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Abstract— Using mobile Light Detection and Ranging point
clouds to accomplish road scene labeling tasks shows promise
for a variety of applications. Most existing methods for semantic
labeling of point clouds require a huge number of fully supervised
point cloud scenes, where each point needs to be manually
annotated with a specific category. Manually annotating each
point in point cloud scenes is labor intensive and hinders practical
usage of those methods. To alleviate such a huge burden of
manual annotation, in this paper, we introduce an active learning
method that avoids annotating the whole point cloud scenes by
iteratively annotating a small portion of unlabeled supervoxels
and creating a minimal manually annotated training set. In order
to avoid the biased sampling existing in traditional active learning
methods, a neighbor-consistency prior is exploited to select the
potentially misclassified samples into the training set to improve
the accuracy of the statistical model. Furthermore, lots of meth-
ods only consider short-range contextual information to conduct
semantic labeling tasks, but ignore the long-range contexts among
local variables. In this paper, we use a higher order Markov
random field model to take into account more contexts for
refining the labeling results, despite of lacking fully supervised
scenes. Evaluations on three data sets show that our proposed
framework achieves a high accuracy in labeling point clouds
although only a small portion of labels is provided. Moreover,
comparative experiments demonstrate that our proposed frame-
work is superior to traditional sampling methods and exhibits
comparable performance to those fully supervised models.

Index Terms— Active learning, conditional random field
(CRF), higher order Markov random field (MRF), mobile

Manuscript received March 2, 2016; revised November 21, 2016,
May 13, 2017, and December 30, 2017; accepted February 1, 2018. Date of
publication May 2, 2018; date of current version June 22, 2018. This work was
supported in part by the Natural Science Foundation of China under Project
U1605254 and Project 61771413 and in part by the Collaborative Innovation
Center of Haixi Government Affairs Big Data Sharing. (Corresponding
author: Cheng Wang.)

H. Luo is with the Fujian Key Laboratory of Sensing and Computing
for Smart Cities, School of Information Science and Engineering, Xiamen
University, Xiamen 361005, China, and also with the College of Mathematics
and Computer Science, Fuzhou University, Fuzhou 350116, China (e-mail:
hluo@fzu.edu.cn).

C. Wang, C. Wen, Z. Chen, and D. Zai are with the Fujian Key Lab-
oratory of Sensing and Computing for Smart Cities, Xiamen University,
Xiamen 361005, China (e-mail: cwang@xmu.edu.cn; clwen@xmu.edu.cn;
chenziyicip@163.com; david102812@gmail.com).

Y. Yu is with the Faculty of Computer and Software Engineering, Huaiyin
Institute of Technology, Huaian 223003, China.

J. Li is with the Fujian Key Laboratory of Sensing and Computing for
Smart Cities, Xiamen University, Xiamen 361005, China, and also with the
Department of Geography and Environmental Management, University of
Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: junli@xmu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2802935

Light Detection and Ranging (LiDAR) point clouds, semantic
labeling.

I. INTRODUCTION

IN RECENT years, urban traffic congestions and traffic
accidents have increasingly constrained a modern lifestyle

and sustainable urban development [1]. To effectively collect
road information and gather traffic information for solving
those urban transport issues, a large number of sensors, such as
infrared sensors, laser sensors, and cameras, are used [2]–[4].
A lot of intelligent applications, including driver assistance
and safety warning systems, and autonomous driving, benefit
from understanding contextual information about a road and
its periphery (e.g., the locations of light poles, trees, and
vehicles). Semantic labeling of road scenes, automatically
assigning a category label to each basic element (e.g., pixel
or point) in road scenes, provides a promising and essential
approach to obtain the knowledge about road environments.
Over the past few decades, studies on labeling road scenes
focused mainly on optical images and videos [5], [6]. The
use of optical images and videos to conduct semantic labeling
of road scenes is limited, due to illumination conditions,
occlusions, distortions, incompleteness, viewpoints, and lack
of geospatial information.

With fast-developing Light Detection and Ranging (LiDAR)
technologies, large volumes of highly dense and accurate
point clouds, which are easily and rapidly acquired by mobile
LiDAR systems, provide a new solution to represent road-
related information. The collected point clouds exhibit advan-
tages over optical images and videos captured by traditional
optical imaging-based systems. By integrating laser scanners
with position and orientation systems, mobile LiDAR systems
rapidly capture undistorted 3-D point clouds with real-world
coordinates of road scenes. Such 3-D point clouds assist
in accurate object localization in road scenes. In addition,
compared with optical imaging-based systems, mobile LiDAR
systems are immune to the impact of illumination conditions.
Moreover, with the complementary onboard high-resolution
digital cameras, the colorized point clouds provide not only
geometric but also texture information essential to image-
based semantic labeling. Therefore, in this paper, we focus
on semantic labeling of road scenes by using mobile LiDAR
point clouds.

To train a statistical model for semantic labeling of
point clouds, most existing methods [7]–[11] require a huge
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Fig. 1. Example of training data in traditional methods and our proposed
method on semantic labeling of point clouds. (a) Unlabeled point cloud scene.
(b) Fully supervised training data required by traditional labeling methods.
(c) Training data generated by the active learning method. Here, gray repre-
sents unlabeled points, and other colors represent manually labeled points.

number of fully supervised complete scenes, in which each
3-D point is manually annotated with a specific category
[see Fig. 1(b)]. However, such manual annotations for point
clouds are difficult to obtain in terms of cost and time. In addi-
tion, it seems impossible to accomplish accurate annotations
for each point from a complete scene in some scenarios,
e.g., classifying points of overlapping trees and light pole
manually [see Fig. 1(a)]. In fact, only a small portion of
labeled points from complete scenes determines the parameters
of a statistical model. In the machine learning literature, active
learning is dedicated to create a minimal training data set from
a huge pool of unlabeled data by iteratively selecting valuable
samples to query their category labels [12]–[14]. Thus, in this
paper, to reduce the cost of manually annotating training data,
instead of manually annotating whole point cloud scenes,
we present semantic labeling of point clouds by actively and
automatically selecting a small portion of unlabeled points for
manual annotation [see Fig. 1(c)]. Based on those manually
annotated points, a statistical model for semantic labeling of
point clouds is learned.

Recently, probabilistic graphical models, e.g., Markov
random field (MRF) [15] and conditional random
field (CRF) [16], were commonly explored to account
for contextual information in semantic labeling of point
clouds [8]. Active learning requires frequently retraining a
statistical model. Therefore, in our framework, at the model
learning stage, due to computational concerns during learning
and inference, we choose pairwise CRFs, where unary and
pairwise potentials carry category probabilities and contextual
information between neighboring variables, respectively.

A lot of work demonstrates that a higher order graphical
model, which models long-range interactions between vari-
ables, provides more knowledge about the context of a scene
and improves the semantic labeling results [10], [11], [18].
Only modeling local interactions among variables by pairwise
CRFs is insufficient to encode long-range contextual infor-
mation among variables and reduces the labeling accuracy.
Therefore, in this paper, we propose to use a higher order MRF
to refine the labeling results obtained by the pairwise CRFs.
However, our active learning method only provides training
samples as a set of separated and annotated points rather than
fully supervised scenes. Because of lacking fully supervised
scenes at training stages, it is challenging to adapt traditional
higher order MRFs into label refinement directly. Therefore,
in labeling framework, a higher order term not depending on
fully supervised training scenes is needed. Inspired by the
observation of describing a region with as few categories as
necessary, we propose a higher order term named regional

label cost term to reduce unnecessary categories by imposing
costs on the used categories in labeling a region. The proposed
regional label cost term can perform well despite lack of fully
supervised training scenes and is suitable to be applied in
refining the labeling results inferred by pairwise CRFs learned
in active learning procedure.

In this paper, we propose a new framework using active
learning and higher order MRF for semantic labeling of
mobile LiDAR point clouds. Active learning iteratively selects
a portion of unlabeled samples to be manually annotated and
creates a minimal training set. Once the creation of training set
is finished, a pairwise CRF is learned to classify the unlabeled
samples in the road scene of point clouds. To improve the
labeling results obtained by a pairwise CRF, we present a
higher order MRF, which applies regional label cost terms to
explore long-range interactions among variables. Our proposed
framework is validated on three data sets of mobile LiDAR
point clouds, and the evaluations exhibit the capability of our
proposed framework on semantic labeling of point clouds.

The main innovative contributions of this paper to semantic
labeling of mobile LiDAR point clouds can be summarized as
follows.

1) To avoid annotating the whole training scenes manu-
ally and reduce the requirements of manually anno-
tated training samples for labeling point cloud scenes,
we introduce active learning to select as few points as
possible for manual annotation and to form a minimal
training set. To conduct unbiased sampling during active
learning procedure, we propose to exploit the neighbor-
consistency prior to select the potentially inaccurately
labeled samples to be annotated manually.

2) To consider more contextual information into semantic
labeling, we propose a higher order MRF method to
refine the labeling results obtained by pairwise CRF.
The proposed higher order MRF method, which does
not require fully supervised training scenes, improves
the labeling results by reducing unnecessary categories
used in describing a region.

The remainder of this paper is organized as follows.
Section II introduces some related work. Section III presents
the components of our proposed framework. Section IV reports
extensive experimental results and evaluates the performance
of the proposed framework. Finally, Section V gives the
concluding remarks and hints at plausible future research.

II. RELATED WORK

Most works on semantic labeling of point cloud road scenes
focused mainly on exploiting probabilistic graphical models.
The pairwise CRF was used to extensively ensure category
label consistency between neighboring points [8], [19]–[21].
In [8], a maximum-margin framework is proposed to dis-
criminatively train a pairwise associative Markov networks to
annotate the objects of interest. In [20], to reduce redundancy
of labeling every individual point, adaptive support regions
(supervoxels) are treated as basic units to model a multiscale
pairwise CRF. In [21], a patch-based framework was proposed
to label road scenes by exploiting object intrinsic properties
to transfer category labels from labeled scenes to unlabeled
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Fig. 2. Overview of our proposed framework for semantic labeling of point clouds. (Different colors represent different categories.)

ones and applying a pairwise CRF model to consider contexts
for refining the transferred labels. In [22], random forest (RF)
classifiers were learned on the training data automatically
generated by exploiting the prior knowledge among classes,
and the labeling results were further refined by pairwise
CRF. In [23], the weak priors in the street environment
were used to conduct automatic generation of training data.
Based on those training data, a pairwise CRF-based semantic
labeling method was proposed to segment images and scanned
point cloud simultaneously. The success achieved by pair-
wise CRFs notwithstanding, long-range interaction between
variables, essential to exploit more contextual information in
complex scenarios, is ignored. The Potts model (a higher
order graphical model) [24] was used to keep category labels
homogeneous in a predefined clique [11]. To allow a por-
tion of inhomogeneous labels in a clique, a robust Potts
model [25] was introduced and integrated into the Max-Margin
Markov Network (M3N) [10]. In [18], a set of new higher
order pattern-based potentials were designed to encode the
geometric relationships between different categories within
the cliques, rather than simply encourage the nodes in a
clique to have consistent labels. Considering a large amount
of annotated data required in the past studies, our proposed
framework introduces active learning to reduce the large
amount of demand on annotated data for the labeling tasks.

Due to the complexity of the probabilistic graphical models,
in the semantic labeling area, there were only a few stud-
ies [26], [27] on the combination of probabilistic graphical
models and active learning strategies. In [26], an expect
change strategy was used to find the informative samples,
which induce largest expected changes in overall CRF state
after revealing their true labels. In margin-based sampling,
a loopy belief propagation algorithm [28] was used to exploit

both spectral and spatial information to actively select infor-
mative samples, where conditional margin of each sample
was estimated in a discriminative random field model [27].
Li et al. [27] believe that integration of probabilistic graphical
models and active learning assists in providing both local
and contextual information for selecting informative samples.
In our proposed framework, we not only consider the neigh-
boring contexts information to select the most informative
samples by using a pairwise CRF model, but also try to
keep the diversity of the selected samples to some extent by
adding the potentially misclassified samples into the manually
annotated training set.

III. PROPOSED FRAMEWORK

Section III is organized as follows. An overview of our
proposed framework for semantic labeling of mobile LiDAR
point clouds is presented in Section III-A. Then, the super-
voxel segmentation is described in Section III-B. The active
learning is given in Section III-C. Finally, category label
refinement with incorporated regional label costs is explained
in Section III-D.

A. Overview of the Proposed Framework

Our proposed framework is divided into two stages:
model training stage and label inferring stage. As shown
in Fig. 2, at the model training stage, unlabeled training point
cloud scenes are first oversegmented into spatially consistent
supervoxels through the voxel-cloud connectivity segmen-
tation (VCCS) algorithm [29]. After supervoxel extraction,
all the unlabeled supervoxels form an unlabeled supervoxels
pool. Then, in the pool, active learning is applied to select
valuable unlabeled supervoxels to query their category labels.
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In addition, those supervoxels, with queried labels, are formed
as a training set and used to learn a pairwise CRF model.

At the label inferring stage, initial labeling of unlabeled
point cloud scenes is first inferred by applying a trained pair-
wise CRF. Because long-range interactions in a region cannot
be well modeled by using only unary and pairwise potentials
in a pairwise CRF model, some mislabeled supervoxels remain
in the initial labeling results (see Fig. 2). To refine the
initial labeling results, we exploit a higher order MRF model
to describe long-range interactions between supervoxels for
category label refinement.

B. Supervoxel Segmentation
To reduce the huge computational burden brought by the

large amount of points in our data set, supervoxels, instead
of the original points, are treated as basic operational units in
the proposed framework. The VCCS algorithm is an effective
supervoxel generation algorithm [29], where points within
each supervoxel have consistent 3-D geometry and appearance.
Moreover, supervoxels obtained by the VCCS algorithm can
effectively preserve boundary information according to the
constraint that each supervoxel cannot flow across the object
boundaries. Therefore, it is suitable to directly handle the
supervoxel in point cloud labeling tasks. In the proposed
framework, given a point cloud scene, we obtain a set of super-
voxels using the VCCS algorithm. There are two important
parameters: voxel resolution and seed resolution. The voxel
resolution is used to define the operable unit of the voxel-cloud
space, whereas the seed resolution determines the seed points
for constructing initial supervoxels. In this paper, the voxel
resolution and seed resolution are set at 0.05 and 0.1 m,
respectively.

To describe each supervoxel, we use the following features:
1) Fast Point Feature Histograms (FPFHs) descriptor [30],

a rotation-invariant feature, which describes the local
surface geometry of points in a supervoxel;

2) spectral features [11] that capture scatter, linearity, and
planarity of point distributions in a supervoxel;

3) deviation of the normal vector direction of a supervoxel
from the z-axis, which assists in distinguishing between
the horizontal and vertical planar surfaces [11];

4) height of the centroid point in a supervoxel;
5) mean RGB color values in a supervoxel.

C. Active Learning

To reduce the manual annotation of training samples, given
a pool of unlabeled supervoxels S, active learning iteratively
selects a set of unlabeled supervoxels to be manually anno-
tated. The manually annotated supervoxel set, DL ⊆ S,
is treated as a training set to train a statistical model w.
Algorithm 1 gives the main procedure of the active learning
algorithm. In Algorithm 1, line 3 trains a statistical model
based on current annotated samples DL . Here, in order to
consider contextual information between supervoxels, our pro-
posed framework selects pairwise CRF as a statistical model.
Line 4 selects the valuable supervoxel xs under current CRF
model and manually annotates the selected valuable super-
voxel. In our proposed framework, we propose a new sampling

Algorithm 1 Active Learning Algorithm
Input: a pool of unlabeled supervoxels, S
Output: the manually annotated supervoxel set, DL , and a

statistical model, w
1: initialize DL by annotating several samples manually
2: repeat
3: w = pairwise_CRF_model_training(DL)
4: xs = AL_Select_Valuable_Sample(w,S)
5: S = S − xs

6: DL = DL + xs

7: until the stopping criterion is met
8: return DL and w

method called modified margin-based sampling (MMbS) to
select valuable supervoxels.

In the remainder of this section, we first introduce a pairwise
CRF model. Second, the proposed sampling method, MMbS,
is explained. Finally, the whole procedure of actively selecting
valuable samples is described.

1) Pairwise CRF Model: Given a set of supervoxels
x = (x1, x2, . . . , xN ) obtained from point cloud scenes, where
N is the number of supervoxels, the semantic labeling tasks
predict a labeling, y = (y1, y2, . . . , yN ), for all the supervox-
els x. A category label, yi ∈ L = {1, . . . , L}, is assigned to
each supervoxel xi . Here, L is the number of categories.

With these definitions in place, we build the posterior
density p(y|x) of the categories y, given the features of
supervoxels, x by a pairwise CRF model

p(y|x) = 1

Z(x, w)
exp(−Es(x, y, w)) (1)

where Z(x, w) is the partition function and the energy function
Es of our pairwise CRF model is formulated as follows:

Es(x, y, w) =
N∑

i=1

φu(yi , xi , w) + α
∑

(xi ,x j )∈N
φp(yi , y j , xi , x j )

(2)

where φu and φp represent the unary term and pairwise term,
respectively. Here, N denotes the set of spatially adjacent
supervoxels. The parameter α controls the weight of the
pairwise term. w is the parameters in the unary term φu .

The unary term φu(yi , xi , w) measures how well super-
voxel xi takes category yi under current model w. We define
our unary term as follows:

φu(yi , xi , w) = − log(Pu(yi |xi , w)) (3)

where Pu(yi |xi , w) is the probability of category label yi taken
by supervoxel xi . To obtain Pu , given the features or descrip-
tors of supervoxels, one-versus-all RF classifiers [31] are first
learned for each category in a training set. Then, once the
RF classifiers are learned, their probabilistic output, Pr (yi |xi),
of supervoxel xi taking category yi is calibrated via a multi-
class logistic classifier [32] as follows:

Pu(yi |xi , w) = 1

1 + exp(wa Pr (yi |xi) + wb)
(4)
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Fig. 3. Toy examples of active selection of samples. (a) Unlabeled sample pool. (b) Sample selection by MS. (c) Sample selection by MMbS considering
the neighbor-consistency prior. In (c), the dotted line represents that samples A and B are spatially adjacent.

where wa and wb are the parameters of the sigmod function
that is estimated using a maximum likelihood method for
optimizing the training set. These parameters are obtained by
a gradient descent search method.

The pairwise energy term φp takes the Potts model [24],
which encourages neighboring supervoxels of similar feature
with the same category. We define our pairwise term as
follows:

φp(yi , y j , xi , x j ) =
{

D(xi , x j ), yi �= y j

0, yi = y j
(5)

where D(xi , x j ) is a similarity metric which measures the
similarity of two supervoxels. We scale the value of D(xi , x j )
to [0, 1] to meet the requirement of submodular. To this end,
given the unary term and pairwise term, the labeling ŷ can
be predicted by efficiently minimizing the energy function (2)
through the α-expansion algorithm [33]

ŷ = argmin
y∈LN

Es(x, y, w). (6)

2) Modified Margin-Based Sampling: The margin-based
sampling (MS) [34], as a basic active learning algorithm,
actively selects valuable samples to reduce the model uncer-
tainty by focusing on the margins of current classifiers. The
margin-based uncertainty, MU(xi ), of a supervoxel xi is
measured by (7), which computes the difference between best
versus second best class prediction

MU(xi ) = Pu
(

ŷ2
i |xi , w

)− Pu
(

ŷ1
i |xi , w

)
(7)

where ŷ1
i and ŷ2

i are the first and second most probable class
labels under current statistical model, respectively. The higher
value of MU(xi) means that supervoxel xi is more valuable
and uncertain. Therefore, in MS, samples nearby the margins
of classifiers are considered uncertain to a model.

As illustrated in Fig. 3, MS can effectively select samples
nearby the margin of current classifiers, but ignore some
sample distributions, e.g., the region R1, which are surrounded
by other categories and away from the margin. However, those
samples from these ignored distributions may be crucial for the
learning procedure needed to train discriminative classifiers.

Commonly, samples in those ignored regions are misclassi-
fied by current model. Intuitively, samples from those ignored
regions can be incorporated into training set by searching
misclassified samples. In addition, from the perspective of
classification, selecting the misclassified samples into training
set assists in gradually improving the accuracy of classi-
fiers. In order to find misclassified samples, the neighbor-
consistency prior that pairwise supervoxels have a high
probability of taking the same category label is considered
into the sampling procedure [see Fig. 3(c)]. Here, pairwise
supervoxels are defined as two spatially adjacent supervoxels.

Based on the neighbor-consistency prior, if one super-
voxel x j in pairwise supervoxels (xi , x j ) with different cat-
egories has been known its true category label y j , we can
define the misclassified possibility, MP(xi ), of supervoxel xi

as follows:

MP(xi ) = 1 − Pu(y j |xi , w). (8)

Equation (8) implies that higher misclassified probability will
be given to supervoxel xi , if the inferred category of super-
voxel xi has the lower probability of the category which is the
same with the true category of its neighboring supervoxel x j .

The MMbS is proposed by introducing the neighbor-
consistency prior into MS (see Algorithm 2). The MMbS
selects potentially misclassified samples to cover the ignored
sample distributions while considering determination of accu-
rate margins for classifiers. More concretely, in Algorithm 2,
lines 1–4 apply the MS to sample the informative samples
by focusing on the margins of classifiers. Based on the true
categories of the samples selected by the MS, lines 4–9
exploit the neighbor-consistency prior to select the possibly
misclassified samples. Threshold ρ allows us to select the
samples with high misclassified probability.

3) Active Selection Procedure: As illustrated in Fig. 2,
at each iteration of active learning, a pairwise CRF model
is first learnt and updated over a set of manually annotated
supervoxels. Second, the pairwise supervoxels with different
inferred labels are collected. Third, only pairwise supervoxels
containing minority category are taken as input to the MMbS.
Here, the minority category is dynamically determined by the
current set of manually annotated supervoxels. This strategy
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Algorithm 2 Modified Margin Sampling to Actively Select
Valuable Supervoxels
Input: a set of pairwise supervoxels D = {(xi , x j )} inferred

with different categories
Output: the manually-annotated supervoxel set D∗

L
1: for each supervoxel not inferred as minority category in D,

compute MU by Eq. (7)
2: select the supervoxel x∗ with highest MU and obtain its

true label y∗
3: insert (x∗, y∗) into D∗

L
4: for each pairwise supervoxel, (xi , x∗), compute MP of

supervoxel, xi , by Eq. (8)
5: select the supervoxel, x ′

i , with highest MP
6: if MP(x ′

i ) > ρ then
7: obtain true label, y ′

i , of supervoxel, x ′
i ,

8: insert (x ′
i ,y

′
i ) into D∗

L
9: end if

10: return D∗
L

Fig. 4. Graphic example of a higher order MRF. φu represents unary
potential, φc represents pairwise potential, and φp represents higher order
potential.

assists in keeping diversity in the composition of the training
set by avoiding the sampling procedure being trapped in one
category. Finally, through MMbS algorithm, the most valuable
supervoxels are selected and manually annotated.

All the above steps are performed in each iteration. Itera-
tions terminate when a defined maximum iteration is reached.
Once the iterations are terminated, a pairwise CRF model is
finally trained based on manually annotated supervoxels for
semantic labeling of mobile LiDAR point clouds.

D. Label Refinement by Higher Order MRF
As shown in Fig. 2, there is a portion of the inaccurate

categorial labels in initial labeling results obtained by applying
pairwise CRF. This is because only short-range energy term
(pairwise energy potential) is insufficient to describe long-
range interactions among the supervoxels from point cloud
scenes. We propose to exploit higher order MRF to consider
more contexts into label refinement. As shown in Fig. 4,
pairwise potential only models the interaction between two
variables. However, higher order potential can describe the
interactions among variables belonging to a clique (region).

Fig. 5. Example of label refinement with regional label cost. (a) Initial
labeling result obtained by applying a pairwise CRF model. (b) Regions
generated by the clustering algorithm. (c) Final region used in label
refinement. (d) Refined labeling with considering regional label cost.

Therefore, we design the energy function of the higher order
MRF as follows:

E(y) = Eu(y) + αE p(y) + β Ec(y) (9)

where α and β are the weights of pairwise term E p and higher
order term Ec, respectively. The unary term Eu and pairwise
term Ec are defined as (2). In addition, the related parameters
are set to be the same as the pairwise CRF trained in active
learning procedure.

The higher order term Ec is designed by using the label cost
term introduced in [35]. The label cost term tends to reduce
redundant label categories by imposing the cost of these labels
that exist in a category subset. In our proposed framework,
the purpose of introducing a label cost term in our proposed
framework is to use fewer category labels to describe a region
in point cloud scenes by penalizing redundant categories
(see Fig. 5). By eliminating the unnecessarily used categories
in a region, many mislabeled points in initial labeling results
may be rectified. We define the higher order term Ec as
follows:

Ec(y) =
∑
r∈R

Er
label(y) (10)

where R represents the region set in a point cloud scene.
Er

label(y) represents the region r ’s label term which penalizes
each unique label that appears in region r

Er
label(y) =

∑
l∈y

hr (l) · δr (l) (11)

where hr (l) is a nonnegative label cost of label l and is given
by (13). δr (l) is a function that indicates whether label l is
used in labeling region r

δr (l) =
{

1, ∃xi ∈ r : yi = l

0, otherwise
(12)

hr (l) =
⎧⎨⎩exp

(
Ml − |Sr (l)|

Ml

)
, |Sr (l)| < Ml

0, otherwise
(13)

Sr (l) = {xi |∀xi ∈ r ∧ ỹi = l} (14)

where Sr (l) represents the set of supervoxels, which belong
to category l in region r . ỹi is the initial category label of
supervoxel xi . |S| represents the size of set S. Ml is a constant
number for a specific label l.
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By using (13), the label term penalizes category l heavily
when there are a few supervoxels labeled as category l.
In addition, (13) also implies that in region r , if the number of
supervoxels of a specific category l is larger than a constant
number Ml , we will assume that the specific category l is in
region r . Intuitively, Ml should be related to the size of objects
in category l. Thus, in the experiments, we set Ml according
to the number of supervoxels belonging to individual object
of category l.

To impose constraints on category labels in a region, it is
critical to define regions in a scene. In our framework, a clus-
tering algorithm is carried out to generate regions through
clustering adjacent supervoxels. In the clustering algorithm,
the basic operational units are supervoxels with category
labels, which are obtained by applying the trained pairwise
CRF. Terminating the growth of a region should meet one
of two conditions: 1) there is no supervoxel adjacent to the
region and 2) all the supervoxels adjacent to the region should
belong to termination regions. Here, a termination region
is defined as a set of spatially connected supervoxels with
same category labels, and the size of the set of connected
supervoxels should be larger than a defined constant ρmax.
In general, the easily classified categories, such as ground and
grass, are used to define the termination regions. Once the
growth of the region is terminated, a region [see Fig. 5(c)]
used in the label refinement is defined by two parts: a region
generated by the proposed clustering algorithm [see Fig. 5(b)]
and its connected termination regions.

Once region extraction is completed, energy E is minimized
by Algorithm 3 which iteratively implements the extending
α-expansion algorithm introduced in [35]. Finally, the refined
labeling results [see Fig. 5(d)] are obtained.

Algorithm 3 Label Refinement by Regional Label Costs
1: define the regions according to initial labeling
2: compute hr (l) and Sr (l) for each defined region
3: for each region, re-estimate the labeling by extending

α-expansion algorithm [35]

IV. RESULTS AND DISCUSSION

To quantitatively evaluate the accuracy and correctness
of the proposed method on semantic labeling of point
clouds, three measurements, including precision, recall, and
F1-measure [18], were selected. Precision describes the per-
centage of true positives in the ground truth; recall depicts
the percentage of true positives in the semantic labeling
results; and F1-measure is an overall measure. The three
measurements are calculated on points and defined as follows:

precision = TP

TP + FN
(15)

recall = TP

TP + FP
(16)

F1-measure = 2 · precision · recall

precision + recall
(17)

where TP, FN, and FP represent the numbers of true positives,
false negatives, and false positives, respectively.

Fig. 6. Illustration of the REIGL VMX-450 mobile LiDAR system and its
configurations.

A. Experimental Data Set

Devoted to illustrating the capabilities of our presented
framework on semantic labeling of mobile LiDAR point
clouds, we perform both qualitative and quantitative evalu-
ations on three different data sets.

The point clouds in both data sets I and II are collected by
an RIEGL VMX-450 mobile LIDAR system [36] on Xiamen
Island, China. This LIDAR system, smoothly integrating two
RIEGL VQ-450 laser scanners, a global navigation satellite
system antenna, an inertial measurement unit, a distance mea-
surement indicator, and four high-resolution digital cameras,
was mounted on the roof of a minivan with an average speed
of 40–50 km/h (Fig. 6). The point density of acquired points
is about 7000 points/m2. The accuracy and precision of the
scanned point clouds are within 8 and 5 mm, respectively.
After data acquisition, we used RiProcess, a postprocess
software released by REIGL corporation, to obtain colorized
mobile LiDAR point clouds by registering the images with
point clouds. To evaluate the performance of semantic labeling
methods, two data sets of road scenes are built by manually
classifying all the points. Data set I consists of eight chal-
lenging categories: palm tree, cycas, brushwood, vehicle, light
pole, grass, and road. Data set II contains seven challenging
categories: tree, vehicle, wall, light pole, ground, and pedes-
trian. As shown in Table I, there is a category imbalance
problem in both data sets, e.g., the points of light poles and
vehicle are much fewer than the other categories (data set I);
the points of light poles and pedestrian are much fewer than
the other categories (data set II). In addition to challenges
brought by category imbalances, other challenges, such as
intraclass variations, interclass similarities, overlapping, and
object incompleteness, commonly exist in our ground truth.

The point clouds in data set III are collected around
CMU campus in Oakland, Pittsburgh, PA, USA, by using
the Navlab11 equipped with side looking SICK LMS laser
scanners. Due to lack of cameras in the Navlab11, there is no
color information in the collected point clouds. Four categories
(ground, building, vehicle, and trees) provided in [11] are
used in our experiments. As shown in Table I, the amount
of the points in data set III is much smaller than those in data
sets I and II. This is because the point density in data set III
is much lower than those in data sets I and II.

In our experimental setup, each data set is partitioned
into two parts: training and testing samples (see Table I).



3638 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 7, JULY 2018

TABLE I

DESCRIPTION OF GROUND TRUTH (UNIT: K POINTS)

The training samples are used as forming the unlabeled sample
pool for the active learning procedure. The testing samples are
used to evaluate the performance of our proposed framework
in labeling point clouds.

B. Manually Annotate Training Sets With Active Learning
In the pairwise CRF model used in active learning, for

data sets I and II, we define the similarity metric D(xi , x j )
with (18). For data set III, we define the similarity metric
D(xi , x j ) with (19) by using the χ2 distance [37] of the FPFH
descriptor of supervoxels xi and x j

Dcolor(xi , x j ) = exp

(
−γ

3∑
k=1

|Ci (k) − C j (k)|
255

)
(18)

Dfpfh(xi , x j ) = exp

(
−γ

16∑
k=1

[Fi (k) − Fj (k)]2

Fi (k) + Fj (k)

)
(19)

where Fi denotes a 16-D FPFH descriptor for a supervoxel xi ;
Ci represents an RGB color vector of a supervoxel xi ; γ is
a scale factor which makes the unary term and pairwise term
comparable. In the experiments, we set γ at 15 to make unary
term and pairwise term comparable.

In active learning, at each iteration, we use these manually
annotated supervoxels as inputs to train a set of one-versus-all
RF classifiers. The number of decision trees in the RF is set
at 100. The depth of each tree is set at 15. Threshold ρ used
in Algorithm 2 is set to 0.7. In the first iteration, the selected
samples are initialized by randomly selecting 20 samples
for each category to query their category labels. During the
sampling procedure, as suggested in [38], we adopted the
batch model, which selects multiple supervoxels to be anno-
tated manually at each iteration, to reduce the overwhelming
computational complexity brought by the serial model. More
specifically, all the pairwise supervoxels, which are the inputs
to Algorithm 2, are clustered into several groups by applying
k-means clustering [39]. Five clusters are obtained according
to the feature descriptors of the supervoxels which are not
inferred as the current minority category. Then within each
group, the MMbS is applied to select valuable supervoxels.

1) Qualitative and Quantitative Results: To assess the
performance of the proposed MMbS in actively creating a
promising and minimal training set, we perform both qual-
itative and quantitative evaluations on all the data sets. Initial

Fig. 7. Qualitative labeling results on a part of data set I. (a) Colorized point
clouds. (b) Ground truth. (c) Semantic labeling results. (d) and (f) Close-up
views of the ground truth in areas #1, #2, and #3. (g) Close-up views of
the initial labeling results obtained by applying pairwise CRF model in areas
#2 and #3. (e) and (h) Close-up views of the refined results obtained by
incorporating regional label costs in areas #1, #2, and #3.

labeling results obtained by applying the pairwise CRF model
are shown in Figs. 7(g), 8(c) and (d), and 9(e) and (f).
Although there is a small portion of mislabeled points caused
by local feature similarities, the majority of the points in
the initial results are correctly classified, which prove the
effectiveness of MMbS in our proposed framework. Moreover,
as shown in Tables II–IV, the average initial labeling results
(AL-Pairwise) achieved in precision, recall, and F1-measure
on data sets I–III are (0.794, 0.69, 0.772), (0.818, 0.773,
0.781), and (0.879, 0.867, 0.873), respectively. The quantita-
tive results demonstrate the feasibility of our proposed MMbS
to create a small training set for training a labeling model
which can perform well on classifying 3-D points.

2) Comparison With Traditional Active Learning Methods:
To exhibit the superior performance of our proposed sam-
pling method over other traditional active learning method,
we compared the proposed MMbS with three competing
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TABLE II

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET I

TABLE III

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET II

Fig. 8. Qualitative labeling results on two scenes in data set II.
(a) and (b) Ground truth. (c) and (d) Initial labeling results. (d) and (e) Refined
labeling results.

sampling strategies: 1) a baseline random sampling (RS);
2) MS computed by (7); and 3) entropy-based sam-
pling (ES) [40] computed by

Ent(xi) = −
∑
yi∈L

Pu(yi ) log(Pu(yi)). (20)

Fig. 9. Qualitative labeling results on data set III. (a) Ground truth.
(b) Semantic labeling results. (c) and (d) Close-up views of the ground
truth in areas #1 and #2. (e) and (f) Close-up views of the initial labeling
results obtained by applying a pairwise CRF model in areas #1 and #2.
(g) and (h) Close-up views of the refined results obtained by incorporating
regional label cost areas #1 and #2.

In order to compare the performance of sample selections
conveniently, the label refinement step is not included in
our comparative experiments. To eliminate the influence of
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TABLE IV

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET III

Fig. 10. Average labeling results achieved by the MMbS, ES, MS, and RS on data set I: average precision, average recall, and average F1-measure.

Fig. 11. Average labeling results achieved by the MMbS, ES, MS, and RS on data set II: average precision, average recall, and average F1-measure.

Fig. 12. Average labeling results achieved by the MMbS, ES, MS, and RS on data set III: average precision, average recall, and average F1-measure.

random initialization of annotated supervoxels, we repeated
each sampling strategy 50 times. The mean values of each
sampling method for average precision, recall, and F1-measure
are recorded at different amounts of manually annotated
samples.

The mean values for average precision, recall, and
F1-measure on data sets I–III are shown in Figs. 10–12,
respectively. As the number of supervoxel labels queried
increases, the MMbS curves of precision, recall, and
F1-measure demonstrate the stable performance of our
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proposed sampling method. In addition, although the preci-
sions of MMbS, ES, and MS are close (see Figs. 10 and 11),
the curves of recall and F1-measure clearly demonstrate the
superiority of our MMbS over other sampling methods, which
reflects the effectiveness of exploiting neighbor-consistency
prior to select potentially misclassified supervoxels into train-
ing sets.

C. Semantic Labeling With Higher Order MRF
At the label inferring stage, all the parameters used in (9)

and (13) are experientially defined by visual inspection of the
effect of the labeling results, and their values in our experiment
settings are listed in Table V. In addition, during the region
extraction procedure, the categories used in generating termi-
nation regions on data sets I–III are (road and grass), (ground
and trees), and (ground), respectively. In addition, the constant
ρmax is set at 300.

1) Qualitative and Quantitative Results: To assess the per-
formance of the proposed higher order MRF on refining the
initial labeling results obtained by pairwise CRF, we exhibit
both qualitative and quantitative evaluations on all built data
sets. As presented in Figs. 7(h), 8(e) and (f), and 9(g) and (h),
the refined labeling results demonstrate the promising capa-
bilities of our proposed framework on labeling point clouds.
Compared to the initial labeling results, a remarkable
improvement was achieved. This is because the proposed
higher order MRF can obtain smooth labelings by reducing
redundant categories in a defined region. As the quanti-
tative results reported in Tables II–IV, the average pre-
cision, recall, and F1-measure achieved by our proposed
framework (AL-Pairwise+LabelCost) further demonstrate the
proposed higher order MRF which reduces the redundant
categories can help us to correct some misclassified points.

In addition, our proposed higher order MRF can effectively
avoid oversmoothing overlapped objects and preserve over-
lapped objects. Therefore, the proposed higher order MRF
performs well in the complex scenarios of overlapped objects.
As shown in Figs. 7(h) and 8(e), although the tree and
light poles are overlapped, our proposed higher order MRF
avoid light poles being misclassified as tree, which shows the
capabilities to deal with the scenario where objects overlapped.
However, we find that a very small object may be mislabeled
as its connected category. As shown in Fig. 7(h), small
brushwood is oversmoothed and mislabeled as grass by our
proposed higher order MRF.

As shown in Fig. 8(f), by considering the long-range con-
texts, our proposed higher order MRF correctly recognizes the
moving and stationary vehicles, which shows its capability to
handle the incompleteness and intraclass variations. However,
as shown in Fig. 8(e) and (f), there are some tree trunks
mislabeled as pedestrians; this is because in the initial labeling,
the accuracy is low, and many points of a tree trunk are mis-
labeled as a pedestrian. Under these circumstances, the higher
order MRF cannot rectify the mislabeled points.

D. Comparative Studies

To show the superior performance of our proposed frame-
work in the semantic labeling of mobile LiDAR point

Fig. 13. Comparative labeling results on different scenes. (a)–(c) Colorized
point clouds. (d)–(f) Ground truth. (g) and (h) Labeling results by applying
3D-PMG+MRF. (i) Labeling results by applying M3N. (j)–(l) Labeling results
by applying our AL-Pairwise+LabelCosts.

TABLE V

PARAMETERS IN THE PROPOSED FRAMEWORK

clouds, the following three approaches were evaluated on data
sets I and II for comparison: shape based [41], M3N [10], and
3-D-PMG based (3D-PMG+MRF) [21]. The settings of those
approaches are the same as [21]. The shape-based approach
tries to segment objects out of the point cloud scenes and then
uses global features to recognize objects [41]. As shown by
the quantitative results in Table II, the poor performance of
the shape-based approach demonstrates that overlapping and
incomplete objects in these complex scenarios are huge obsta-
cles stymieing the success of these methods which depend
on segmenting objects out of the whole scene. As shown
in Table II, the performance of our AL-Pairwise achieves
a lower average F1-measure than that of M3N approach
whose average F1-measure is 0.784, because the M3N
approach adopts a high-order potential energy term (a robust
Potts model [25]) to model relatively long-range interactions
among points. In addition, the 3D-PMG+MRF outperforms
AL-Pairwise because of the consideration of object intrinsic
and contextual properties when conducting label transfer.
However, by exploiting the long-range contextual informa-
tion, the AL-Pairwise+LabelCost approach, imposing regional
label costs constraints on the initial labeling of AL-Pairwise,
obtains better results than those of the other methods. Because
the AL-Pairwise+LabelCost approach models not only short-
range but also long-range contexts, it achieves a smoother
labeling than that of 3D-PMG+MRF. As illustrated by the
qualitative comparisons in Fig. 13, AL-Pairwise+LabelCosts
preserve the vehicle, light poles, and palm trees better than
those of 3D-PMG+MRF.

To further demonstrate the superiority of our proposed
method on data set III, we conduct comparisons with the two
following works: [21] and [22]. From Table IV, it is noted that
our proposed method achieves the best results on data set III.

As illustrated in Table III, the AL-Pairwise outperforms the
M3N and 3D-PMG+MRF on the data set II where scenarios
are cluttered and more complex than data set I. This is because
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TABLE VI

TRAINING TIME ON DIFFERENT APPROACHES (UNITS: HOURS)

TABLE VII

LABELING TIME ON DIFFERENT APPROACHES (UNITS: HOURS)

complex and cluttered scenes cannot be well modeled for
3D-PMG+MRF, and M3N is not designed for the imbal-
anced data set. As reflected in Fig. 13(h), 3D-PMG+MRF
mislabeled wall and vehicles to some extent because of
the inaccurate color information caused by complex scenes.
Thus, the AL-Pairwise+LabelCost modeling the higher order
contexts obtains a more satisfied result [see Fig. 13(k)].
As reflected in Fig. 13(i), the M3N classified the light pole
with many false positives and can hardly recognize pedes-
trians, while our proposed methods can correctly annotate
pedestrians to some extent [see Fig. 13(l)]. The reason is that
our sampling method exploits the neighbor-consistent prior to
reduce the classification errors for the minority categories.

The proposed framework and comparative studies were
coded with C++ and executed on a personal computer with
a single Intel core of 3.30 GHz and a RAM of 16 GB.
The processing time of the experiments was reported
in Tables VI and VII. For our proposed framework, the training
time containing the active learning procedure was approx-
imate 2.5, 2.1, and 1.9 h, respectively, on three data sets.
In addition, the labeling time on three data sets was 4,
2.3 and 2.5 h, respectively. The labeling times of our labeling
framework are lower than those of shape-based, M3N, and
3D-PMG+MRF methods. Therefore, our proposed method has
time–cost advantages.

From Figs. 7–9 and Tables II–IV, we can conclude that the
presented framework can well distinguish the object classes
from the point cloud of complex urban environments. The
long-range contextual information encoded by higher order
MRF can help us to correct some certain mislabeled classes
and improves the labeling accuracy. Moreover, the proposed
active learning method also assists in improving the classifi-
cation accuracy by selecting the valuable samples to form a
minimal training set.

E. Sensitivity of Proposed Framework
Here, we analyze the impact of the weight of regional

label costs β on the performance of labeling mobile LiDAR
point clouds. The analysis was performed on data set I.
As reflected in Fig. 14, the F1-measure changes with the
increase in parameter β, and these F1-measures obtained by all

Fig. 14. Impact of the weight of regional label costs on semantic labeling
results.

Fig. 15. Qualitative labeling results on two example scenarios with setting
different weights β of regional label costs. (a) and (d) Initial labeling results.
(b) Refined labeling results at β = 20. (c) and (f) Refined labeling results at
β = 60. (e) Refined labeling results at β = 120.

these parameters show the improvement of the initial labeling
results. Because a larger value of β means more costs imposed
on the number of used categories, the F1-measure peak value
is reached at a median value β = 60. The large costs may
cause oversmooth labeling results, whereas a smaller β means
fewer costs imposed on the number of used categories. Small
costs may be inadequate to rectify a relatively large quantity
of inaccurate labels. To further explain the influence of β,
two example labelings given in Fig. 15 are used to illustrate
the large and small cost scenarios, respectively. As shown
in Fig. 15(b), the configuration of β = 20 in our proposed
framework is too small to rectify the inaccurate labels of cycas.
As reflected in Fig. 15(e), the configuration of β = 120 in
our proposed framework is too big to preserve the accurately
labeled objects cycas. The proper value of β = 60 achieves
a promising refined labeling results [see Fig. 15(c) and (f)].
Therefore, to make a balance between the aforementioned two
scenarios, we set the weight of regional label costs at β = 60.

To analysis the impact of number of queried supervoxels
on the label refinement, both the initial and refined labeling
results were recorded at the following configurations: 100, 300,
500, 700, 900, 1100, and 1300. As reflected in Fig. 16, all
the curves going up with an increase of queried supervoxels
demonstrate the stability of our framework. The curves of
AL-Pairwise+LabelCost lie above the curves of AL-Pairwise
in both two data sets. This is because our higher order
potentials can rectify the mislabeled points to some extent.
In addition, as the number of supervoxel labels queried
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Fig. 16. Impact of the number of queried supervoxels on the refined labeling
results.

increases from 900 to 1300, the average F1-measure values of
AL-Pairwise+LabelCost increase slightly, whereas the aver-
age F1-measure values of AL-Pairwise increase. This shows
that if the accuracy of labeling results has reached at a
high value, the refined results will stay at a high value of
F1-measure even though the initial results do not have a sig-
nificant improvement. In our experiments, we set the number
of queried supervoxels at 1100.

V. CONCLUSION

In this paper, we have presented a new framework which
integrates active learning and higher order MRF for effectively
conducting semantic labeling of mobile LiDAR point clouds.
In order to manually annotate the 3-D point cloud data as
small as possible, we introduce neighbor-consistency prior into
active learning to select the potentially misclassified samples
into training sets effectively. To consider more contexts into
refining the labeling results, a higher order MRF encoding
label cost terms is used to describe long-range interactions
among supervoxels in a region. Quantitative evaluations on
three different point cloud data sets have demonstrated that
the proposed algorithm achieves average F1-measure of 0.891,
0.829, and 0.954, respectively. By considering long-range
contextual information with higher order MRF, improvements
of average F1-measure over the initial labeling results are
up to 11.9%, 4.8%, and 8.1%, respectively, on three data
sets. Comparative studies have also demonstrated that the pro-
posed framework outperforms other traditional active learning
methods in creating an optimal training set and other fully
supervised semantic labeling methods in labeling point clouds.
In conclusion, the proposed method is feasible and achieves
satisfied performance in semantic labeling of mobile LiDAR
point clouds with a small portion of manually annotated
3-D points.
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