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Quantifying the Carbon Storage in Urban Trees
Using Multispectral ALS Data

Xinqu Chen, Chengming YE , Jonathan Li , Senior Member, IEEE, and Michael A. Chapman

Abstract—This paper presents a new method for quantifying the
carbon storage in urban trees using multispectral airborne laser
scanning (ALS) data. This method takes the full advantage of mul-
tispectral ALS range and intensity data and shows the feasibility
of quantifies the carbon storage in urban trees. Our method con-
sists of four steps: multispectral ALS data processing, vegetation
isolation, dendrometric parameters estimation, and carbon stor-
age modeling. Our results suggest that ALS-based dendrometric
parameter estimation and allometric models can yield consistent
performance and accurate estimation. Citywide carbon storage
estimation is derived in this paper for the Town of Whitchurch–
Stouffville, Ontario, Canada, by extrapolating the values within
the study area to the entire city based on the specific proportion of
each land cover type. The proposed method reveals the potential of
multispectral ALS data in land cover mapping and carbon storage
estimation at individual-tree level.

Index Terms—Airborne laser scanning (ALS), allometric mod-
els, carbon storage, diameter at breast height (DBH), multispectral.

I. INTRODUCTION

W ITH the continuing growth of the global population, ur-
banization has become an inevitable trend. Today, over

50% of the global population resides in cities, and by 2050, ur-
ban areas will hold up to another 2.5 billion people, equivalent
to 66% of the global population. Intensive urban developments
and economic activities increase the energy consumption and
result in greenhouse gas emissions [1]–[3]. As urban land cov-
ers expand, direct losses of vegetation cover also occur. Without
vegetation covers acting as the largest carbon sink, deforestation
becomes the second largest contributor to greenhouse gases [4].

Urban vegetation has drawn the direct attention of city plan-
ners and policy makers, considering the importance of trees
in urban climate modification and energy conservation. In the
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context of Canada’s climate, annual cooling energy use can
be reduced 10%–19% by planting vegetation proximate to the
houses and increasing the albedo of urban surfaces [5], [6].
Citywide urban trees reduce air pollution through direct dry
deposition and also influence the cooling of the ambient tem-
perature, which slows smog formation. Vegetation contributes
the largest proportion of carbon storage, which in return reduces
the rate of climate warming and urban heat islands [7]. Urban
trees both sequester CO2 and store excess carbon in biomass
(71% of the total urban carbon storage), which significantly in-
fluences the environmental quality and human health [8], [9].
Preserving carbon storage and improving green space infras-
tructure in urban areas has significant environmental benefits
[10]. Consequently, estimation and monitoring of urban carbon
stocks and green space become important indeed. In literature,
the carbon content stored in individual trees can be assessed
through aboveground dry-weight biomass calculation using al-
lometric equations. Dendrometric parameters, such as individ-
ual tree height or crown diameters, are generally used in the
allometric equations to derive diameter at breast height (DBH).
Dry biomass is then calculated using the allometric model, with
DBH as the input, and further transformed to carbon storage
with a conversion rate of around 0.5 [11], [12].

Previous studies have successfully extracted detailed vege-
tation covers from very high-resolution multispectral imagery,
such as QuickBird, and applied it to the canopy height model
(CHM) derived by airborne laser scanning (ALS) data for
dendrometric measurements and biomass estimation in both
forestry and urban studies [13]–[17] estimated carbon storage in
urban trees for the city of Boston by developing an ALS-height-
only regression model to estimate the carbon storage across
the city. A total of 404 accurately segmented tree crowns from
the normalized DSM (nDSM) were split into 284 samples for
model fitting and 120 samples for validation. The reason for
using a simple linear regression of tree biomass and height was
to avoid the influence of crown segmentation results. A R2 of
0.79 was found between field-estimated biomass and model-
predicted biomass. Schreyer et al. estimated the carbon storage
in urban trees, and its distribution was extrapolated to the en-
tire city of Berlin in terms of land use types [14]. This study
did not propose a region-specific allometric model for the study
area, but applied the ALS-DBH model developed and a carbon
allometric model using DBH as the only independent variable.
Eighty-seven percent of the modeled DBH showed an underes-
timation, which was further calibrated by a weighted arithmetic
average DBH. The carbon storage in urban trees was calculated
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Fig. 1. Location of the study area.

as half of the model-based biomass, regardless of the genus.
Meanwhile, the crown base height was assumed to be half of
the ALS-derived height, and the crown width was calculated in
16 directions with a series of criteria, instead of the conventional
estimation of crown width in four directions as proposed in [18]
or as used in [19].

With the emerging multispectral LiDAR technology, it be-
came possible to obtain both the range and multiple reflectance
data from a single data source. The first commercial multispec-
tral ALS system, Titan, released by Teledyne Optech, Inc., has
integrated three laser channels at wavelengths of 532, 1064, and
1550 nm, respectively. These three channels produce indepen-
dent scan lines by sending pulses with separate forward angles
(the NIR channel has a 0° forward angle; the SWIR channel has
a 3.5° forward angle; and the green channel has a 7.0° forward
angle). This emerging ALS system showed great potential in
land cover mapping without the aid of passive multispectral im-
ages [20], [21]. This active laser system can largely avoid those
factors commonly associated with passive optical sensors, such
as weather conditions and shadow effects. However, the poten-
tial of ALS intensity currently remains undervalued, and the
applications of this newly released system are at an early stage
of development.

Given the current state of development of tree inventory with
typical ALS data, this paper aims to explore the feasibility of
multispectral ALS range and intensity data in carbon storage
estimation. To achieve this, vegetation covers are first classified
based on multispectral ALS range and intensity data by apply-
ing a support vector machine (SVM) classifier. Second, dendro-
metric parameters, such as tree height and crown diameter, are
derived, in order to establish an allometric relationship between
ALS-derived measurements (tree height and crown diameter)
and the field-measured parameter (DBH) through regression
modeling. Finally, this study quantifies the carbon storage in
urban trees for the Town of Whitchurch-Stouffville, Ontario,
Canada.

II. STUDY AREA AND DATA SOURCES

The study area is located in the Town of Whitchurch-
Stouffville, Ontario, Canada, which is a municipality in the
Greater Toronto Area (see Fig. 1). The study area is charac-
terized by a typical residential landscape. It contains two wa-
ter bodies (Musselman Lake and Winsor Lake) and three land
cover types: residential area, open area (grassland and woody

area), and park and recreation [22]. The residential area consists
of single detached dwellings with mature street and backyard
trees planted at least ten years ago [23]. There are different
types of trees that live in the study area, including deciduous
trees, such as maple, ash, oak, elm, black cherry, basswood, and
conifers [24].

Two multispectral ALS datasets were acquired by the Tele-
dyne Optech Titan system on July 2, 2015. The datasets had
two flight lines that covered and intersected at the study area.
The flight altitudes were above 1000 m with a pulse frequency
of 100 kHz for each channel, yielding an average point spacing
of 0.8 m per point and an average point density of 7.7 point/m².
The three laser channels are 532, 1064, and 1550 nm.

Field data were collected on February 9, 2016. A total of 40
trees were sampled in the field that contained four attributes;
height, DBH, crown diameter, and biomass were recorded for
every single tree. Tree heights were measured using a hypsome-
ter in units of the meter. DBH was measured with a diameter
tape in units of the centimeter. Since the field measurement
was conducted during the leaf-off season, the third attribute,
crown diameter, was measured using high-resolution Google
Earth images. The crown diameter is defined as the mean of
the maximum crown diameter and the diameter measured at the
direction perpendicular to the maximum, using the Ruler tool in
Google Earth in units of the meter. The fourth attribute, single
tree carbon storage, is estimated by plugging the field-measured
DBH and tree height into the Canadian national aboveground
all-species biomass equations [25]. The equations calculate the
dry aboveground biomass by relating tree height and DBH to
each biomass component, such as wood, bark, and foliage, with a
uniform relationship Biomass = β1DBHβ2 Hβ3 ; where β1 , β2 ,
and β3 are the parameters generated for the all-species group
with different values according to the tree compartments. The
carbon storage in sampled trees was then defined as half of the
sum of the dry aboveground biomass in each compartment.

III. METHOD

Our method consists of four parts: ALS data processing, veg-
etation isolation, dendrometric parameter extraction, and carbon
storage modeling (see Fig. 2).

A. ALS Data Processing

After removing outliers and rectifying the ALS intensity val-
ues, point clouds from two flight strips were merged together;
in total, three ALS point clouds were acquired by the Titan
laser channels. Then, each point cloud was rasterized into an
intensity image with a ground resolution of 1 m. The pixel size
was selected according to the point spacing of the dataset. By
selecting the pixel size close to the point spacing, most of the
pixels can contain at least one point, and the vertical distribution
of the points can be largely highlighted. In this way, points were
grouped into 1-m grids and the pixel values were assigned by
the mean intensity of the points within the grid. For the grids
which had no point filled in, the grid values were interpolated
linearly by searching the neighbors. Here, three mean intensity
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Fig. 2. Workflow of the proposed method.

raster data were generated for channels 532, 1064, and 1550 nm,
respectively.

Besides the generation of ALS intensity images, DSM and
DTM were created from the raw ALS by a ground-point filter-
ing and rasterization process. The whole ALS dataset was then
classified into ground and nonground classes. DTM raster data
were generated by rasterizing all the ground points into 1-m
grids, based on the linear interpolation method. The DSM was
generated in a similar way by using the nonground class, and
the maximum height within the grid was assigned to the pixel
values. In this way, the points that represented the treetops could
be largely reserved. Finally, nDSM raster data were acquired by
subtracting the DTM from the DSM.

B. Vegetation Isolation

Besides the multispectral intensity and nDSM data described
above, two additional indices were derived as follows:

pNDWI =
CGreen − CNIR

CGreen + CNIR
(1)

pNDVI =
CNIR − CSWIR

CNIR + CSWIR
(2)

where CGreen, CNIR, and CSWIR refer to the laser channels at
532, 1064, and 1550 nm, respectively.

By visually examining the pNDWI and pNDVI indices (see
Fig. 3), both the pNDVI and pNDWI showed good discrimi-
nation for artificial objects. These two indices can facilitate the
manual selection of training samples and work as the ancillary
data in the classification process. The contribution of these two
indices to the overall classification accuracy was analyzed. A
total of six input data, including 1) Green channel intensity, 2)

Fig. 3. Examples of ALS-intensity-derived indices.

NIR channel intensity, 3) SWIR channel intensity, 4) nDSM,
5) pNDWI, and 6) pNDVI, were generated and input into the
classification scheme.

Because the study area was characterized by a simple resi-
dential landscape, it could be grouped into six land cover types,
including water, house, road, grass, tree, and open area. How-
ever, due to the bathymetry capability of the channel at 532 nm,
water points in the study area tended to have an irregular in-
tensity that was induced by the interaction of laser points with
both the water surface and organic matter underneath. Hence,
water bodies, including Musselman Lake, Windsor Lake, and
one small water region, were masked out of the dataset, result-
ing in only five land cover types being trained and classified in
this study. Interpreting land cover types from ALS intensity was
not as easy as from passive optical images. Certain land cover
types, such as grass and open area, could be distinguished from
only one or two intensity data and could hardly be identified
from the rest.

A SVM classifier was selected to perform land cover classi-
fication with multispectral ALS-derived data due to the pop-
ularity of SVM in typical ALS-related classification stud-
ies, making the classification result of this study compara-
ble to previous studies. The SVM classification was per-
formed on three combinations of the input data. The selection
of input data was mainly designed for showing the benefits
of multispectral ALS in land cover classification (Greeen +
NIR + SWIR+ nDSM+ pNDWI+ pNDVI), compared with
typical LiDAR data (Gree + NIR + SWIR + NDSM). Mean-
while, Selection1(NIR + nDSM) was designed to examine the
contribution of multispectral-intensity-derived indices in overall
classification accuracy.

C. Dendrometric Parameter Estimation

The tree-isolated nDSM was also referred to as the CHM, a
model displaying tree positions by tree crowns in a top-down
view and storing the height values in pixels. A 3 × 3 local max-
ima filter was first employed on the CHM to detect treetops.
A pixel with the highest value amongst its eight neighbors was
defined as the treetop. To eliminate the commission errors asso-
ciated with the local maxima filtering and detect the true treetop
pixels, the local maxima in the CHM was further filtered by
the ALS intensity data. The ALS intensity values were depen-
dent not only on the reflectivity of the object, but also on the
range between the sensor and the object. A true treetop pixel
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would have both high intensity and height values. Under this
assumption, another 1-m raster data were generated as the sum
of the maximum intensity of the first return in each channel.
The clusters of local maxima in the CHM which had more than
15 pixels together were further extracted, and only the pixels
that were also the local maxima in the maximum intensity layer
were retained in the final treetop results. Previous studies relied
on changing the window size and shape of the filter to refine
the treetops [26], [27]. These approaches were not suitable here
because the CHM resolution (1 m) generated in this study was
relatively coarse so that increasing the window size of the local
maxima filter would result in excluding small tree crowns.

The Marker-controlled watershed segmentation was applied
to segment the CHM into individual tree crowns by defining the
predetected treetops as the markers. In this way, every prede-
tected treetop would have one closed segment. The performance
of the segmentation in isolating tree crowns was evaluated by
the absolute accuracy, calculated as

absolute accuracytree isolation =
n1,1

ntotal
(3)

where n1,1 is the number of detected crown segments which
have a one-to-one relationship to the ground truth and ntotal is
the number of tree crowns in the ground truth. Tree height is
defined as the average of the local maxima within each segment,
and crown diameter is defined as the average of the maximum
crown diameter passing through the center of the local maxima
and the one measured at the perpendicular direction.

To evaluate the accuracy of the ALS-derived dendrometric
parameters, the ALS-derived tree height and crown diameter
were compared with the field measurements. The crown seg-
ments generated from the ALS data were matched with the 40
field-sampled trees, and the RMSE and bias were calculated to
compare the ALS-derived dendrometric parameters with field
samples

Bias =
∑n

i=1 XALS,i − Xfield,i

n
(4)

RMSE =

√∑n
i=1 XALS,i − Xfield,i)2

n
(5)

RMSE% =
RMSE
X̄ALS

(6)

where n is the number of field samples, which equaled 40 trees
in this study; X refers to the values of dendrometric param-
eters (height or crown diameter) measured either in the field
or from the ALS data; and X̄ALS is the arithmetic mean of
the ALS-derived measurements. Moreover, a linear regression
model was fit to the ALS-derived tree height and crown diame-
ter to determine if there was a strong correlation between these
two variables

D. Carbon Storage Modeling

In order to predict the carbon storage in trees, a multiple lin-
ear regression model was developed empirically to fit the data,
with the ALS-derived dendrometric parameters as the indepen-
dent predictors and the field-measured DBH as the predicted

variable. The empirical equation derived from the ALS-DBH
linear regression model has the form

DBHField = a · CDALS + b · HALS + c. (7)

The 40 field-sampled trees were split into two datasets, with
20 trees used for model parameterization and the remaining 20
trees reserved for validation. To eliminate the influence of tree
locations in model fitting, each ten adjacent tree samples were
grouped together under one sampling location, resulting in a
total of four sampling groups. Six combinations of training and
validation datasets were chosen by selecting two sampling loca-
tions out of four for model development and using the remaining
two locations for validation. All six models were developed at a
0.05 significance level and were fitted through a cross-validation
process. The parameters generated for each model were col-
lected. The predictive power of the regression models and the
performance were inspected by the coefficient of determination
(R2), and the accuracy of the prediction was examined by the
RMSE of the predicted parameters. Comparing R2 and RMSE
of the six ALS-DBH regression models, the one with high R2 in
the model fitting and low RMSE in the validation was selected
to predict DBH.

After selecting the ALS-DBH regression model, the ALS-
estimated DBH and height were plugged into the Canadian
national aboveground biomass equations proposed in [25] to es-
timate the carbon storage in trees. As reported in [25], the set of
equations based on DBH and height for all species was selected
to calculate the biomass, since no genus or species information
was available in this study. The aboveground biomass was es-
timated as the sum of biomass in tree compartments (foliage,
branch, wood, and bark) [23]. The carbon stored in trees was
estimated as the half of total biomass. The carbon storage pre-
dicted by the ALS-derived parameters was compared with that
estimated by the field-measured DBH and height and evaluated
by the RMSE and R2 .

To show whether carbon storage in trees varied with land
cover types, the ALS-derived tree-crown segments were first
converted into vector data in GIS, with the amount of carbon
storage stored in the attributes. The carbon storage within each
land cover type was calculated by adding up all the carbon stor-
age in trees and dividing by the area of the land cover type.
For the Town of Whitchurch-Stouffville, the carbon stocks were
extrapolated by multiplying the specific carbon amount per unit
area with the total area of each land cover type. For those land
cover types which were excluded in the study area (namely gov-
ernment and institutional areas and industrial sites), the carbon
stored in government and institutional areas were given the same
amount per unit area as the residential, but the carbon stored in
industrial sites was given zero. Then, a citywide carbon storage
map was created.

IV. RESULTS AND DISCUSSION

A. Analysis of ALS Data for Land Cover Classification

The classification at tree genus or species level is impor-
tant, especially for precise biomass estimation, the spectral pat-
terns of the tree class were examined further to find if current
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Fig. 4. Land covers of the study area.

TABLE I
ACCURACY REPORT FOR CLASSIFICATION RESULTS

multispectral LiDAR datasets could distinguish the tree class
into conifer and deciduous trees. After confirming the tree types
in Google Earth, there were no obvious distinctions between the
tree genus by visual observations. However, through close vi-
sual observation of the pNDVI dataset, the trees with dark-color
leaves, such as the Crimson King Maple tree, could stand out
from the tree class. The multispectral ALS datasets generated
in the study may not be sensitive enough to provide the separate
classification for conifers and deciduous trees. However, the
analysis presented here shows that the multispectral ALS inten-
sity may be influenced by factors such as the color/reflectivity
of the objects, which in turn will be beneficial to studies of tree
mortality, rooftop solar energy, etc.

Accuracy assessment was conducted on the classification re-
sults in order to examine the classification performance of mul-
tispectral ALS data. Fig. 4 shows the final classification map.
The combination of all six input data achieved the highest over-
all accuracy among the three selections (see Table I). The 89%
overall accuracy was achieved using the ALS-derived raster
data, which indicated that the contributions of the two calcu-
lated indices to the overall accuracy were not significant. The
comparison between typical ALS data and multispectral ALS
data on land cover classification was also conducted; the same
classification process was applied to the nDSM and NIR bands
only. The overall classification accuracy in the use of typical
ALS data was around 79%.

B. Validation Statistics

The accuracies of ALS-derived tree height and crown width
were assessed by the samples measured in the field. For the
ALS-derived tree height, an RMSE of 1.21 m (relative RMSE
= 6.8%) and a negative bias of 0.2 m (relative bias = −0.1%)
are given in Table II. For the ALS-derived crown width, an
RMSE of 1.47 m (relative RMSE = 16.4%) and a negative bias
of 0.18 m (relative bias = −2%) were observed. The tree height

TABLE II
VALIDATION STATISTICS FOR ALS-DERIVED DENDROMETRIC PARAMETERS

TABLE III
RESULTS OF MODEL FITTING AND MODEL VALIDATION

Fig. 5. Residual plots for model-predicted DBH generated by coefficients
with two, three, and four decimal places.

was underestimated because of the undergrowth and factors
related to the flight height (1000 m) and the point density (7 to
8 points/m2). The relative RMSE of crown width was mainly
caused by the resolution of the CHM and the results of crown
segmentation.

C. Validations for ALS-DBH and Tree Carbon

The results of model fitting and validation of the six ALS-
DBH regression models are listed in Table III. The 40 field-
measured samples were previously split into four groups, with
ten trees in each group. The models were iteratively fitted by 20
trees selected from two groups out of four and were validated by
the remaining 20 trees. Model 2 was selected as the overall best
model to predict DBH in this study because it has a relatively
high coefficient of determination (R2 = 86% ) from model fit-
ting and a relatively low RMSE (5.6 cm) from the validation.
Equation (7) is then modified as

DBH = (−0.2958)CD + 3.2637H − 11.2792. (8)

To determine the number of decimal places for the coefficients
in the regression equation, the residuals between the DBH values
predicted by the coefficients with eight decimal places and those
predicted by coefficients rounded to two, three, and four decimal
places, respectively, are compared in Fig. 5.

To keep high prediction accuracy, coefficients in the regres-
sion model are rounded to four decimal places. Moreover, the
R²between field-measured tree height and crown width was
calculated as 0.34, indicating insignificant correlation between
these two variables. Though DBH cannot be directly measured
on the CHM, all the generated ALS-DBH models showed that
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TABLE IV
ACCURACY OF ALS-PREDICTED VERSUS FIELD-MEASURED RESULTS

Fig. 6. Scatterplot of ALS-modeled DBH versus field-measured DBH.

Fig. 7. Scatterplot of the ALS-predicted carbon storage versus field-estimated
carbon storage.

the DBH correlated well with ALS measurements. The accura-
cies of the ALS-modeled DBH and ALS-derived carbon storage
are given in Table IV. The predicted DBH using ALS-derived
parameters corresponded to an RMSE of 6.4 cm (relative RMSE
= 13.1%) and a bias of 0.4 cm. The relationship between field-
measured DBH and ALS-modeled DBH is plotted in Fig. 6.
The results are compared with the reference carbon storage es-
timated by field-measured DBH and plotted in Fig. 7. The R² of
DBH and carbon storage was above 0.80. The predicted carbon
storage using ALS-modeled DBH corresponded to an RMSE of
142 kg (28.6%) and a bias of 14.4 kg.

D. Analysis of ALS-Estimated Results

The accuracy of tree-height measurements using ALS data
has previously been studied in [28]–[30]. As found in [28], as
flight altitude increased from 400 to 1500 m, the accuracy of
tree heights lowered from 0.76 to 1.16 m for single tree species.
As reported in [29], the best methods which utilized the local
maxima finding with a point density of 8 points/m2 could obtain
an RMSE of 60 to 80 cm for tree heights. As shown in [30], the
bias of tree-height measurements could decrease from −1.48 to
−0.72 m if the point density increased from 3.5 to 9 points/m2.
The RMSE achieved in this study is in line with these studies

and is potentially affected by the errors generated during the
field measurements. Both overestimations of the crown size
and underestimations of the tree heights are likely a result of the
overlaying crown covers of the dominant tree and the suppressed
trees, but could be mitigated if the resolution of CHM is at the
submeter level. The results of ALS-modeled DBH are in line
with the findings in [31] and [32], regarding the tree height
and crown diameter as good predictors to predict DBH using
linear regression. The accuracy found in this study is higher than
in these two studies. As reported in [31], an RMSE for ALS-
estimated DBH of Norway spruce was 35%. A lower RMSE (4.9
cm) and higher R2 compared to this study was reported in [32].
However, considering that in [32] the accuracies were for single
tree species, which had an average DBH of 29.55 cm, and that
they used all 43 sampled trees to construct the model and validate
the model using the same dataset, the RMSE% and R2 in their
study would understandably be higher than that in this study
[32]. For aboveground biomass, an RMSE of 47% for single tree
species was reported in [30]. An RMSE of 35.1% was achieved
for biomass estimation in [28]. Though the achieved accuracy
of carbon estimation is higher in this study, these studies are not
entirely comparable because some studies used field-destructive
measurements as reference data, which were not available in
this study. Also, because genus information is not available, the
estimation of carbon stocks was done by the allometry equations
for all species in Lambert et al. so that the derived carbon mainly
depended on the ALS-derived DBH and height, with a little
consideration given to the differences in species [25].

E. Analysis of Carbon Storage

There were a total of 2555 dominant trees in the study area.
The trees were located along the roadsides, in the backyards,
and around the lakes. The average tree carbon was 484.3 kg and
resulted in a total of 1.24 kt C (103 tons carbon). The study area
could be divided into four land use types: residential, park and
recreational, open area, and water.

The open area occupied the largest portion of the study area,
47.0 ha. The residential area occupied 25.8 ha. The park had
a small area of 2.5 ha. The extracted carbons in trees were,
therefore, grouped based on the land use type, and the amount
of carbon stored in each land cover type was calculated. Within
the study area, the open area contained the largest tree carbon
stocks (682.7 t), followed by the residential area (362.6 t), and,
finally, the parks and recreational area (29.2 t). The tree carbon
storage for the open area, residential area, and parks on a per-
unit-area basis were 14.54, 14.08, and 11.57 t C/ha, respectively.
Citywide open area occupied 83.7% (191.5 km2) of the total
city area and contained the largest carbon storage, 278.4 kt C.
Residential area covered 8.3% (19.4 km2) of the total city area
and contained 27.3-kt C tree carbons. Parks covered 12.8 km2

with a total carbon storage estimated at 14.8 kt C. Fig. 8 shows
the carbon storage map of the study area, which indicates that
large tree carbon stocks are accumulated in urban environments
and are distributed heterogeneously among land use types.

The estimated tree carbons in the study area were in line with
the estimation of carbon storage in Canadian urban trees con-
ducted by researchers at Environment Canada [15]. As reported
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Fig. 8. Carbon storage map of the study area.

in [15], the carbon stocks in trees were estimated by applying
the crown cover area of urban trees and a Canadian-specific
area-based growth rate for urban trees. Also, as reported in [15],
a total urban area of 5317 km² in the Mixedwood Plains (On-
tario’s smallest ecozone) with an estimation of carbon storage
at 9177.6 kt C, resulted in a carbon storage per unit urban area
as 17 kt C/ha. This is slightly more than what has been pre-
dicted in this study (around 14 kt C/ha). The main source of the
difference comes from the approaches to estimate the biomass
amounts between this study and that used in [15]. Our case
study found that carbon storage in urban trees can be quanti-
fied effectively when multispectral ALS range and intensity data
are used.

V. CONCLUSION

This paper proposed a workflow to map land covers and esti-
mate aboveground carbon storage in trees at a spatial resolution
of 1 m using multispectral ALS data. This paper shows that
the improved classification results can be obtained solely from
multispectral ALS datasets. Our results demonstrated that the
overall accuracies achieved using multispectral ALS data range
from 89.12% to 90.23%, which is about 11% higher than that
obtained using traditional single-wavelength ALS data (with an
overall accuracy of 79.04%). Spectral patterns for impervious
surfaces (road, rooftops) and single-return vegetation (grass)
are observed to have similar patterns in the optical imagery. The
dendrometric parameters at single-tree level can be derived di-
rectly from the multispectral ALS data. It also shows how the
use of both spectral and geometric properties of multispectral
ALS data can improve the detection of treetops. The improve-
ment could be more significant if the resolution of the CHM
were finer.

This paper presented the feasibility of applying forest-based
allometric methods to assess carbon stocks in urban environ-
ments. Dominant trees with fewer underneath or nearby trees
were better detected and analyzed in the study. Though DBH
cannot be directly measured from ALS data, the ALS-predicted
DBH remains a power predictor for estimating tree carbon at the
individual-tree level. More accurate tree carbon measurements

could be obtained if genus information and crown base heights
were further investigated. An improvement of the derivation
of the crown width would also help in the better prediction of
tree carbon stocks. This paper derived similar carbon amounts
per unit area in both residential areas and open areas within
the study area because the open area had twice the size of the
residential area but the density of the canopy covers was less
than it was in the residential area. Citywide carbon storage es-
timation was derived in this paper by extrapolating the values
within the study area to the entire city, based on the specific
proportion of each land cover type in the city. This approach
is applicable here because the Town of Whitchurch-Stouffville
has a relatively simple city structure, the study area has included
the major components of the city, and those land covers ex-
cluded in the study area only occupied a small proportion of the
entire city.

Urban ecosystems are an important component in the global
carbon cycle. In the context of urban sprawl, quantifying the car-
bon storage for urban areas is very important in terms of getting
reliable estimations of carbon sequestration rate and magnitude,
but it is a difficult and complex task that requires advanced analy-
sis techniques and data sources to achieve fine-scale estimation.
The methods developed here provide an accurate and detailed
estimate of how urban trees in a Canadian city play the role
of a carbon sink. The presented approach of estimating carbon
stocks in urban trees takes advantage of the available Canada-
wide allometry relationship between biomass and tree DBH and
height, as well as the power of the ALS system in providing the
estimation of dendrometric parameters. The methodology pro-
posed does not require destructive sampling or large-scale field
works. It is applicable to other urban areas and is beneficial
to the better understanding of urban carbon budgets and urban
heat island effects. It also provides valuable information on the
impact of climate change on city planners.

In conclusion, this paper has developed a detailed workflow
to estimate tree carbon stocks from multispectral ALS data by
using a series of techniques including SVM classification, water-
shed segmentation, and allometry-based linear regression mod-
eling. This paper also demonstrated the strong capability of
multispectral ALS data in land cover mapping and tree-level
inventory in urban environments. The experimental results also
indicate that our method is very promising for quantifying the
carbon storage in urban trees when taking full advantage of
multispectral ALS range and intensity data.
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