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Abstract—A terrestrial laser scanning (TLS) point cloud ac-
quired from a given ground view is incomplete because of severe
occlusion and self-occlusion. The models reconstructed by align-
ing the cross-source point clouds [TLS and structure-from-motion
(SFM) point clouds] provide a more complete large-scale outdoor
scene. However, because of differences in nonrigid deformation,
stratified redundancy of alignment is inevitable and ubiquitous.
Therefore, this paper presents a volumetric fusing method for
cross-source three-dimensional reconstructions. To eliminate the
stratification of aligned cross-source point clouds, we propose a
graph-cuts method with boundary constraints for blending the two
cross-source point clouds. Then, to reduce the gaps that exist in the
blending results, we develop a progressive migration method com-
bined with the local average direction of normal vectors to smooth
the unconnected boundary. Finally, experimental results demon-
strate the effectiveness of eliminating stratification with the pro-
posed blending algorithm, and the progressive migration method
achieves a smooth connection in the boundary of the blended point
clouds.

Index Terms—Boundary constraints, graph cuts (GC), progres-
sive migration, volumetric fusion.

I. INTRODUCTION

W ITH the rapid development of laser scanning technol-
ogy, multisource point clouds [Kinect, LiDAR, range

cameras, structure-from-motion (SFM), and simultaneous lo-
cation and mapping (SLAM)] are acquired more conveniently.
There are many works on information extraction and analy-
sis of three-dimensional (3D) point cloud, such as automatic
road vector extraction [1], object detection [2], [3], and line
segment extraction [4], [5]. However, most of those works are
based on a single data source. Because of the differences of
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scanning precision, range, and view in multisource point clouds,
every 3D scanning method or means has its own characteristics
and applicable environment. For example, the terrestrial laser
scanning (TLS) [6] system provides an array of capabilities in
terms of instrument range, scan speed, field of view, size, and
portability. However, because of self-occlusion and occlusion,
the collected point cloud is often incomplete. Furthermore, it is
difficult to fully collect the surface point cloud of an outdoor
scene because, in particular, the roof point cloud of a building
is often missing. To avoid some self-occlusion and occlusion,
a mobile laser scanning (MLS) [7] system (a type of mobile
mapping system) collects high-precision point clouds rapidly
from both sides of a road. Moreover, also because roof point
clouds of buildings on both sides of a road are missing, the
collected point cloud, limited by scanning perspective, still is
incomplete. SFM [8] and multiview stereo (MVS) [9] methods
automatically produce large-scale urban models from airborne
imagery; the multiview images are obtained easily by aerial pho-
tography from an unmanned aerial vehicle (UAV). However, the
SFM point cloud from UAV usually contains the sparse point
cloud of a large-scale scanned scene, but omits the details of the
ground. For complete 3D reconstruction, using the algorithm
directly is the preferred method to repair the missing parts of
the point cloud. For example, to handle the occlusion problem
occurring during data acquisition, Cai et al. [10] presented an
indispensible process for completing the point cloud. However,
this method is invalid when a large range of 3D information is
missing.

Reconstructed methods by fusing multisource point clouds
achieve complementary advantages and are becoming a new
trend. However, because of differences in the cross-source 3D
point clouds (e.g., point cloud density, distribution uniformity,
accuracy, scene size, and occlusion), it is inevitable that much
stratified, redundant noise exists in the aligned point clouds. Fur-
thermore, the stratified, redundant information leads directly to
a decline in the quality of the reconstructed 3D model. As seen
from Fig. 1(a), the SFM point cloud is nonrigid and more se-
riously deformed than the TLS point clouds. Thus, as shown
in Fig. 1(b), when a SFM point cloud is aligned to a corre-
sponding TLS point cloud (yellow), there are many redundancy
such as stratified in the reconstruction. Therefore, to eliminate
this redundancy, we propose a volumetric method based on a
graph-cuts (GC) model to fuse the aligned cross-source point
clouds (i.e., SFM and TLS point clouds). First, with a commer-
cial software (RiSCAN software from RIEGL), we eliminate
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Fig. 1. (a) SFM point cloud, which samples densely from 3D mesh models,
is nonrigid. (b) Coarse reconstructed 3D point cloud.

Fig. 2. Flowchart of the proposed method.

some outliers and redundant targets. Second, inspired by [11],
to eliminate the stratified point cloud, we propose an improved
GC model to eliminate the deformed point cloud (SFM point
cloud), which overlaps the target 3D point cloud (TLS point
cloud). Third, because there are many gaps as well as fractured
areas, to ease and smooth the gaps, we propose a method of pro-
gressive migration perception based on Euclidean distance and
normal vector of local region. The specific operational frame-
work is shown in Fig. 2.

The contributions of this paper are as follows: (1) to eliminate
stratification in the reconstructions of the cross-source 3D point
clouds, we propose a new volumetric blending method based
on a GC model to remove the deformed point clouds (SFM
point clouds) in the overlapped region; (2) to smooth the gaps
that exist in the result of blending, we propose a method of
progressive migration perception.

II. RELATED WORKS

Recently, urban 3D reconstruction has been applied
widely to high-precision mapping and augmented reality. 3D

reconstructed methods from multisource point clouds are be-
coming popular. Many scholars have recognized the benefits of
urban 3D reconstruction and modeling from cross-source 3D
point clouds [12]–[16].

Many methods have been proposed for 3D reconstruction
from a series of different point clouds, the following methods
are representative. Hornung et al. [17] proposed a reconstructed
method of watertight 3D models; however, their method still re-
quires localizing the acquisition vehicle and reconstructing the
3D models based on the street views that lack the roof parts.
Richard et al. [18] presented a system based on Kinect for accu-
rate real-time mapping of complex and arbitrary indoor scenes.
However, because of the limit of sensor scanning distance, their
system was unsuitable for reconstructing outdoor scenes. Cheng
et al. [19], using 3D road networks and 3D building contours,
proposed a hierarchical method for the automatic registration of
airborne laser scanning (ALS) and MLS 3D point clouds. How-
ever, the alignment algorithm depends on the driving trajectory,
and does not consider the fusion of aligned results. Peng et al.
[20], using classical iterative closest points (ICP), registered two
cross-source point clouds (SFM and LiDAR point clouds). But,
many assumptions are made, including removing outliers and
manually selecting objects. Huang et al. [21] proposed a sys-
tematic method for registering cross-source point clouds. They
proposed a scale normalization method to eliminate the scale
problem and used a new graph construction method to com-
bine the two structures. However, they do not deal with the
post-registration redundancy.

The volumetric fusion methods of the aligned 3D point clouds
(cross-source point clouds) have received much attention. Some
works combine street-side and aerial data for mesh reconstruc-
tion [22]–[24]. Fiocco et al. [11], using a distance field over an
octree and an out-of-core dual contouring approach, proposed
a volumetric fusion method as a segment of the deformed point
cloud integrated over 200 000 points from a tripod-mounted
ground LiDAR and an aerial digital surface model (DSM). De-
spite the complex algorithm, the results are noisy and contained
many holes. Forkuo et al. [25] performed the automatic fusing
of photogrammetric imagery and laser scanning point clouds.
However, their fusion focuses on TLS 3D point clouds and dig-
ital images. Fruh et al. [26] constructed meshes over street-side
LiDAR range maps and generated a larger scale DSM. How-
ever, they reconstructed separately a facade and an airborne
mesh without topological fusion. Consequently, the simulation
is rough, and there still existed some holes in the 3D recon-
struction data. Frueh et al. [27], using planar or horizontal in-
terpolation, generated textured 3D building facade meshes from
laser scanning point clouds and camera images, which mainly
filled holes in the background layer, caused by occlusion from
foreground layer objects. However, due to the characteristics
of the TLS systems, point clouds of the roofs are still missing.
Shan et al. [23] applied the method of Poisson surface recon-
struction directly to join point clouds computed by patch-based
MVS [28], where there is not a cross-consistency check be-
tween the airborne and street-side data. Recently, Bdis-Szomor
et al. [29] proposed an efficient view-driven meshing approach
for street-side images and large-scale height maps. Then, they
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Fig. 3. Illustration of volumetric fusion in 2D. (a) and (b) Target point set (red)
completely overlap with source point set (grey), and the size of the overlapping
area is equal to the target point set. (c) Target point set (red) and source point
set (grey) partially overlap each other. (d) Source point set (grey) completely
overlap with target point set (red), and the size of the overlapping area is equal
to the source point set.

superimposed a 3DT on the MVS points and classified the in-
side/outside of the tetrahedra while enforcing line-of-sight and
photo-consistency constraints [13]. They blended two barely
different 3D point clouds using a GC model; therefore, many
gaps exist in the 3D point cloud. Additionally, as an SFM-based
algorithm, the method is time consuming and of lower precision.

Compared with [29], we propose an improved GC model
to blend the cross-source point clouds (TLS and SFM point
clouds), and, to smooth the gaps of boundary, develops a pro-
gressive migration method of SFM points near the blending gap.

III. METHODOLOGY

As shown in Fig. 2, to reconstruct a more complete 3D model
using a SFM point cloud, we designed a point cloud fusion
framework. Given two cross-source 3D point clouds: source
and target point clouds, first, using industrial software (RiSCAN
software of RIEGL), we performed some preprocessing that in-
cluded removing the outliers from each point cloud and manu-
ally aligning source point clouds with the target point clouds.
Then, we proposed a new volumetric fusion method based on
the GC model in [30] and [31], where two 3D cross-source
point clouds, as well as TLS and SFM point clouds, are applied
directly. Thus, the deformation point cloud overlapping the ref-
erence data was eliminated. In the smoothing step, progressive
migration of the local normal vector is designed to smooth the
fusion gap.

Fig. 3 gives a illustration of volumetric fusion in 2D. The
point distribution of two point clouds in one dimension are
summarized as four cases [see Fig. 3(a)–(d)]. The charts in the
first column represent four cases as well as the aligned cross-
source point clouds. The charts in the middle column represent
the blending of the indicated results by the proposed GC model.
The charts in the third column show the indicated results of
smooth acquired with the method of progressive migration. In
Fig. 3, the red points represent source point set (i.e., SFM point
clouds), and the grey points represent target point set (i.e., TLS
point clouds). Points connected by light blue lines are assigned
to overlapping regions. The other points, connected by orange

Fig. 4. Illustration of boundary constraints. The grey points represent source
point set (i.e., SFM point cloud), and the red points represent the target point
set (i.e., TLS point cloud). The grey points in the dashed box is the K1 nearest
points of point pi , wherein the centroid is denoted by cPi . The red points in the
dashed box is theK2 nearest points of point qj , wherein the centroid is denoted

by cQj . qj is in the target point set, which represents the nearest point of pi . δij

represents the distance between the centroid cQj and the centroid cPi .

Fig. 5. Illustration of smooth fusion in 2D. The red points represent the target
point set (i.e., TLS point cloud), the grey points represent source point set (i.e.,
SFM point cloud) before processing, and the blue points represent source point
set (i.e., SFM point cloud) after processing. The two pairs figures [(a), (b) and
(c), (d)] represent two different cases of smooth. The blue arrow indicates the
direction of migration points.

dotted lines are assigned to nonoverlapping regions. The details
are described as follows.

A. Preprocessing for Cross-Source Point Clouds

Laser scanners typically collect point clouds with varying
point densities. Additionally, reflective materials such as glass
and dust in the air exist in the acquired point cloud which results
in sparse outliers. Also, redundant noise, due to calibration er-
rors in the camera, exists in the 3D data generated by the SFM or
MVS algorithms. Therefore, before fusing the two cross-source
point clouds, we first eliminate the redundant noise and sparse
outliers. Then, using industrial software for raw source and tar-
get point clouds, we remove the redundant targets and outliers as
much as possible. However, noise and many outliers still remain.
Therefore, we make use of the method [32], where some of the
outliers are filtered further by performing a statistical analysis
on the neighborhood of each point and trimming those that do
not meet a certain criteria. Coarse alignment is completed first
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Fig. 6. Aligned results of the two different point clouds. (a) Registered result of 3D point clouds from the scanning mutistations. (b) Several 3D point clouds from
SFM raw data. (c) Registration result of the above two point clouds. (d) Fusing result of a pair of the cross-source point clouds. (e) Fusing results of multiobjects
point clouds.

by the RiSCAN software and then fine registration is achieved
by the ICP algorithm.

B. Point Cloud Blending

Given two aligned cross-source point clouds (i.e., SFM point
cloud P and TLS point cloud Q), as shown in the first col-
umn of Fig. 3, the point pi ∈ P is deformed and is inaccurate,
compared with its corresponding point qj ∈ Q, which generates
hierarchical redundancy. To eliminate the redundancy, we for-
mulated volumetric fusion as a segmentation issue for the source
point cloud P. We assign a binary label li ∈ {0, 1} to each point
pi ∈ P , which means the point marked by 0 is removed and the
point marked by 1 is retained.

To measure the substitutability of source point pi , we first
compute the angle between the normal vectors of the source
point pi and the nearest point qj in the target point cloudQ. Then,
the nearest distance dij is computed by the two coordinates of
points pi and qj . Thus, the likelihood for a source point pi to
have a substitute is formulated as follows:

ϕi = e(−d2
i j )\(2σ 2 ) • max {0, cos θij} (1)

where cos θij = n(pi)T n(qj ); n(pi) represents the normal vec-
tor of the point pi , n(qj ) represents the normal vector of the
point qj ; σ represents a blending parameter to control our no-
tion of vicinity, which involves the deviations of P and Q due to
the errors of alignment. Thus, the likelihoodϕi ranges from zero
(no substitute) to one (perfect substitute). Additionally, normal

vectors are computed in P and Q by k-nearest neighbor (K-NN)
and least squares plane fitting, respectively, and by flipping the
normal according to the relative perspective.

For the segmentation of the points near the boundary of the
fusing point cloud, it is necessary to enlarge the corresponding
distance such that it becomes more impossible to substitute the
points. We develop a method of boundary constraints to reduce
the gaps in the fusing boundary. As Fig. 4 shows, the grey points
(SFM) and the red points (TLS) partially overlap. Because of the
characteristics of the point cloud boundary, the nearest neighbor
of pi is the point qj in the point cloud Q. To enlarge the distance
between pi and qj , the likelihood function is modified as follows:

ϕi = e(−ωi j d2
i j )\(2σ 2 ) • max {0, cos θij}. (2)

The weight factor ωij is formulated as

ωij =

{
1 δij < δ0

M others
(3)

where the distance δij between two centroids represents the
nearest distance between a point in cloud point P and a point
cloud Q. δ0 (δ0 = 0.05 in our experiments) is a constant, that is
somewhat larger than the resolution factor r̄ ( r̄ = 0.03 in our
experiments) for point cloud Q. M (M = 10δ0 in our experi-
ments) is a penalty threshold of the boundary to reduce the gap
of blending boundary of cross-source point clouds.
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Fig. 7. Comparative effectiveness of blending. The aligned cross-source 3D point clouds are show at the first column, and the following columns represent the
blending results according to different regularization parameters λ. The top row shows the result of fusing method based on GC, and labeling overlapped point
cloud with the orange data, the second row shows the results of the proposed algorithm. The red box represent fracture area.

Fig. 8. Comparison of accuracy. The figure shows different distribution of
accuracy respectively by GC and proposed method.

Fig. 9. Output of our blending. (a) and (b) 3D point clouds from SFM and
REIGL VZ1000, and had been aligned. (c) The segmented result by using GC.
(d) The final fusion result.

For a smooth segmentation, we define the influence between
adjacent points of the K-NN graph over P as follows:

ψ(pi, piN ) = e−di , i N /meddi , i N (4)

where di,iN represents the distance between any two adjacent
points pi ∈ P and piN ∈ P ; piN represents one of the K-NN
points to pi , where iN ∈ {1, 2, . . . ,K} is an index of piN , K
is the number of K-NN points; and meddi,iN represents the
median of all K-NN distances in P.

As in the method of Kolmogorov et al. [31], by solving energy
minimization problems, we seek the binary labels over source

Fig. 10. Elimination of point cloud stratification. (a) Stratified demonstration
of point cloud registration. (b) Result of fusion.

point cloud P . The energy function is defined as follows:

E(L) =
∑
i:pi ∈P

Ei(li) + λ
∑
iiN

ψ(pi, piN ) · I[li �= liN ] (5)

where liN represents the label of the point adjacent to point pi . I
represents an indicator function that I = 1 if li �= liN , otherwise
I = 0; λ is a regularization factor;L = {l1 , l2 , ..., ln} represents
a complete labeling. The unary penalties Ei(li) for point pi to
obtain label l are defined as follows:

Ei(li) =

{
1 − ϕi li = 0
ϕi li = 1

(6)

where ϕi is computed by (2).

C. Smoothing Fusing Gaps

The source point cloud P overlapped with the target point
cloud Q, and was eliminated in the blending step. Because of
registered errors and the nonrigid deformation of data, the fusing
point cloud is discontinuous and the grating is inconsistent. The
remaining 3D point clouds are denoted as the blended point
clouds, which have no overlapping point clouds in 3D space.
However, many fractures exist at the intersection of the fusion.
To eliminate the gap in the fusing point cloud, we must obtain
the distance and direction that each point would move, and then
move the points. Therefore, we propose a progressive migration
method with a local average direction of normal vectors.

Given a blended point cloud, we first compute the minimum
Euclidean distance (denoted by dmin

i , i = 1, ..., n) between a
point pi and a target point cloud Q. Then, the mutual nearest
neighbor distance of the cross-source point clouds near the gap
is denoted as dnn. Therefore, given a distance threshold T , for
each boundary point pi ∈ P , the migration distance near the
gap is designed to be proportional to the Euclidean distance di ,
denoted as follows:

di = (1 − (dmin
i − dnn)/T )dmin

i cos θi (7)
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Fig. 11. Smoothing fusion based on progressive migration at two views as well as (a) and (b). The three rows in (a) and (b) represent the aligning, blending,
and smoothing results of cross-source validated point clouds. 3D data of the orange yellow color represents TLS point cloud, the gray color represents SFM point
cloud.

Fig. 12. Two cross-source point clouds are sampled densely from their corre-
sponding triangular mesh models. (a) Aligned result of two cross-source point
clouds, on which exists the stratification redundance. (b) Corresponding fusion
result.

where θi represents the angle between the normal vector of the
searching point pi and the vector generated by the point pi and
its nearest point qj ∈ Q.

The migration direction is determined by the local average
normal vector and relative distance di . Each point pi is shifted
by distance di , along its given direction so that it has a smooth
effect. Thus, we define the shifting vector as follows:

mi =

{
pi + di · n(pi) di < T

0 di ≥ T
(8)

where n(pi) represents the normal vector of point pi . The mi-
gration distance threshold T is set so that the points away from

the gap remain stationary, which greatly improves the efficiency
of the calculation.

As Fig. 5 shows, the red point set (TLS) and the blue point set
(SFM) are cross-source point clouds. The blending step has been
completed. Then, it is necessary to smooth the blending results
with loopholes. Fig. 5(a) shows how each point of source data
migrates near the intersection of the cross-source point cloud
along a given direction. Fig. 5(b) indicates the effect of fusion.
From (7), it can be seen that, when the nearest Euclidean distance
is larger than T (T = 10δ0 in our experiments), the points do
not migrate, but remain stationary. Fig. 5(c) and (d) show the
smoothing of the gap of a small area within a loophole.

D. Evaluation Method

To evaluate the results from fusing cross-source point clouds,
we first formulate the validation of the blending operation as the
size of the regional gaps. The area of a gap region is measured
by projecting the area of the selected point cloud like a spatial
plane in the normal vector direction. The segmentation precision
of the overlapping area is computed as

precision = TP/(TP + FP) (9)

where TP is the number of removed true positive points. FP is
the number of removed false positive points.

Second, we compute the segmentation precision with the in-
creased value of the regularization factor. Finally, the effect of
gap smoothing is compared with related algorithms.

IV. EXPERIMENT

Our method relies on the Point Cloud Library (PCL) [33] and
the libLAS library [34] for processing of the 3D point clouds,
and the GCoptimization library [30] for the GC in C++. We
could not find any publicly available dataset with both terres-
trial LiDAR 3D and SFM point cloud for the same geographic
location. Therefore, we performed the experiments using our
datasets: Haiyun Campus [200 × 200 m2 , Fig. 6(a), (b)] cap-
tured in Xiamen, China. The airborne 3D data is generated
by VisualSFM [35], which automatically generates 3D point
clouds. The terrestrial LiDAR 3D point clouds are acquired via
REIGL VZ-1000.
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Fig. 13. Final output of our blending at two views. The left figures (a) and (c) show that a SFM point cloud is on two different views, the right figures (b) and
(d) show the corresponding fusion results.

Terrestrial laser scanners, such as REIGL VZ 1000 (selected),
Z+F Imager 5010, etc. collect highly dense and accurate 3D
point cloud data by mutistation scanning based on a ground view.
In regard to SFM/MVS point clouds, although the Terrestrial 3D
LiDAR data has many advantages, it does not cover the roof of
buildings; occlusion problems are always present. To compen-
sate for the roof and some of the occlusion in Terrestrial LIDAR
point clouds, the scanned objects such as buildings from an SFM
point cloud were selected and segmented manually. Then, we
eliminated outliers and aligned them with corresponding targets
in the Terrestrial LIDAR point clouds. Fig. 6(c) shows the results
of one of the alignments. However, hierarchical phenomena and
redundant noise exist [See Fig. 6(a)]. To implement fusion of
two different point clouds, we must eliminate stratification. In
this section, we first compare our proposed method with pre-
vious methods, and then show the results of fusion. Fig. 6(d)
and (e) show the fusing results of single and multiple pairs of
cross-source point clouds respectively.

A. Comparative Experiments

To evaluate the results, we define the accuracy of the blending
step as the number of segmented out-points divided by the actual
number of out-points. As shown in Fig. 7, we fix our param-
eters as σb = 0.2, δ0 = 0.05,M = 100; the related volumetric
regularization parameters λ are 0.0, 0.6, 1.0, 2.8. First, the SFM
cloud in the overlap becomes cleaner as lambda increases. The
second row in Fig. 7 shows that a boundary gap exists in the
fusion results. However, compared with the algorithm of [13] as
well as GC, our method reduces the gap between the two cross-
source point clouds. Clearly, there is no gap with our proposed
method. Our experiments were based on the labeling data. As

shown in Fig. 8, the accuracy with the GC algorithm is less than
that of our method and about 20% less than the accuracy of our
proposed algorithm. Therefore, the corresponding quantitative
results show that our method more effectively eliminates the
boundary gap of the point cloud fusion.

B. Fusing Experiments

To include the roofs of buildings in the TLS point cloud and
improve relative accuracy, using the proposed method, we first
eliminate the airborne 3D (SFM) data overlapped with the TLS
point cloud (specifically, the SFM point cloud that is spare and
deformed) and minimize the energy function through GC with
boundary constraints.

The airborne 3D point cloud [See Fig. 9(a)], which is gener-
ated by SFM technology, but not yet made into a triangle mesh
model, is spare and deformed. We use our proposed volumetric
fusion procedure to remove the airborne 3D point clouds that
overlap with TLS point clouds [See Fig. 9(b)]. We combine the
distance between corresponding points and their difference of
normal vectors and optimize the energy function by GC. In our
experiments, the regularization parameter is set as λ = 3.0. The
results of blending are shown in Fig. 9(c). Our results of fusion
are shown in Fig. 9(d).

Fig. 10 shows the results of local fusion. From Fig. 10(a),
it is seen that stratification exists on the two registered point
clouds. However, after applying our method, the stratification is
eliminated and fused. Fig. 6 shows the final fusion results.

It is important to smooth the faults because doing so reduces
point cloud discontinuity and grating inconsistencies. After the
registration of the cloud data, data stratification is a common
phenomenon. To validate the effect of smooth fusion (Fig. 11),
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a group of cross-source 3D data is used to verify the effect of
the gap buffer. We first blend the two different point clouds
[see the second row of Fig. 11(a) and (b)]. There are faults
near the fusing gap; therefore, we must reduce the gap. Because
of the deformation and low relative accuracy of SFM point
clouds, we smooth the SFM point cloud near the gap using
our proposed method of progressive migration perception. As
shown in the third row of Fig. 11, the proposed method repairs
the gap and eases the faults. To validate our method and better
show the effect of volumetric fusion, the two SFM point clouds
are sampled densely from their corresponding triangular mesh
models (See Fig. 12). We eliminate the stratification and achieve
the fusion of cross-source point clouds. Therefore, the effect of
volumetric fusion shows that the proposed method is effective.
However, the aligned error, which has different normal directors
and corresponding distances, generates the volumetric gap at the
bottom of Fig. 12(b).

Moreover, our method also applies to the complementary of
the SFM large-scale outdoor point cloud which enhances the
details of the street-view 3D point clouds. As seen in Fig. 13,
airborne acquisition and ground-view 3D point clouds provide
complementary 3D information on a city scale. A relative com-
plete SFM point cloud lacks ground-view details, while the TLS
point cloud is incomplete for higher floors and severe occlusion.
Thus, we also strengthen the data types by fusing them as a seg-
mented problem of a point cloud. The results on the right show
that, using our proposed volumetric fusing method, the cross-
source point clouds are blended and smoothed; therefore, finer
3D models can be generated.

V. CONCLUSION

We proposed a new volumetric fusion method for TLS and
SFM point clouds. In the blending step, a GC-based segmen-
tation method with boundary constraints was developed for
eliminating the redundant fusion information. The fusion re-
sults, using our method and evaluated with the designed dataset,
demonstrate that our method is more effective than previ-
ously proposed methods. In addition, the progressive migra-
tion method was applied to achieve smooth connection in the
boundary of the blending point cloud. Thus, we combined the
strengths of the data types to reconstruct 3D point cloud models
that enhance the details. Our experiments showed good fusion
quality. Part of our future work will be to apply our method
on the campus, even on a city-wide scale via cross-source
3D data.
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