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A B S T R A C T

The increasingly growing data traffic has posed great challenges for mobile operators to increase their data
processing capacity, which incurs a significant energy consumption and deployment cost. With the emergence of
the Cloud Radio Access Network (C-RAN) architecture, the data processing units can now be centralized in data
centers and shared among base stations. By mapping a cluster of base stations with complementary traffic
patterns to a data processing unit, the processing unit can be fully utilized in different periods of time, and the
required capacity to be deployed is expected to be smaller than the sum of capacities of single base stations.
However, since the traffic patterns of base stations are highly dynamic in different time and locations, it is
challenging to foresee and characterize the traffic patterns in advance to make optimal clustering schemes. In
this paper, we address these issues by proposing a deep-learning-based C-RAN optimization framework. First, we
exploit a Multivariate Long Short-Term Memory (MuLSTM) model to learn the temporal dependency and spatial
correlation among base station traffic patterns, and make accurate traffic forecast for a future period of time.
Afterwards, we build a weighted graph to model the complementarity of base stations according to their traffic
patterns, and propose a Distance-Constrained Complementarity-Aware (DCCA) algorithm to find optimal base
station clustering schemes with the objectives of optimizing capacity utility and deployment cost. We evaluate
the performance of our framework using data in two months from real-world mobile networks in Milan and
Trentino, Italy. Results show that our method effectively increases the average capacity utility to 83.4% and
76.7%, and reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN architecture in the
two datasets, respectively, which consistently outperforms the state-of-the-art baseline methods.

1. Introduction

Today, mobile network data traffic is growing explosively as
Internet-enabled smartphones and tablets become increasingly popular
(Zheng et al., 2016). According to Cisco (2016), global mobile network
data traffic has grown 18-fold over the past five years, and the next-
generation cellular systems (e.g., 5G) are expected to experience tre-
mendous data traffic growth (Sigwele et al., 2017). In order to ac-
commodate the fast growing data traffic demand, mobile network op-
erators need to increase their data processing capacity, such as deploying
more base stations, and adding more data processing units to base
stations. Consequently, the capital expenditures of deploying these net-
work infrastructures are becoming increasingly high, and may harm

operator's revenue as network scale grows (J. Research, 2011). More-
over, the operating expenses of mobile network infrastructures, such as
energy consumption and maintenance spending, are substantially in-
creasing (Li et al., 2011). Therefore, optimizing the capital expenditures
and operating expenses has become a necessity for mobile network
operators (Checko et al., 2015; Gandotra and Jha, 2017).

Even though the overall data traffic demand of the mobile network
is growing, the demand in different areas and during different periods
of time is not evenly distributed (Chen et al., 2017a). For example, as
shown in Fig. 1a, the traffic in a business district (denoted as a blue
solid line) observes peaks during working hours, while the traffic in a
residential area (denoted as a red dashed line) is relatively higher
during evening hours than in working hours. Such a spatial-temporal
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non-uniform property of traffic demand poses great challenges for op-
erators to optimize the capital expenditures and operating expenses of
their network infrastructures. On one hand, the data processing capa-
city of each base station needs to cover its peak traffic volume, leading
to high deployment cost. On the other hand, the capacity in individual
base station is wasted during off-peak hours, resulting in low capacity
utility.

Fortunately, with the rapid evolution of mobile network archi-
tectures, the emergence of Cloud Radio Access Network (C-RAN) (C. M.
R. Institute, 2011) has presented new opportunities to address the
above challenges. In C-RAN, a traditional base station is split into two
components: a Remote Radio Head (RRH) for radio communication, and
a Baseband Unit (BBU) for mobile data processing. The BBUs are further
detached from the RRHs and hosted in centralized BBU pools (Checko
et al., 2015). The RRHs and BBU pools are usually connected via high
speed optical fiber (Checko et al., 2015). By clustering RRHs with
complementary traffic patterns to a BBU, the data processing capacity in
the BBU can be shared among RRHs in different time periods, and thus
increasing the capacity utility of the BBU (Bhaumik et al., 2012). Fur-
thermore, the required capacity of the BBU is expected to be smaller
than the sum of capacities of single base stations, leading to a decrease
in deployment cost. For example, in Fig. 1, if we cluster the RRHs in the
business district (blue) and in the residential area (red) to a BBU, the
aggregated traffic pattern will become relatively stable and the BBU

will have a higher capacity utility (Fig. 1b). Meanwhile, the capacity
required for the BBU can be reduced from the sum of the two peaks
(1.50 = 0.65 + 0.85) to a lower aggregated value (1.10). In summary,
by pooling BBUs from multiple base stations into a centralized BBU
pool, the statistical multiplexing gain (Checko et al., 2015) can be
achieved in the C-RAN architecture (C. M. R. Institute, 2011).

In order to unlock the power of the C-RAN architecture, it is of great
importance to characterize the traffic patterns of RRHs, and to cluster
complementary RRHs to a set of BBUs (Bhaumik et al., 2012; Chen
et al., 2016a), so as to maximize the capacity utility and minimize the
deployment cost. However, since the data traffic generated in the RRHs
are highly dynamic over different time and locations, accurately fore-
seeing and characterizing the RRH traffic patterns in advance is quite
challenging, hindering the optimization of RRH clustering and BBU
mapping. More specifically, given a set of RRHs in a city, we need to
accurately foresee their data traffic patterns in a future period of time
(e.g., one day), and find optimal schemes to cluster RRHs with com-
plementary traffic patterns, and map them to a set of BBUs for that
period of time. In order to achieve these goals, we need to address the
following issues:

1. How to foresee the RRH traffic for a future period of time? The
data traffic in each RRH can vary significantly, depending on the
impacts of temporal contexts (e.g., weekdays or weekends), human
mobility, and social events, etc. Moreover, the data traffic of RRHs
located in similar functional areas may demonstrate potential cor-
relations. For example, during weekdays, the RRHs located in
business districts usually observe data traffic peaks during working
hours, and low data traffic volumes at nights. Capturing the hidden
temporal dependency and spatial correlation among RRH traffic pat-
terns is not trivial using state-of-the-art time series models, such as
ARIMA (Hamilton, 1994) or neural networks (Zhang, 2003).
Therefore, we need to foster more effective techniques for accurate
RRH traffic pattern forecasting.

2. How to measure the complementarity among RRHs? In order
effectively to share and reuse the capacity of a BBU mapped to a
cluster of RRHs, the traffic peaks of the RRHs in the cluster should
be scattered temporally (i.e., occur at different hours). Meanwhile,
to make full use of the BBU mapped to a cluster and avoid BBU
overloading, the aggregated cluster traffic should be close to the
BBU capacity to a maximal extent, while not exceed the BBU ca-
pacity too much. Therefore, we need to take into account both as-
pects, i.e., the peak distribution and the capacity utility, to design an
effective metric to measure the complementarity of RRHs.

3. How to optimally cluster complementary RRHs into BBUs?
Given the traffic forecast and the complementarity measurements of
RRHs, there are potentially enormous numbers of schemes to cluster
these RRHs and map them to BBUs in a pool. The optimal scheme
not only needs to maximize the average BBU capacity utility, but
also needs to minimize the overall deployment cost. Moreover, in
order to support fast handover and content offloading between
neighboring RRHs (Checko et al., 2015; Zhao et al., 2016), the dis-
tances among a cluster of RRHs should be constrained within a
reasonable range. Therefore, we need to design an effective algo-
rithm to find the optimal RRH clustering scheme under the distance
constraint.

With the above-mentioned research objectives and issues, the main
contributions of this paper are:

• We propose a deep-learning-based approach to accurately foresee
RRH traffic patterns for a future period of time. The proposed ap-
proach is capable of modeling the temporal dependency and spatial
correlation among the RRH data traffic, and accurately forecasting
the future traffic pattern based on the historical observations.

• We propose a two-phase framework to dynamically find optimal

Fig. 1. (a) Data traffic patterns in different areas of Milan during a typical
weekday. The blue solid line denotes the data traffic in a business district
(Centro Direzionale), while the red dashed line corresponds to the data traffic in
a residential area (Quintosolo District). (b) The aggregated data traffic pattern
of the two areas. Triangles indicate the peak traffic hour and volume. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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RRH clustering and BBU mapping schemes under different contexts.
In the first phase, we forecast the traffic patterns of RRHs leveraging
the proposed MuLSTM model, and propose an entropy-based metric to
characterize the complementarity of RRHs, taking into account both
the peak distribution and capacity utility. In the second phase, we
build a weighted graph to model the complementarity of RRHs, and
propose a distance-constrained clustering algorithm to find optimal
RRH clustering schemes with the objectives of both capacity utility
and deployment cost.

• We evaluate the performance of our method using datasets in two
months from real-world mobile networks in Milan and Trentino,
Italy. Results show that our method effectively increases the average
capacity utility to 83.4% and 76.7%, and reduces the overall de-
ployment cost to 48.4% and 51.7% of the traditional RAN archi-
tecture in the two datasets, respectively, which consistently out-
performs the state-of-the-art baseline methods.

The rest of this paper is organized as follows. We first present a
literal review in Section 2, and then introduce the preliminaries and the
proposed framework in Section 3. In Section 4 we propose the deep-
learning-based dynamic RRH profiling method, and in Section 5 we
propose the graph-based complementary RRH clustering algorithm. We
report the evaluation results and present case studies with real-world
datasets in Section 6. Finally, we conclude our work in Section 7.

2. Related work

2.1. Cloud Radio Access Network

Cloud Radio Access Network (C-RAN) is a novel mobile network
architecture to address the challenges faced by operator while trying to
meet the fast-growing traffic demand. The details of the C-RAN concept
can be found (C. M. R. Institute, 2011). The basic idea of C-RAN is to
pool the data processing units from multiple RRHs into centralized BBU
pools, so that the pool capacity can be shared among these RRHs. Since
fewer BBUs are needed and higher BBU capacity utility can be achieved,
the C-RAN architecture can reduce the network deployment cost and
energy consumption (Checko et al., 2015). Therefore, C-RAN is seen as
a typical architecture of the fifth generation (5G) network in the year
2020 horizon (I et al., 2014).

One of the key problem in the C-RAN architecture is to a design
optimal RRH clustering scheme and connect them to the BBU pool. An
optimal scheme should facilitate the BBU capacity utility in the pool,
reduce the deployment cost, and also prevent the propagation delay
between RRHs and BBU pool (Checko et al., 2015). To this end,
Bhaumik et al. (2012) proposed CloudIQ, a framework for partitioning
a set of RRHs into groups and process the signals in a shared data
center. Since the distance between data centers and the RRHs may lead
to potential delay between distant RRHs and the data center (Checko
et al., 2015). Lee et al. (2013) proposed a RRH cooperation scheme with
dynamic clustering in C-RAN, however the objective of the cooperation
is to derive the signal-to-interference for RRH evaluation. One of the
very relevant ideas to our work was illustrated in (Zheng et al., 2016),
which explored approaches to integrate big data analytics with network
optimization in 5G, especially by exploiting historical data to optimize
resource allocation in centralized BBUs in C-RAN.

2.2. Time series forecasting models

During the past decades, time series modeling and forecasting have
been extensively studied in the literature (Hamilton, 1994; Dorffner,
1996; Zhang, 2003). In this section, we survey two of the state-of-the-
art approaches in time series analytics, and discuss their disadvantages
in addressing our problem.

Autoregressive Integrated Moving Average (ARIMA) models: In
time series analysis, ARIMA models are commonly used to fit a time

series data and to forecast future variations in the series. ARIMA models
explicitly extract from a time series three intuitive features, i.e., auto-
regression, moving average, and integration. The auto-regression (AR) part
indicates that the evolving variable of a time series is regressed on its
own lagged values. The moving average (MA) part indicates that the
regression error can be represented as a linear combination of error
terms dependent on the values in the past. The integration (I) part is
applied to the regression model to represent non-stationary time series
(i.e., the variable in the time series shows a trend of increasing or de-
creasing). ARIMA models are capable of rapidly adjusting for sudden
changes in trend, and it has been proved successful in many short-term
forecasting problems (Sang and Li, 2002). However, for long-term
forecasting problems which involve predicting multiple future steps,
the error of ARIMA models accumulate significantly and the forecasting
confidence decrease rapidly as the forecasting step grows (Box et al.,
2015). In our problem, we need to accurately forecast the RRH traffic
for several hours to foresee the traffic patterns in the future for RRH
clustering, which poses great challenges for the ARIMA models.

Artificial Neural Network (ANN) models: Recently, ANN models
are widely employed to understand time series and forecast the future
trend by leveraging a sliding-window-based technique (Dorffner,
1996), which can be named windowed-ANN, or WANN. More specifi-
cally, this technique first slices a time series into several equal-length
windows, and then feeds these windows into an ANN model as features.
The output of the model is the forecast of the future values of the time
series, which can either be short-term or long-term results, depending
on the application scenario. The WANN models have been applied in
various domains, such as financial market (Azoff, 1994) and operation
research (Zhang and Qi, 2005). However, one of the biggest problem of
the WANN model is its incapability to model the temporal dependency
between the elements in each time series window. In fact, the elements
in a window is treated equally as input features and thus the sequential
order of the elements is ignored. As a result, the WANN model can make
fluctuating and inconsistent forecasts which are not desired in our
problem.

In this work, we propose a deep-learning (LeCun et al., 2015) ar-
chitecture to model the temporal dependency of RRH traffic and the
spatial correlations among RRHs in a unified framework. Such kind of
spatial-temporal deep-learning framework has been widely used in IP
and transportation network traffic prediction (Nie et al., 2016; Zhang
et al., 2016), electronic health records understanding (Rajkomar et al.,
1801), and social network behavior analytics (Zhang et al., 2017).

2.3. Mobile data analytics

With the emergence of ubiquitous sensing and computing diagrams
(Zhang et al., 2011), a massive number of mobile data can now be
collected either by mobile crowdsensing paradigms (Wang et al., 2016,
2017; Guo et al., 2015) or from operators' infrastructures. These het-
erogeneous mobile big data are being extensively analyzed in the lit-
erature to retrieve interesting and informative information (Chen et al.,
2014, 2016b; Yang et al., 2015; Tan et al., 2016). For example,
Barlacchi et al. (2015) released a large-scale Call Detail Records (CDR)
dataset from Telecom Italia, containing two-months of calls, SMSs and
network traffic data from the city of Milan and Trentino, Italy. Based on
the dataset, Furno et al. (2016) proposed a data analytics framework to
builds profiles of the city-wide traffic demand, and identifies unusual
situations in network usages, aiming at facilitating the design and im-
plementation of cellular cognitive networking. Cici et al. (2015) studied
the decomposition of cell phone activity series, and connect the de-
composed series to socio-economic activities, such as regular working
patterns and opportunistic events (Chen et al., 2017b).

However, applying real-world mobile network data to C-RAN opti-
mization has not yet been extensively studied in the literature, since
previous works mainly focus on simulation-based approaches to model
network traffic (Zhan and Niyato, 2017; Zhang et al., 2016). In this
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work, we exploit large-scale open datasets from real-world mobile
network operators to understand the traffic patterns in real networks,
and then conduct C-RAN optimization studies based on the knowledge
discovered from these mobile datasets.

3. Preliminaries and framework

3.1. Preliminaries

In mobile network architectures, a set of base stations are deployed
over geographical areas called cells (Tse and Viswanath, 2005). Each
base station provides the cell with the network coverage which can be
used for transmission of voice and data. With the recent emergence of
smartphones and tablets, the data traffic generated from users con-
nected to the RRHs is increasing rapidly (Cisco, 2016; J. Research,
2011).

In order to benchmark the data processing capacity of base stations,
many operators have collected large scales of RRH traffic statistics data
and make them publicly available (Zheng et al., 2016). In this paper, we
exploit the dataset released by Telecom Italia for the Big Data Challenge
initiative (Barlacchi et al., 2015). We extract two months of network
traffic data from 11/01/2013 to 12/31/2013 in the city of Milan, Italy
and the province of Trentino, Italy. We also collect the locations of
active base stations in Milan and Trentino during the two months from
CellMapper.net,1 and derive the traffic volume of each base station
during the two months on an hourly basis. The traffic data pre-pro-
cessing steps will be detailed in the evaluation section.

In this work, we consider a C-RAN architecture with one BBU pool
for the city-wide mobile network. The benefits of adopting such a
centralized pool are two-fold. First, the deployment cost and energy
consumption can be greatly reduced by employing data center virtua-
lization technologies (Qian et al., 2015). Second, the handover handing
and contents offloading among RRHs can be processed internally in the
pool, which significantly reduces delays and increases throughput
(Checko et al., 2015). BBUs in the pool are implemented as virtual
machines with specific predefined capacities. In this work, for fair of
comparison and simplicity, we assume the BBU capacity to be fixed and
equal to the on-site BBUs in the traditional architecture. We discuss the
implement details in the evaluation section.

3.2. Framework overview

We propose a two-phase framework to dynamically cluster com-
plementary RRHs to a set of BBUs, so that the BBU capacity utility and
the deployment cost of the entire network can be optimized. As shown
in Fig. 2, in the dynamic RRH profiling phase, given a set of RRHs at a
time point, we first propose a deep-learning-based approach to forecast
the traffic patterns of RRHs in a future period of time based on their
historical traffic data, and then calculate the complementarity of RRHs
using a proposed entropy-based metric. In the dynamic RRH clustering
phase, we first build a graph model to represent the complementarity
among RRHs, and then propose a distance-constrained clustering al-
gorithm to cluster RRHs with complementary traffic patterns. We ela-
borate on the details of this framework in the following sections.

4. Dynamic RRH profiling

In order to cluster RRHs with complementary traffic patterns to a
BBU, we need to be able to forecast the traffic pattern of each RRH for a
future period of time. Since the traffic of RRHs vary significantly and
exhibit spatial correlations, we propose a deep-learning-based approach
to model the spatial-temporal dynamics and to forecast the future
traffic pattern accurately. Based on the traffic forecast, we dynamically

characterize the complementarity of RRHs, focusing on the peak dis-
tribution and capacity utility of a cluster of RRHs, and design an en-
tropy-based metric to characterize their complementarity.

4.1. RRH traffic forecasting

Based on the historical traffic data, we observe that the traffic
patterns of RRHs are highly dynamic under different temporal contexts.
For example, Fig. 3 shows the traffic patterns of two RRHs located in
two business districts in Milan during one week, respectively. We ob-
serve significant traffic peaks during the working hours of weekdays,
and low capacity utility during off-work hours. Moreover, we observe
that the traffic patterns of RRHs located in similar functional areas
usually demonstrate similar trends. For example, in Fig. 3, the traffic
patterns in the two business districts of Milan show similar weekday-
weekend patterns.

4.1.1. Basic idea
In order to accurately forecast the traffic patterns of the RRHs in a

future period of time, we need to be able to effectively capture their
temporal dependency and spatial correlation. However, this is not tri-
vial using the state-of-the-art techniques. In this work, we propose a
deep-learning-based approach for our problem. More specifically, we
exploit the Recurrent Neural Network (RNN) to automatically capture
the intrinsic temporal dependency in our traffic data. An RNN is a
special type of neural network designed for sequential pattern mining
problems (Sutskever et al., 2014). Built upon the windowed-ANN ar-
chitecture, an RNN features additional loops to the neurons in the
layers of the neural network. Each neuron may pass its signal laterally
in addition to forward to the next layer, and consequently, the output of
the network for a window may feedback as an input to the network for
the next window. Such recurrent connections add state or memory to the
windowed-ANN architecture and allow it to learn and harness the in-
trinsic temporal dependency in the time series.

Unfortunately, training an RNN effectively is technically challen-
ging due to the vanishing or exploding gradient problem, i.e., the weights
in the training procedure quickly became so small as to have no effect
(vanishing gradients) or so large as to result in very large changes
(exploding gradients). To overcome this problem, researchers proposed
the Long Short-Term Memory Network (LSTM) model (Gers et al.,
2002), which introduces the concepts of memory cells and forget gates
to generate consistent data flow between the layers of the network and
keep the weights stable (Hochreiter and Schmidhuber, 1997). In this
work, we exploit the LSTM model to effectively learn the temporal
dependency of our traffic data.

The other challenge is to model the spatial correlation between RRHs
in the network. The above-mentioned approaches typically model the
traffic of each RRH as a separate time series, making it difficult to
capture the correlation between RRHs. In this work, we propose a
multivariate-Long Short-Term Memory Network (MuLSTM) approach
to model the RRH traffic in a city in a unified model, putting each RRH
traffic as a sequence for training and forecasting, and consequently
learn the spatial correlation between RRHs.

4.1.2. The MuLSTM model
Before introducing the MuLSTM model, we define several important

terminologies as follows:

Definition 1. Remote Radio Head (RRH):
The RRHs in a city-wide mobile network can be described as a set of

points denoted by the following 3-tuple:

=r r rid lat lng{ ( , , )}

where rid, lat, lng are the unique ID, latitude, and longitude of the RRH.

Definition 2. RRH Traffic:
The mobile data traffic collected from each RRH can be denoted by a set1 https://www.cellmapper.net/map.
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of fixed-length sequences:

= … …f f u u t u N{ [ (1), , ( ), , ( )]}i i i i t

where ui(t) is the traffic volume of RRH i in time span t(1≤ t≤Nt). In this
work, we use a one hour time span.

With the collected traffic data, we first organize the collected RRH
traffic into a matrix ×F R RNt Nr, where Nt is the number of time spans, and
Nr denotes the number of RRHs in the network. We denote the traffic of
RRHs we have observed until time t as F([0, t],:), and the traffic of RRHs
we would like to forecast in a future period of time Δt as F([t, t + Δt],:).
In this work, to simplify the implementation, we use one hour time
span, and Δt=24 h with t mod 24=0, i.e., we forecast the hourly
traffic of RRHs for the next day at the end of each day, and dynamically
update the RRH clustering scheme based on the forecast. Based upon
this, we generate a set of traffic snapshots from the traffic matrix, which
is defined as follows.

Definition 3. RRH Traffic Snapshot:
A traffic snapshot is defined as a matrix Fi, which corresponds to the

traffic of all the RRHs during a given period of time Δt, i.e.,

F = = − ∗ ∗ = …F F F i t i t i{ ([( 1) Δ , Δ ], :), 1, 2, }i i

In order to make traffic forecast, we train a sequence to sequence
model (Sutskever et al., 2014) leveraging a unified multivariate LSTM
model. During each forecasting, the model accepts Fi as input and
outputs Fi+1. Note that such a model is called a many-to-many sequential
model because both the input and output contain Δt time spans, and the

order of the time spans play an important role in shaping the model's
inner structure. Moreover, the traffic of RRHs are input to the model as
multivariate features simultaneously, which enables the model to learn
the spatial correlation between RRHs.

Finally, we elaborate on the design of the MuLSTM network struc-
ture. In general, the MuLSTM model follows the encoder-decoder
structure by stacking two LSTM layers L1 and L2. The encoder L1 accepts
a snapshot of size [Δt, Nr], learns the temporal and spatial structures in
the snapshot, and passes the encoded sequences to the decoder. The
decoder then makes forecast for a future snapshot of size [Δt, Nr] based
on the learned structures. The model is trained using the popular
Backpropagation Through Time (BPTT) algorithm for multiple itera-
tions. We elaborate the details of the model parameters in the evalua-
tion section.

4.2. RRH complementarity measurement

Once we have the traffic snapshot forecast for the next day, we are
able to evaluate the complementarity of RRHs in that context, and
cluster complementary RRHs to a BBU. We consider the following two
aspects to design an effective complementarity metric of RRHs.

4.2.1. Peak distribution
The peak traffic volume of a set of RRHs clustered to the same BBU

should be scattered in different temporal contexts, so that the capacity
of the BBU can be shared among these RRHs. To this end, we design an
entropy-based metric to measure the peak distribution of a set of RRH.
Specifically, given a set of clustered RRHs C={r1, …, rn}, we first find
the peak hours in their traffic profiles, respectively, i.e.,

Fig. 2. Framework overview.

Fig. 3. The locations of base stations in Milan and two of the illustrative examples of traffic patterns observed in two business districts from 11/25/2013 to 12/01/
2013. Red color denotes high average traffic volume and green color corresponds to low average traffic volume. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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= … ≤ ≤{ }T r t t t i( ) , , , , 1 24i i i i mm1 2 (1)

where tim denotes the mth peak time of ri. Then, we calculate the
Shannon entropy (Lin, 1991) of the peak hours of the set of clustered
RRHs T(C)= ∪T(ri) as follows:

∑= −
=

H C p p( ) log
k

K

k k
1 (2)

where K=|T(C)| corresponds to the total quantity of peaks in C, and pk
is the probability of observing the corresponding peak hour in the set
T(C). A larger entropy value of a RRH cluster indicates that the RRHs
are more complementary in the cluster w.r.t. traffic patterns.

4.2.2. Capacity utility
To make full use of the BBU mapped to a cluster C, the aggregated

cluster traffic should be close to the BBU capacity in different hours of
the day. Meanwhile, to prevent the BBU from overload, the aggregated
cluster traffic should not exceed the BBU capacity too much. To this
end, we design the following metric to quantitatively measure the ca-
pacity utility of a BBU B mapped to a cluster C:

⎜ ⎟= ⎛
⎝

⎞
⎠

−

U C C
B

f( ) mean ( )
C

B
fln mean ( )

(3)

where = ∑ =C rf f( ) ( )i
n

i1 denotes the aggregated traffic profile of the
RRH cluster, and |B| is the fixed BBU capacity measured in traffic vo-
lume. Fig. 4 shows the curve of the capacity utility function, which
achieves its maximal when the mean aggregated traffic volume is equal
to the BBU capacity.

Finally, we calculate the complementarity of the RRH cluster C as
follows:

= ∗M C U C H C( ) ( ) ( ) (4)

= − ∑
−

=( ) p plogC
B k

K
k k

fmean ( ) ln

1

C
B

fmean ( )

(5)

5. Complementary RRH clustering

In this phase, our objective is to cluster RRHs with complementary
traffic patterns to a set of BBUs in a pool. One intuitive method is to
exhaustively search for RRHs with complementary traffic patterns and
iteratively cluster them. However, since there are a tremendous number
of clustering schemes, such a method can be computationally in-
tractable as the network scale increases. Moreover, the distance be-
tween RRHs and BBU pool should also be constrained within a range,
since the propagation delay between RRHs and BBU pool may exceed
quality-of-service requirements as distance increases, and we also need
to enable machine to machine communications between RRHs such as
handover (Tekinay and Jabbari, 1991) in the mobile network.

Therefore, we propose a graph-model-based algorithm to effectively
cluster neighboring RRHs to the same BBU under distance-constraints.
First, we construct a weighted graph model to represent the relation-
ship of RRHs, exploiting graph links to express the RRH distance con-
straints, and link weights to characterize the RRH complementarity
measurement. Then, we propose a community-detection-based algo-
rithm to iteratively cluster RRHs into clusters, so that the com-
plementarity of RRHs is maximized within each cluster and minimized
across different clusters.

5.1. Weighted-graph-based RRH modeling

We model the complementarity among RRHs as an undirected,
weighted graph G = (V, E), where V={r1, …, rN} denotes the set of N
RRHs, and E denotes the set of links between two RRHs.

We then define the adjacency matrix A of graph G, which is an
N×N symmetric matrix with entries ai,j=1 when there is a link be-
tween RRH ri and RRH rj, and ai,j=0 otherwise (i, j=1, …, N). We use
the geographic distance of two RRHs to determine whether they are
adjacent or not. More specifically, for RRH ri and RRH rj, we define:

= ⎧
⎨⎩

≤
a

dist r r τ1, if ( , )
0, otherwisei j

i j
,

(6)

where dist(ri, rj) is the geographic distance between the two RRHs, and τ
is a neighborhood threshold controlling the geographic distance of
neighboring RRHs.

Given two neighboring RRHs, we use their complementarity mea-
surement to determine their link weight, i.e.,

= ∗w r r M r r a( , ) ({ , })i j i j i j, (7)

We consider the case of normalized symmetric positive weights (w
(ri, rj) ∈ [0, 1]) with no loops (w(ri, ri)= 0). We note that w(ri, rj)= 0
when there is no link between ri and rj (ai,j=0).

5.2. Distance-constrained RRH clustering

In this step, we need to cluster RRHs to a BBU, so that each cluster
consists of neighboring RRHs with complementary traffic patterns. As
the link weight of graph G encodes the complementary of RRHs, we
need to cluster RRHs with high link weights together, which can be
identified as a community detection problem (Newman and Girvan,
2004).

Problem: Given graph G = (V, E), we first define a set of clusters
� = …C C{ , , }K1 , where

� �∪ = ∩ = ∅∀ ∈ ∀ ∈V andC Ck k (8)

Then, given a RRH v, we define the connectivity of v to a cluster C as the
sum of link weights between v and the RRHs in the cluster C:

∑=
′∈

′con v C w( , )
v C

v v,
(9)

Finally, we define the adjacent clusters � v( ) of v as

� �= > ∈v C con v C C( ) { ( , ) 0, } (10)
Fig. 4. The curve of the designed capacity utility function, which reaches its
maximal when the cluster traffic volume equals the BBU capacity.

Table 1
Dataset description.

Item Milan Trentino

# Grids 10,000 11,466
Grid size 55,225m2 1000,000m2

# RRH 182 522
# Covered grids 2918 2035
Average coverage 885,420m2 3,932,950m2

Average traffic volume 0.19 0.13
Data collection period 11/01/2013–12/31/2013
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With the above definition, our objective is to find an optimal set of
clusters � , so that the internal connectivity within a cluster is higher
than the inter-cluster connectivity, i.e.,

�∀ ∈ ≥ ∈v C con v C con v C C, ( , ) max{ ( , ), }k k l l (11)

We also need to bound the distance span of a cluster within the
neighborhood threshold, i.e.,

∀ ′ ∈ ′ ≤v v C dist v v τ, , ( , )k (12)

Solution: Based on the label propagation concept (Chen et al.,
2016a; Raghavan et al., 2007), we propose a Distance-Constrained
Complementarity-Aware (DCCA) algorithm to cluster RRHs. The basic
idea of DCCA is iteratively assigning RRHs to the adjacent clusters,
where the gain of assigning RRH v to cluster C is iteratively evaluated by
a value function as follows:

⎜ ⎟= × ⎛
⎝ ′

⎞
⎠

value v C con v C τ
dist v v

( , ) ( , ) log
max{ ( , )} (13)

The DCCA algorithm greedily assigns the RRHs to the adjacent cluster
with highest value2 until none of the RRHs are moved among clusters
(Raghavan et al., 2007). As the convergence of such a greedy approach
is difficult to prove, we set a maximum iteration number max _iter to
ensure the algorithm will stop.

Algorithm: The DCCA algorithm is initialized by assigning each
RRH in the graph to a unique cluster label. In each iteration, we ran-
domly populate a list of RRH L , and traverse the list to update the
cluster label of each RRH. The label update process is as follows. First,
we remove the RRH from its current cluster, and find the set of adjacent
clusters to the current RRH. Then, we compute the value function for all
the adjacent clusters, and assign the RRH to the cluster with the highest
value. We mark the RRH as moved among clusters if its new cluster label
is different from the old one. After we finish iterating over the RRH list,
we decide whether to perform another iteration or finish the algorithm
based on the following stop criteria: (1) the specified maximum itera-
tion number max_iter is reached, or (2) none of the RRH are moved
among clusters.

6. Evaluation

In this section, based on a real-world mobile network traffic dataset,
we evaluate the performance of our framework by assessing its ability
to reduce deployment cost and energy consumption. We first describe
the experiment settings, and then present the evaluation results and
case studies.

6.1. Experiment settings

Datasets: The Telecom Italia Big Data Challenge dataset (Barlacchi
et al., 2015) contains two months of network traffic data from 11/01/
2013 to 12/31/2013 in Milan and Trentino, Italy, respectively. The city
of Milan is partitioned into 100× 100 grids with grid size of about

235× 235 square meters, while the province of Trentino is partitioned
into 117×98 grids with grid size of about 1, 000×1, 000 square
meters. In each grid, the traffic volume is recorded on an hourly basis.
We compile a base station dataset from CellMapper.net, which consists
of the locations and coverage areas of active base stations observed in
the two months. Based on the location and coverage of each base sta-
tion, we find the corresponding covered grids and calculate their traffic
volume. Finally, we normalize the traffic volumes of each base station
to the [0, 1] range for the convenience of analytics. The details of these
two datasets are listed in Table 1.

BBU Capacity: We determine the BBU capacity based on the nor-
malized traffic volume. For the traditional architecture, we assume that
each RRH is equipped with an on-site BBU with a capacity of one
normalized traffic volume. In this way, the traffic in each RRH can be
covered by the BBU. We define the capacity of the on-site as a capacity
unit. For the C-RAN architecture, we assume that the BBUs in the pool
(pool BBU) are of the same size, and the capacity is of Q (Q=1, 2, …)
capacity unit, so that the traffic of a cluster of RRHs traffic can be
handled in a BBU without causing significant overload. In this work,
based on a series of empirical experiments, we choose Q=8 for the city
of Milan, and Q=10 for the province of Trentino, respectively.

Evaluation Plan: Based on the collected datasets, we map the grids
to the coverage areas of RRHs, and aggregate the traffic data to the
corresponding RRHs on an hourly basis. We then generate a set of 61
daily traffic snapshots F , each containing the 24 h' traffic for all the
182 RRHs. We use the snapshots of the first 70% as the training set
Ftrain, and the snapshots of the remaining 30% as the test set Ftest . For
the test set, we calculate the complementarity of RRHs based on the
traffic forecast, and construct a graph of 182 nodes with the corre-
sponding link structure based on the complementarity metrics. Finally,
we perform the DCCA algorithm to cluster the complementary RRHs to
a set of BBUs in a centralized pool.

Model Specification: We construct a MuLSTM model with two
stacked LSTM layers. The encoder layer L1 contains Nencoder memory
units, which accepts a traffic snapshot of shape [24, 182] as input, and
outputs an encoded sequence for the decoder. The decoder contains
Ndecoder memory units, which accepts the encoded sequence as input
and outputs the forecast of the traffic snapshot. We train the network
with the training setFtrain for Niter iterations to ensure that the network
learns the potential temporal and spatial structures.

Model Training: We use the popular Tensorflow (Abadi et al.,) li-
brary for constructing our deep-learning model. Based on a series of
empirical experiments, we choose the optimal Nencoder=Ndecoder=32,
and Niter=10, 000. The model is trained on a 64-bit server with an
NIVIDA GeForce GTX 1080 graphic card and 16 GB of RAM. Each
training iteration takes about 3 s and the whole process takes 8.3 h.

Evaluation Metrics: We design the following evaluation metrics to
evaluate the RRH traffic forecasting phase and the RRH clustering
phase respectively.

(1) For the RRH traffic forecasting phase, we compare the traffic
snapshot forecast F̂i with the ground truth data Fi in the test set, and
calculate the Mean Absolute Error (MAE) for each snapshot:

Table 2
Evaluation results.

Methods Traffic Forecast Error (MAE) Average Capacity Utility Overall Deployment Cost

Milan Trentino Milan Trentino Milan Trentino

Traditional – – 38.8% 29.4% 182 522
ARIMA-DCCA 0.202 0.237 65.3% 45.2% 112 160
WANN-DCCA 0.175 0.198 73.4% 58.8% 96 120
MuLSTM-DC 0.074 0.083 58.7% 39.2% 120 180
MuLSTM-DCCA (Proposed) 0.074 0.083 83.4% 76.7% 88 270

2 If two clusters yield the same value, we randomly choose one.
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(2) For the RRH clustering phase, we quantitatively measure the sta-
tistical multiplexing gain from two aspects, i.e., the increase of
average capacity utility and the decrease of overall deployment cost,
compared with the on-site BBUs in traditional architecture. In order
to measure the capacity utility of a clustering scheme
� = …C C{ , , }K1 , we derive the following metric based on Equation

(3), i.e.,

� =Utility U C( ) mean ( )C kk (14)

based upon this, we calculate the average capacity utility of the test set.
In order to measure the overall deployment cost, we sum up the total
BBU capacity units required in the pool for a clustering scheme � , i.e.,

� ∑=
=

Cost C( ) { }
k

K

k
1 (15)

We use the maximal quantity of capacity units measured in the test set
as the overall deployment cost required in the pool.

Baseline Methods: We design the following baseline methods to
compare with the proposed method.

• Traditional: In the traditional architecture, one RRH is equipped
with one on-site BBU with one capacity unit. The traffic forecast and
RRH clustering is not necessary and thus not performed.

• ARIMA-DCCA: This baseline method uses the traditional ARIMA
model for RRH traffic forecasting, one RRH at a time, and then use
the proposed GCLP algorithm for RRH clustering.

• WANN-DCCA: This baseline method uses a windowed-ANN model
for RRH traffic forecasting, which inputs a traffic snapshot for a day
and outputs a traffic snapshot for the next day. The RRH clustering
algorithm is the same as the proposed method.

• MuLSTM-DC: This baseline method uses the proposed MuLSTM
model for RRH traffic forecasting, and then employs a distance-
constrained (DC) clustering algorithm that clusters neighboring
RRHs without considering their traffic complementarity. The clus-
tering steps are similar to the propose DCCA method.

6.2. Evaluation results

Overall Results: Table 2 shows the overall evaluation results of the
proposed method as well as the baseline methods. For the RRH traffic
forecast accuracy, we can see that the proposed Mu-LSTM model
achieves the lowest mean absolute error score (0.074 in Milan and
0.083 in Trentino) compared with the two baselines (ARIMA and
WANN), validating its capability of modeling the temporal dependency
and spatial correlation of RRH traffic and make accurate forecast. In
contrast, the ARIMA method does not capture the spatial correlation
among RRHs, while the WANN method is not capable of modeling the
temporal dependency of RRH traffic patterns. Consequently, the two
baselines have higher forecast error rate in both datasets.

For the RRH clustering results, the proposed method consistently
achieves the highest average capacity utility (83.4% in Milan and
76.7% in Trentino), as well as the lowest overall deployment cost (88
capacity units in Milan and 270 capacity units in Trentino). Compared
with the traditional architecture with on-site BBUs, the clustering
schemes increase the average capacity utility rate from 38.8% to 83.4%,
and reduce the overall deployment cost from 182 capacity units to 88
capacity units (48.4% of the original cost) in Milan, validating the
possibility of achieving significant statistical multiplexing gain though
C-RAN optimization. In comparison, the distance-constrained
(MuLSTM-DC) clustering baseline does not consider RRH traffic com-
plementarity in the optimization process, and thus are not able to in-
crease capacity utility and decrease deployment cost as effective as the
proposed method. Due to inaccurate traffic forecast results, the ARIMA-
DCCA and WANN-DCCA baseline methods tend to produce suboptimal
clustering schemes and thus achieving lower statistical multiple gain.

We also note that our method performs better in the city of Milan
than in the province of Trentino, which can be explained by the geo-
graphic characteristic of Trentino. Specifically, Trentino is a mountai-
nous region where cities and villages scatter among valleys. The RRHs
are scattered distantly, making it difficult to form complementary RRH
clusters in their neighborhoods. In contrast, the metropolitan areas of

Fig. 5. RRH traffic forecast results for the base station located in a business
district (Centro Direzionale) from 12/25/2013 to 12/01/2013 (one week). The
first day traffic is used for input and thus there is not prediction.
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Milan are larger, more concentrated and more populated, making it
easier to form complementary clusters for C-RAN optimization.

Case Studies: We conduct some case studies in Milan to showcase
the effectiveness of our method. For RRH traffic forecasting, Fig. 5
shows an illustrative example of the forecasting results using the pro-
posed MuLSTM method as well as the ARIMA and WANN baseline
methods. We can see that our method accurately forecasts the weekday
and weekend traffic patterns based on the temporal dependency and
spatial correlation it learns from the training set. Instead, the ARIMA
method fails to learn the hybrid temporal dependency patterns and
outputs the averaged traffic forecast. The WANN method is able to learn
some hidden temporal dependency from the single RRH data but is not
stable (e.g., on Friday and Saturday).

Fig. 6 shows the RRH clustering scheme with the proposed method
on 2013/11/25 (Monday) in Milan. In general, we obtain 12 RRH
clusters, each connected to a BBU in the centralized pool. In Fig. 6a, we
can see that many clusters (e.g., Cluster A, B, and C) are composed of an
urban part and a suburban part, indicating that the traffic patterns in
these areas are potentially complementary during a typical weekday.
We also note that cluster D is concentrated in a relatively small area,
indicating the diverse traffic patterns within this area (Fig. 6b). The
reason is probably due to the hybrid functions of this area, which
consists of a large residential district (the Washington neighborhood),
several national museums and theaters (e.g., Museo Nazionale Scienza e
Tecnologia Leonardo da Vinci and Teatro Nazionale CheBanca), and a
transportation hub consisting of several train and metro stations (e.g.,
Milano Porta Genova and Milano Cadorna). The algorithm is able to
identify the RRHs with complementary traffic patterns during the day
and effectively cluster them into a BBU to achieve statistical multi-
plexing gain.

7. Conclusion

In this work, we focus two of the most important objectives in C-
RAN optimization to achieve statistical multiplexing gain, i.e., in-
creasing capacity utility and reducing deployment cost. Accordingly,
we proposed a deep-learning-based framework to achieve these goals in
C-RAN optimization. Specifically, we forecast the traffic patterns of
RRHs using a multivariate LSTM model, and then cluster com-
plementary base stations to BBUs based on the traffic patterns. The
proposed MuLSTM model is capable of modeling the temporal de-
pendency and spatial correlation between RRHs in the network, and the
proposed DCCA clustering algorithm is effective in finding optimal
clustering schemes under certain distance constraints, with the objec-
tives of both maximizing the capacity utility and minimizing the de-
ployment cost. Real-world evaluation results in Milan and Trentino
show that our framework effectively increases the average capacity

utility to 83.4% and 76.7%, and reduces the overall deployment cost to
48.4% and 51.7% of the traditional RAN architecture in the two data-
sets, respectively, which consistently outperforms the state-of-the-art
baseline methods.

In the future, we plan to improve this work in the following direc-
tions. Firstly, we plan to explore the variations in the BBU pool, such as
considering different sizes of BBU capacity. Secondly, we plan to
evaluate our framework in more datasets, and to study the performance
of the deep-learning based method under different traffic patterns.
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