ �TiCT (i = 1,…,
pþ 1).

2. Use the OTLS solution as the initial value n̂ð0Þ, give the conver-
gence tolerance « , and initialize the iteration counter j: = 0.

3. Do the following calculation:
H¼½Pp

i¼1 n̂iðjÞGi �Gpþ1 �, (n̂iðjÞÞ stands for the ith element of
n̂ in the jth iteration)

u¼ ðHHTÞ�1BĝðjÞ ðĝðjÞ ¼ ð n̂TðjÞ �1 ÞTÞ

�A ¼ A� ½G1HTu;…;GpHTu�; �G ¼ ½GT
1u;…;GT

pu�; v ¼ �ATu

M¼� �GTHTðHHTÞ�1 �A � ð �GTHTðHHTÞ�1 �AÞT

N¼½�ATðHHTÞ�1 �A�T þ �GT½HTðHHTÞ�1H� Ik� �G

4. Update the parameter as

n̂ðjþ1Þ ¼ n̂ðjÞ þ ðMN�1M� NÞ�1ðv�MN�1vÞ

5. Set j: = jþ 1, repeat Steps 3–4 until n̂ converges.
It should be noted that the Newton algorithm cannot guarantee the
convergent to the global optimal solution due to the nonconvex na-
ture of the STLS problem. However, one still assumes it can cor-
rectly converge by assuming that the starting point is close enough.
The interested reader can refer to Abatzoglou et al. (1991) for a
detailed description.

© ASCE 04016019-4 J. Surv. Eng.
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STLNAlgorithm Formulation

The STLN is another widely used STLS algorithm. It is formulated to
minimize the error in either the L1, L2 or the L-norm (Rosen et al.
1998). Only the L2 normal STLN problem is considered to keep the
cost function consistent with the LS criteria. The STLN uses a vector
a to represent the functionally independent errors of EA and b to rep-
resent the functionally independent errors of ey that are not already
contained in a. The STLN is used to find the solution by minimizing
the cost function of aTPaaþ bTPbb (where Pa and Pb are the weight
matrices of a and b, respectively). It is obvious that ex and ey in a
LSEIV model are a and b. Because the STLN algorithm is only
taking that a and b are uncorrelated into account, improvements
are made for general consideration. The improved STLN formu-
lation is given by

min
e;n

1
2

ePleð Þ (24a)

s:t::An�Gex ¼ y� ey (24b)

with G 2 Rm�q, Gex¼EAn; and the other notations are the same as
those defined in Eqs. (18a) and (18b). The total residual vector r is
defined as

rð~e; n̂Þ ¼ �yþ ~eyþAn�G~exþðA� EAÞdn̂ (25)

where ~e is the predicted value of the e; n̂¼nþ dn̂, where n is an
approximated value close to n̂; and dn̂ are the corresponding correc-
tions. ConsideringGex¼EAn, one gets

Gex¼EAn¼ðnT � ImÞeA ¼ ðnT � ImÞJex (26)

It leads to

G ¼ ðnT � ImÞJ (27)

A couple of algorithms have been proposed (Van Huffel et al.
1996; Rosen et al. 1996; 1998) to solve the STLN problem. They
can be classified into two strategies: transforming the con-
strained optimization problem into an unconstrained one (Xu et
al. 2012; Fang 2014c) and approximating the constraint [Eq.
(24b)] in each step iteratively by a linear approximation while
leaving the cost function unchanged. Here is a brief introduction
to the maximal weight algorithm presented by Van Huffel et al.
(1996), in which the constraint was unified into the cost function
by assigning a maximal weight, which makes the constrained
problem into an unconstrained one. Eqs. (24a) and (24b) are
equal to

min
e;d n

:
���vrð~e; n̂Þ

P
1
2
l

~e
���2
F
¼ kUdþ �rk2F (28)

with

U5
v ½G �Im � �vðA� EAÞ

P
1
2
l

0

 !

where v is the maximal weight of Eq. (24b); and kkF is the
Frobenius norm. Eq. (27) is a traditional LS adjustment problem. It

can be solved by an iterative numerical method. The algorithm is
summarized as
1. Choose a large weight v and the convergence tolerance « and

set EA¼0, ex¼ey¼0. Compute the initial value of n, and con-
struct matrixG through the equationGex¼EAn, r̂ ¼ y� An

2. Repeat
a. Compute the corrections d ¼ �ðUTUÞ�1UT�r;
b. Set n̂:5n̂þdn̂, ~e:¼~e þ d~e; and
c. Construct EA from ~ex and G from n̂, compute r̂¼y�~ey �

ðA�EAÞn̂ until (kdn̂k 	 ɛ).
From the two STLS algorithms given earlier, one can find that

their difference lies in how to expand the LSEIV model. The CTLS
algorithm formulated the STLS problem by expanding [Ay] with
multiplication of a noisy vector and the basis matrices from col-
umn to column and making STLS an unconstrained optimizing
problem to be solved by a standard Gauss-Newton method. The
STLN formulates the STLS problem by assigning a maximal
weight to the model functions and treats the corrections of meas-
urements and parameters as unknowns to be solved like an ordi-
nary LS adjustment problem. The problem is that such a maximal
weight may easily cause the overflow or truncated error in com-
putation. Therefore, CTLS is preferable in solving a STLS
problem.

Accuracy Assessment of STLS

The accuracy formula in Xu et al. (2012) is of the first-order
approximation. The formula of the estimated accuracy and
others also are of the same type, although these formulas might
have different formulations. Because the STLS method actually
is a nonlinear LS adjustment by treating the random vectors x
and y as measurements, the variance component of unit weight
gives

ŝ 2
0 ¼

~eTPl~e
m� p

(29)

Once the estimates are achieved, Eq. (22) can be rewritten as

Ĥeþ~Aðn̂ þ d n̂Þ�~y¼0 (30)

where Ĥ¼ Pp
i¼1 n̂iTi �Tpþ1

h i
; ~A¼Aþ½T1~ex;���;Tp~ex�; ~y¼yþ~ey;

and dn̂ is the perturbation vector of n̂. Eq. (30) under the cost function
of Eq. (18a) is a conditional adjustment with parameters. It gives

dn̂ ¼ ½~ATðĤQlĤ
TÞ�1 ~A��1 ~A

TðĤQlĤ
TÞ�1ð~y � ~An̂Þ (31)

With respect to ~y � ~An̂ ¼ Ĥe, through error propagation law,
one can get

Qn̂¼½~ATðĤQlĤ
TÞ�1 ~A��1 (32)

As a result, Eqs. (29) and (32) provide a method for accuracy
assessment of the CTLS method, and that of the STLN method can
be established in a similar way.

To conclude this section, a simple comparison between the
previously proposed methods is given. The STLS algorithm
attempts to minimize the sum of the weighted squared errors of
the noisy component vector. It is equal to the well-known LS cri-
teria aimed at minimizing the sum of weighted measurement
errors in geodesy. The WTLS seeks to minimize the sum of
weighted squared errors of A and y. It can be proven that the

© ASCE 04016019-5 J. Surv. Eng.
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proposed WTLS and STLS algorithms in a LSEIV model can be
converted into the same unconstrained optimization problem
(Abatzoglou et al. 1991; Zhou et al. 2014). The differences only
arise from numerical computation.

It should be stressed that both WTLS and STLS are noncon-
vex optimization problems; consequently, the devised algo-
rithms are not guaranteed to converge to a global optimum.
Appropriate initial values or extra improvements are needed to
guarantee the validity.

Case Studies

Data experiments are performed in this section to examine the accu-
racy and efficiency performance of the proposed STLS algorithms
for a LSEIV model, and comparisons are made with that of the
WTLSmethods as well.

Table 1. RMSE of Different Estimators

Method a B c

TLS 0.0055292410 0.0109221503 0.0526734212
WTLS 0.0053276355 0.0065547310 0.0376027566
CTLS-STLS 0.0053276355 0.0065547310 0.0376027566
STLN-STLS 0.0053276355 0.0065547310 0.0376027565
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Fig. 1. Differences of parameters estimated by WTLS and STLS methods: (a) differences between the WTLS and CTLS algorithms; (b) differences
between theWTLS and STLN algorithms
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Plane Fitting

As a first example, it is demonstrated that the implementation of the
STLS algorithms for plane fitting are from simulated light detection
and ranging (LiDAR) data. Assuming an area of 10� 8 m2 are
scanned by an airborne LiDAR with a spatial resolution of 1 m, 80
ideal points at a regular grid with coordinates {(xi

0,yi
0)[N; xi

0 =
(0…9); yi

0 = (0…7)} are generated. The noise-free height zi
0 is

given by

z0i ¼ ax0i þ by0i þ c (33)

where a, b, and c are the parameters of plane with true values of a =
0.05, b = 0.2, and c = 100. The errors of different points are inde-
pendent, but the errors within a point are correlated to simulate the
correlations between A and y. The errors of an arbitrary point i are
normally distributed with zero mean and covariance matrix given
by

Vi ¼
s 2

xi r1s xis yi r2s xis zi

r1s xis yi s 2
yi r3s yis zi

r2s xis zi r3s yis zi s 2
zi

0
B@

1
CA (34)

where Vi is a symmetric positive definite matrix with s2
xi ¼ s2

yi ¼
0:52 and s2

zi ¼ 0:12; and r1, r2, and r3 are the correlation coeffi-
cients randomly generated within [−0.5 þ0.5] at each simulation.
OTLS and proposed WTLS, CTLS, and STLN algorithms are
implemented for comparison purposes. The RMS error (RMSE) of
each parameter defined by Eq. (35) from 1,000 trials is chosen as
the criterion for accuracy comparison

RMSE ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1

ðn̂ki � n0i Þ2

m

vuuut
(35)

where n̂
k
i is the estimated value of the ith parameter in the kth trial;

n0i is the true value of the ith parameter; andm is the total amount of
simulations, which ism = 1,000.

Because the WTLS and STLS algorithms need iterative
computations, all the iterations start from the solutions
acquired by the OTLS method, and « = 10−10 is adopted by
Schaffrin and Wieser (2008) and chosen as the convergence
tolerance. In terms of the STLN algorithm, the maximum
weight is set as v = 106. As the weight will be squared in the
normal function formulation, it means the equivalent weight of
the conditional function is at least 109 times than that of the
measurements. All the algorithms are performed with the soft-
ware MATLAB 6.5.

The RMSE of previously mentioned algorithms are listed in
Table 1, and all the results are kept 10 digits after decimals for
comparison purposes. It shows that the RMSE of the WTLS and
two STLS algorithms are almost equal except for the OTLS
method. The differences of parameters estimated by different
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Fig. 2. Computational efficiency of different algorithms

Table 2. Coordinates of the Local System

Site name X (m) Y (m) Z (m) s2 (m2)

Solitude 4157222.543 664789.307 4774952.099 0.14330
Buoch Zeil 4149043.336 688836.443 4778632.188 0.15510
Hohenneuffen 4172803.511 690340.078 4758129.701 0.15030
Kuhlenberg 4177148.376 642997.635 4760764.800 0.14000
Ex Mergelaec 4137012.190 671808.029 4791128.215 0.14590
Ex Hof Asperg 4146292.729 666952.887 4783859.856 0.14690
Ex Kaisersbac 4138759.902 702670.738 4785552.196 0.12200

Table 3. Coordinates of WGS 84

Site name X (m) Y (m) Z (m) s2 (m2)

Solitude 4157870.237 664818.678 4775416.524 0.01030
Buoch Zeil 4149691.049 688865.785 4779096.588 0.00380
Hohenneuffen 4173451.354 690369.375 4758594.075 0.00060
Kuhlenberg 4177796.064 643026.700 4761228.899 0.01140
Ex Mergelaec 4137659.549 671837.337 4791592.531 0.00680
Ex Hof Asperg 4146940.228 666982.151 4784324.099 0.00002
Ex Kaisersbac 4139407.506 702700.227 4786016.645 0.00410
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methods in each trial are illustrated in Fig. 1. It shows the largest
difference between WTLS and CTLS is less than 10−11, which is
within the given convergence tolerance. It can be concluded that
the differences are mainly caused by numerical computation.
The differences between STLN andWTLS are about a 10−8 order
of magnitude, which is lager that that of CTLS. This is because
the maximum weight assigned in computation is not the theoreti-
cal maximum, whereas increasing the maximum weight may
deteriorate the ill-condition of the normal matrix. Therefore, it is
of vital importance in choosing an appropriate maximum weight
to balance the accuracy and numerical stability in a STLN
algorithm.

To compare the computational efficiency of each algorithm,
the total amount of points varying from 100 to 1,000 with a
step of 100 is simulated. The average time cost of 100 trials at
each quantity level is introduced for comparison. All the com-
putations are performed by a Thinkpad X230 computer
(Lenovo, Beijing), with Intel Core i5-3210M CPU and 2.5G
RAM. The average time is shown in Fig. 2. The results indicate
that the CTLS algorithm costs less time than those of the other
two algorithms, and the STLN has the worst computational ef-
ficiency. The tendency implies the differences will increase
significantly with the increasing amount of points because the
corrections of measurements and parameters are solved simul-
taneously (which increase the order of normal matrix signifi-
cantly) in a STLN algorithm, whereas the other two algorithms
only solve the parameters in normal function and update the
measurements afterward. The differences between CTLS and
WTLS are not so significant because that they are mainly
caused by the iterative formulas.

Bursa Transformation

Bursa model for 3D datum transformation is given by (Yang
1999):

Xi

Yi
Zi

0
@

1
A ¼

Xi
0

Yi0

Zi0

0
@

1
Aþ

tx
ty
tz

0
@

1
Aþ m

Xi
0

Yi0

Zi0

0
@

1
A

þ
0 v z �v y

�v z 0 v x

v y �v x 0

0
@

1
A Xi

0

Yi0

Zi0

0
@

1
A (36)

where tx, ty, and tz are the three translations; v x, v y, and v z are the
three rotations and m is the scale parameter; and ðXi; Yi; ZiÞT and
ðXi

0; Yi 0; Zi0ÞT are the 3D coordinates of the source and target coor-
dinates of the ith point, respectively. Let there be n (n ≥ 3) point cor-
respondences all together; thus Eq. (36) can be rewritten in a general
LSEIVmodel as

y¼

X1

Y1
Z1
..
.

Xn

Yn
Zn

0
BBBBBBBBB@

1
CCCCCCCCCA
;AðxÞ¼

1 0 0 X1
0 0 �Z10 Y10

0 1 0 Y1 0 Z10 0 �X1
0

0 0 1 Z1 0 �Y1 0 X1
0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 0 0 Xn
0 0 �Zn0 Yn0

0 1 0 Yn 0 Zn0 0 �Xn
0

0 0 1 Zn 0 �Yn 0 Xn
0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

x¼

X1
0

Y10

Z10

..

.

Xn
0

Yn0

Zn0

0
BBBBBBBBB@

1
CCCCCCCCCA
; n¼

tx
ty
tz
m
v x

v y

v z

0
BBBBBBBB@

1
CCCCCCCCA

(37)

The coordinates of seven stations of the local and global refer-
ence systems (WGS 84) adopted from Grafarend and Awange
(2003) are illustrated in Tables 2 and 3, respectively. Assuming that
the three components of an arbitrary point are isotropic and inde-
pendent, then s2

Xi
¼ s2

Yi ¼ s2
Zi ¼ s2

i , sXiYi ¼ sXiZi ¼ sYiZi ¼ 0.
The corresponding errors of each point adopted from Grafarend and
Awange (2003) are also shown in Tables 2 and 3.

FromEq. (37),A is a matrix of size 3n� 7, and the noisy compo-
nent is l ¼ ðX1

0;Y10; Z10 � � � ;Xn
0;Yn 0; Zn0;X1;Y1; Z1;…;Xn;Yn; ZnÞT 2

Rk ðk ¼ 6nÞ. It is expanded in the Appendix to be solved by the
proposed STLS algorithms. Because the translate parameters
have a large quantity compared with the first example, the con-
vergence tolerance « = 10−6 is chosen. In terms of the STLN
algorithm, the maximum weight is still v = 106. The results are
listed in Table 4.

The three translates are kept in four digits and the other
parameters are kept in 10 digits after the decimal. The results
in Table 4 indicate that the difference between the three trans-
lates estimated by the mentioned algorithms are within 60.2

Table 4. Parameters and Their Errors of Different Methods

Methods CTLS STLN WTLS Nonlinear

tx/m 641.8393 641.8393 641.8392 641.8377
69.0327 69.0327 69.0327

ty/m 68.4728 68.4728 68.4729 68.4743
610.5317 610.5317 610.5317

tz/m 416.2155 416.2155 416.2154 416.2159
69.0495 69.0495 69.0495

m 1.0000056111 1.0000056111 1.0000056111 1.0000056112
60.0000010829 60.0000010829 60.0000010829

v x/rad -0.0000048371 -0.0000048371 -0.0000048371 -0.0000048373
60.0000014865 60.0000014865 60.0000014865

v y/rad 0.0000043444 0.0000043444 0.0000043444 0.0000043441
60.0000016806 60.0000016806 60.0000016806

v z/rad 0.0000047797 0.0000047797 0.0000047797 0.0000047798
60.0000013181 60.0000013181 60.0000013181

© ASCE 04016019-8 J. Surv. Eng.
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mm, and the other parameters are completely the same.
Comparing with the nonlinear solutions of Grafarend and
Awange (2003), it is found that the differences of three trans-
lates are within 62 mm, and the differences of scale and rota-
tion parameters can reach the 10−9 level. In terms of the
adjustment results, one finds that the TLS is basically of no
use for geodetic coordinate transformation unless one pursues
high precise results at the millimeter level. This agrees with
the viewpoint given in Xu et al. (2014), especially when the
signal-to-noise ratio is extremely large. It shows that the solu-
tion of WTLS and STLS methods can achieve a high accuracy
close to the nonlinear ones. The error of each parameter esti-
mated by the proposed accuracy assessment method is also
equal. As a result, the proposed WTLS and STLS methods
can achieve the same accuracy. In terms of computational ef-
ficiency, the proposed WTLS algorithm needs more than 500
iteration times compared with three times for CTLS and five
times for STLN. Such situations are from the severe ill-condi-
tion [Cond(A) = 2.77� 109] of the problem, except for the
methodology differences described previously. In such cases,
Tikhonov regularization (Tikhonov and Arsenin 1977), biased
estimation (Hoerl and Kennard 1970) and/or truncated SVD
(Xu 1998) methods can be implemented to overcome the ill-
posedness.

Conclusions and Recommendations

The studies are restricted to a specific EIV model called the LSEIV
model. The WTLS, CTLS, and STLN algorithms along with
approximated accuracy assessment methods are introduced.
Comparisons of accuracy and computational efficiency are made
between the proposed STLS and WTLS methods. Through theo-
retic analysis and data experiments the conclusions maybe summar-
ized as follows:
1. For a LSEIV model, the STLS can achieve the same accuracy

as that of the WTLS method proposed in Xu et al. (2012).
Furthermore, the formula of the variance factor is derived based
on the STLS strategy.

2. To more fully investigate the potential of STLS adjustment
methods for a range of geodetic applications, a number of
areas need further studying, such as nonlinear structured
EIV models, the ill-condition of STLS problems, the var-
iance component estimation of STLS problems, and so
forth.

Appendix. STLS Formulation of the Bursa Model

In the CTLS solution to the Bursa transformation parameters esti-
mation, the design matrix A can be formulated as

A0
m�p

¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;Tpþ1
m�k

¼
0 � � � 0
..
. . .
. ..

.

0 � � � 0

zfflfflfflffl}|fflfflfflffl{m

1 � � � 0
..
. � � � ..

.

0 � � � 1

zfflfflfflffl}|fflfflfflffl{m
0
BBBB@

1
CCCCA

T1
m�k

¼ T2
m�k

¼ T3
m�k

¼0; Ti
m�k

¼ Ui
m�m

0
m�m

	 
ði¼4;5;6;7Þ (38)

where

U4
m�m

¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA
;

U5
m�m

¼

0 0 0 � � � 0 0 0
0 0 1 � � � 0 0 0
0 �1 0 � � � 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 � � � 0 0 0
0 0 0 � � � 0 0 1
0 0 0 � � � 0 �1 0

0
BBBBBBBBB@

1
CCCCCCCCCA

U6
m�m

¼

0 0 �1 � � � 0 0 0
0 0 0 � � � 0 0 0
1 0 0 � � � 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 � � � 0 0 �1
0 0 0 � � � 0 0 0
0 0 0 � � � 1 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

U7
m�m

¼

0 1 0 � � � 0 0 0
�1 0 0 � � � 0 0 0
0 0 0 � � � 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 � � � 0 1 0
0 0 0 � � � �1 0 0
0 0 0 � � � 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

In the STLN solution, the matrixG in Eq. (24b) is

G
m�m

¼

m v z �v y � � � 0 0 0
�v z m v x � � � 0 0 0
v y �v x m � � � 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � m v z �v y

0 0 0 � � � �v z m v x

0 0 0 � � � v y �v x m

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(39)
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