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Semiautomated Segmentation of Sentinel-1 SAR
Imagery for Mapping Sea Ice in Labrador Coast

Weikai Tan, Jonathan Li , Senior Member, IEEE, Linlin Xu , Member, IEEE, and Michael A. Chapman

Abstract—This study aims at proposing a semiautomated sea
ice segmentation workflow utilizing Sentinel-1 synthetic aperture
radar imagery. The workflow consists of two main steps. First,
preferable features in sea ice interpretation were determined with
a random forest feature selection method. Second, an unsupervised
graph-cut image segmentation was performed. The workflow was
tested on 13 Sentinel-1A images from January to June 2016, and
the results were evaluated on open water segmentation per ice
charts provided by Canada Ice Service. The results showed that
the proposed workflow was able to segment Sentinel-1 images in to
appropriate number of classes, and the potential water identifica-
tion rate reached 95%.

Index Terms—Image segmentation, sea ice, sentinel-1, synthetic
aperture radar.

I. INTRODUCTION

ARCTIC sea ice extent has been decreasing rapidly through
recent decades [1], [2] with a recorded loss of over

1 million km2 compared to the historical average from late 20th
to early 21st century [3]. In addition to loss of coverage, some
evidence of ice thickness reduction has also been observed [4],
[5]. If the decreasing trend continues, it is possible that peren-
nial ice in the Arctic might vanish within a few decades per
several climate models from Intergovernmental Panel on Cli-
mate Change 4th Assessment Report (IPCC AR4) [6], [7]. The
continuous loss of sea ice is considered to have profound im-
pacts on Arctic climate, hydrological cycle, and ecology locally,
regionally and globally [8]–[11]. In addition to the natural envi-
ronment, human activities are greatly affected by Arctic sea ice
dynamics as well. Marine activities in ice-infested regions such
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as the Canadian northern and eastern coast are highly dependent
on navigable routes. According to Canadian Coast Guard, the
number of ships navigated through Canadian Arctic has tripled
the number since 1990 [12]. The shrinking of Arctic sea ice
may provide longer ice-free periods and more navigable routes,
resulting in potential marine traffic increase in the future.

Given the significant impact of sea ice on climate and human
activities, it is crucial to monitor sea ice extents and conditions
in a timely and accurate manner. Satellite synthetic aperture
radar (SAR) systems are suitable for sea ice mapping since they
are active sensors that can acquire data regardless of solar il-
lumination and atmospheric conditions, enabling reliable and
long-term monitoring of sea ice. In addition, polar regions usu-
ally have long cloudy periods, which may result in temporal data
acquisition gaps for optical sensors [13]. More frequent cloud
coverage in Arctic regions can be expected in the near future,
as precipitation has been observed to significantly increase in
recent decades [14]. Canadian Ice Service (CIS), the official
provider of sea ice information in Canada, has been using SAR
imagery in daily operations for almost 30 years, but there are
two major challenges in sea ice monitoring.

First, CIS has been heavily relying on RADARSAT-2 since
RADARSAT-1 stopped service in 2013, and other sources thus
need to compensate for data limitation or potential loss of
RADARSAT-2. Sentinel-1 is a SAR satellite mission consists
of two satellites equipped with SAR sensors, and the images are
open to public. Terrain Observation Progressive Scan (TOPS)
acquisition mode [15] with expected better performance com-
pared to conventional ScanSAR mode [16] is used in large-swath
mapping. The first challenge is to find out whether Sentinel-1
can provide satisfying performance in ice products generation.
Second, CIS received about 64 000 RADARSAT-1 images from
2006 to 2013 and approximately 43 000 RADARSAT-2 images
from 2007 to 2014 [17]. The interpretation of images and sea
ice product generation still rely on manual processing of ex-
perts, and algorithms that process SAR images automatically
or with less human supervision are desirable. The main goal of
this study is to explore the effectiveness of sea ice monitoring
using Sentinel-1 imagery with a proposed semiautomated image
segmentation workflow to overcome the abovementioned two
challenges.

Various studies have been published recently on sea ice mon-
itoring systems using satellite SAR sensors. Pixel-based im-
age classifications are effective in sea ice image interpretation
[18], [19], but region-based methods involving spatial features
have shown the advantage in suppressing speckle noise and
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salt-and-pepper effect. One of the successful systems is the
Map-Guided Ice Classification (MAGIC) software [20], which
is currently being considered by CIS in operational sea ice mon-
itoring [17]. The MAGIC software first segments SAR images
with initial labels, and an iterative region-growing using seman-
tics (IRGS) method [21] is applied to merge adjacent regions
with the same labels. MAGIC has demonstrated its potential
of operational sea ice mapping with single and dual polar-
ized RADARSAT-2 imagery [22]–[25]. In addition to IRGS,
other segmentation methods such as enhanced total variation
optimization segmentation [26] and iterated conditional modes
(ICM) [27] have also been demonstrated to be effective. There
is also advanced weakly supervised classification algorithm that
is built upon IRGS for dealing with cases where the number of
training samples is limited [28]. Moreover, there are other meth-
ods utilizing full polarization [29] or deep learning techniques
[30], but coverage limit of full-polarized SAR data or demand
of large training sets made these methods difficult to implement.
Therefore, region-based segmentation could be more effective
and practical for processing large-sized sea ice SAR images. A
typical region-based segmentation workflow consists of three
steps: 1) image preprocessing, 2) feature extraction, and 3) im-
age segmentation.

One of the main challenges in interpreting SAR images is
inevitable speckle noise. The pixel-based methods usually ap-
ply speckle filters to suppress noise during preprocessing [29],
[31], whereas region-based methods are designed to reduce the
influence of speckle noise [26]. The operational sea ice mon-
itoring by CIS does not require processing at full resolution
[32]; therefore, reducing image size is reasonable and efficient,
and speckle noise can be suppressed by pixel averaging [18],
[31] and more advanced denoising approach [33]. In addition
to speckle noise, backscatter variation across wide-swath im-
ages is another challenge, as incidence angle difference between
near and far end of each image is not negligible. For example,
in RADARSAT-2 dual-polarized imagery, backscatter intensity
decreases as incidence angle increases in HH bands, while HV
bands have “banding” effect between swaths. Linear correction
could be performed in copolarized bands during the prepro-
cessing stage if certain wind and wave conditions could be met
[13], [18], [34]. Banding effects in cross-polarized bands could
be reduced by separately processing different beams [19], [31].
However, the differences vary on different surface, and ground
truth is not always available especially before image classifica-
tion. To overcome statistical nonstationarities of within a large
scene, region-based methods seems to have advantages even if
no correction is performed [24]. However, backscatter variance
in Sentinel-1 images has different characteristics, the perfor-
mance of previous methods based on ScanSAR imagery is not
guaranteed.

Spatial features are considered to be effective in sea ice stud-
ies, and gray-level cooccurrence matrix (GLCM) features are the
most popular ones. Various features and window sizes have been
tested in [18], [19], and [31], but no consensus has been made.
Feature selection methods such as forward searching [24] or di-
mension reduction methods such as principal component analy-
sis (PCA) [25], [35] can be performed to produce most effective

features. Though PCA is able to reduce dimensions of features,
all the features still need to be calculated prior to dimension
reduction, which may not be efficient for automated systems.
As a result, a forward searching feature selection method using
random forests [36] is adopted in this study.

Previous studies have shown advantages of image segments
over pixels. IRGS, the image segmentation method used in
MAGIC, can be considered the most acknowledged technique
in sea ice studies, but one shortcoming is that the number of
classes is predetermined. The determination of the number could
be tricky, as the suitable number of classes in different images
are not the same. Similar to IRGS, optimization can also be
achieved by graph cut [37], and this method has been extended
by adding label cost to reduce number of labels automatically
[38]. Limited applications of this method have been found in
remote sensing studies [39]–[41], especially for SAR imagery.
Graph cut is demonstrated to be more effective in image seg-
mentation compared with traditional methods such as ICM [42],
and found to have better performance in some case studies com-
pared with K-means, Iterative Self-Organizing Data Analysis
Technique [39], Gaussian mixture model and region growing
[40]. Therefore, we believe that this label optimization method
with the advantage of determining number of labels automat-
ically could help us be one more step approaching automated
sea ice classification.

II. STUDY AREA AND DATA

The study site of this study is Labrador coast, the mainland
part of the Canadian province Newfoundland and Labrador,
which approximately locates between 51.9° and 60.6° N, 55.4°
and 64.6°W. Labrador Sea and Baffin Bay covers approximately
20% of ice coverage in the northern hemisphere, and it has
been found to be one of the regions where sea ice coverage de-
creases most during the past 30 years [43]. Sea ice variability in
Labrador Sea has direct impacts on climate [44], as well as ma-
rine transportation for Canada [45]. The ice regime in Labrador
coast is heavily affected by winds and currents, especially by
the famous Labrador Current, making it difficult to interpret.
Normally only first-year ice is present during winter time, while
on few occasions will old ice occur [46]. Ice usually freezes
up before mid-December, and it usually clears out before Au-
gust. The ice types are mainly new ice and first-year ice, but the
spread of ice from shore varies year to year depending on the
low-pressure system present in winter. In this study, sea ice in
the marginal ice zone (MIZ) of Labrador coast, which has one of
the most difficult ice regimes, during the winter from late-2015
to mid-2016 was investigated.

As listed in Table I, a total of 15 scenes from Sentinel-1A
in EW mode were used in sea ice segmentation. The EW mode
has the largest scene size among all beam modes of Sentinel-1,
with a swath width of 400 km. The Level-1 Ground Range
Detected Medium (GRDM) product was used, which means the
products have been focused, multilooked, and georeferenced
into the World Geodetic System 1984 (WGS84). The pixel
spacing and the scene size are approximately 40 m and
10 000 × 10 000 pixels, respectively. All scenes are in dual
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TABLE I
DATASET

Dataset ID Date Acquisition time Direction

1 2015-12-28 10:27 Descending
2∗ 2016-01-04 10:20 Descending
3 2016-01-11 10:12 Descending
4∗ 2016-01-18 10:03 Descending
5 2016-01-21 10:28 Descending
6 2016-02-04 10:12 Descending
7 2016-02-14 10:27 Descending
8∗ 2016-03-16 10:20 Descending
9 2016-03-23 10:11 Descending
10∗ 2016-04-02 21:41 Ascending
11 2016-04-09 21:33 Ascending
12 2016-04-26 21:40 Ascending
13 2016-05-20 21:40 Ascending
14 2016-05-27 21:34 Ascending
15 2016-06-13 21:42 Ascending

∗Datasets used for training

Fig. 1. Image footprints of 15 Sentinel-1 scenes. (Red box showing image on
January 18, 2016).

polarization mode containing HH and HV. The incidence angle
ranges from 18.9° to 47.0°. Fig. 1 shows the image footprints
of all 15 scenes, covering Labrador coast, where most coastal
human activities happen. The highlighted footprint is the scene
from January 18, 2016, which is the scene used for illustration
purpose in later sections. In addition to Sentinel-1 imagery, ice
charts provided by CIS were used as ground truth.

III. METHODS

A. Image Preprocessing

Some preliminary processing has been done during the pro-
duction of the Sentinel-1 GRDM product, some further pro-
cesses are needed in this proposed workflow. The preprocessing
was done using Sentinel Application Platform software pro-
duced by the European Space Agency (ESA). Fig. 2 shows the
modules used in the preprocessing step.

Fig. 2. Flowchart of the proposed method.

Fig. 3. Sentinel-1 scene on January 18, 2016. (σ0 values stretched to 0–255).

The first step is retrieving orbit files from the server. Although
orbit parameters are already in the GRDM products, more pre-
cise orbit parameters can be retrieved from ESA approximately
two weeks after the generation of Sentinel-1 products. There-
after, border noise removal was performed since some artifacts
may present during the generation of Sentinel-1 GRDM prod-
ucts. Thermal noise removal was performed according to a look-
up-table within the GRDM product, but the process is not ideal
on ocean surface for the time being. The radiometric calibration
transforms magnitude into sigma nought (σ0) values, which is a
measurement of radar backscatter on the ground. The magnitude
values were transformed in decibel scale.

According to [13] and [30], 1000 × 1000 pixels would be
representative in processing full-scene images for prototype al-
gorithms. The multilooking process at this stage worked as pixel
averaging by an 8 × 8 window, resulting in an image size of
approximately 1250 × 1250 pixels. Finally, as the target of
interest is sea ice, land regions were masked out using Shut-
tle Radar Topography Mission Digital Elevation Model (DEM)
3-arc-second product. In addition, the cross-polarization ratio
(σHH/σHV ) is considered effective in sea ice studies in [13], so
that the ratio was calculated.

Fig. 3 shows the scene captured on January 18, 2016, which
represents ice conditions in Labrador coast during freeze-up
time, and only part of the image is covered by ice. It can be
easily identified that the middle part in the scene is covered
by ice, and the top left half of the scene is covered by water
or very thin ice. Since C-band microwave has a wavelength of
approximately 5 cm, very thin ice on top of water with thickness
less than 5 cm could be easily penetrated by microwave. As a
result, the thin ice may not be distinctive from water in Sentinel-
1 imagery. In this study, very thin ice is grouped into the class of
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“water,” and “water” used in the following sections may contain
part of very thin ice which might not be identifiable. Visually,
HV has better contrast between different classes, while HH may
capture some characteristics at the surface. For example, in the
middle-left part in the image, some structures of ice surface
could be found in HH, while in HV those do not present. Both
HH and HV contribute to the SAR image interpretation, and by
using only one of them may result in misinterpretation.

The noise equivalent sigma zero (NESZ) of Sentinel-1 im-
agery is around −22 dB [47], and values close or below
this level could be too noisy to be useful, especially in
cross-polarized bands [48]. However, in sea ice studies, wa-
ter and several ice types may be close to the NESZ or even
lower, which introduces a challenge for image interpretation.
Water is the most easily identified class in HV, which has
very low backscatters, but has strong banding effects, espe-
cially in the first subswath. Banding effects also present in
RADARSAT-2 and other SAR images, but backscatters are
mostly even within each subswath. However, repeating hor-
izontal lines (along look direction) and beam seams in HV
[47], especially in the first subswath, presents in Sentinel-1
imagery. The noise came from the background as little or no
signal could be received in the areas below NESZ. Though ther-
mal noise removal has been performed, current solution does not
provide satisfying results. In these noise-contaminated regions,
water and some ice classes could be easily misinterpreted only
from raw σHV values. Moreover, water is affected by incidence
angle effects, wave and wind conditions, resulting in backscatter
variances in Sentinel-1 imagery.

Preliminary tests showed that noise in the first subswath in
cross-polarized bands prevents successful identification of ice
types and water when full-scene images were processed. Some
attempts have been made to reduce the noise [49], [50], but the
methods were still not ideal before ESA produces an official so-
lution [51]. Therefore, the first subswath was removed as a com-
promise to reduce influence of the noise pattern in Sentinel-1
imagery. Such noise also presents in the remaining part of the
images, but the variations were observed to be smaller and more
even across the other swaths. As a result, the image size was
further reduced to approximately 915 × 1250 pixels.

B. Training Sample Selection

To determine the effective features in identifying ice types and
water, training samples are selected for evaluation. Four scenes
were chosen to select training samples for feature selection as
they contain most number of ice classes, and the corresponding
acquisition dates were January 4, January 18, March 16, and
April 2, 2016. Before January, ice just started to form so that
few ice classes present, and after April ice started to melt and
fewer classes could be identified. The selection of ice classes
was based on ice charts provided by CIS, as well as visual
interpretation.

Fig. 4 shows an RGB composite of the scene on January
18, 2016 and the selected training samples. The scene was not
projected so that left and right are reversed compared to the
image footprint. By interpretation of the corresponding ice chart,

Fig. 4. Sentinel-1 scene in RGB (R: σHH , G: σHV , B: σHH /σHV ) composite
on January 18, 2016 and training samples.

most ice in this scene are gray ice and gray white ice, while the
lower right corner and top right corner of the image is covered
by thin first year ice. In addition, new ice also presents at MIZ.
Training samples were selected in small rectangles covering the
inferred classes, while complicated regions such as the mid-
left part were avoided to assure “purity” of the samples. In
addition, the training samples were spread out to cover different
incidence angles to capture incidence angle effects. The training
samples were selected in ENVI. In this scene, 3163 pixels were
selected as training samples. Approximately 3000 pixels were
also selected in each of the other three scenes.

C. Feature Selection

Spatial features have demonstrated its effectiveness in inter-
preting remote sensed images, and as previously summarized,
GLCM features [52] has the most popularity. GLCM probabil-
ities represent all pairwise combinations of gray levels in the
window of interest, and the textures are determined by three
parameters: window size, interpixel distance, and orientation.
From the literature on GLCM features [24], multiple window
sizes and interpixel distances have been selected to calculate
GLCM features on σHH , σHV , and σHH/σHV . Window size 3,
5, 11 with step size 1, window size 25 with step size 1, 5, and
window size 51 with step size 5, 9 were selected. In terms of
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orientation, the look direction is considered to perform slightly
better in SAR images [53]. Adding that a linear decreasing trend
was observed between σHH and incidence angle in water, the
look direction was selected with the expectation of reducing
the effect. Eight texture measurements: mean, variance, homo-
geneity, contrast, dissimilarity, entropy, second moment, and
correlation were calculated, resulting in a total of 168 candidate
GLCM features. The texture features were produced in R us-
ing package “GLCM” [54]. The texture features as well as the
original bands were normalized to 0–255. In addition to the 168
texture features, original σHH , σHV , and σHH/σHV values were
taken into the next step, resulting in 171 features.

A random forest feature selection method utilizing forward
searching [36] was adopted to select the most representative fea-
ture. The main idea of random forest [55] is to combine a number
of decision trees built from bootstrap samples in the training set
using a random subset of variables. Random forest is suitable
for feature selection as it contains an importance measurement
during the process. In addition, random forest could achieve
better performance and be more computationally efficient com-
pared to SVM [56]. The feature selection process was done in
R with package “VSURF” [57]. The feature selection process
contains three steps: 1) thresholding, 2) interpretation, and 3)
prediction. Detailed description and theoretical basis could be
found in [36].

In the first step, all the n variables were ranked by variable
importance in the descending order, and the least important vari-
ables were removed with m variables left. In this case, variable
importance is embedded in the random forest classification pro-
cess, and it is determined by out-of-bag (OOB) error. During
the process of random forest classification, each tree t is cre-
ated from a subset of training data, while the data not selected
are called OOB samples, and the misclassification rate on the
OOB samples using tree t is called OOB error (Eoob,t). The
features are denoted as X and the ith (i ∈ [1 : 171]) feature is
denoted as Xi . To evaluate the contribution of Xi , the values of
Xi in sample OOBt are permuted with random values, and the
classification error rate using tree t in this new sample OOB′

t
i

is denoted as E ′
oob,t

i . The difference between the two error
rates evaluates how important Xi is in tree t. The importance of
variable Xi is defined as

V I
(
Xi

)
=

1
ntree

∑

t

(
E ′

oob,t
i − Eoob,t

)
(1)

where ntree is the total number of trees built in this random
forest, and the variable importance is the average error rate dif-
ference. The larger the mean error rate, the variable is more im-
portant. All the n variables were ranked by average importance
through 50 runs and the least important variables were removed
based on a threshold T1 given based on a Classification and
Regression Tree (CART) model [58] on standard deviation of
variable importance. Variables with average importance values
lower than T1 were removed, resulting in m important variables.

In the second step, the smallest k variables (k = 1 to m) that
produced adequately low error rate was selected. It is believed
that using all m variables leads to the lowest Eoob , and the
threshold was set as the lowest mean Eoob plus its standard

TABLE II
RESULTS OF FEATURE SELECTION

Most important variables Rank

σHH variance 11 × 11 Step 1 1
σHV contrast 25 × 25 Step 5 2
σHV mean 11 × 11 Step 1 3
σHV correlation 25 × 25 Step 1 4
σHH variance 25 × 25 Step 5 5
σHV dissimilarity 25 × 25 Step 5 6

deviation over 25 runs. Random forests were built started from
k = 1 with the most important variable to k = m, and when
the mean Eoob reaches the threshold T2 , the smallest set was
determined.

In the third step, based on the importance ranking of the
k selected variables, an ascending sequence of variables were
used to form random forests where only if mean Eoob was
significantly reduced. The threshold T3 is determined by the
mean Eoob difference with variables left out at the previous
step, as denoted by

T3 =
1

m − k

m−1∑

j=k

|Eoob (j + 1) − Eoob(j)| (2)

where Eoob(j) represents the mean Eoob using j most impor-
tant variables. The step started from l = 1, which is the most im-
portant variable, and only if Eoob(l + 1) − Eoob(l) was larger
than the threshold, the l + 1th variable was kept. Thus, less im-
portant variables and variables with high correlation could be
eliminated. After the three steps, a minimal set of l variables
were determined.

One-hundred GLCM features, as well as original bands (σHH ,
σHV , and σHH/σHV ), with a total of over 12 000 samples, were
put into feature selection. Since high correlations may exist
between GLCM features with different window sizes, adding
that only a small set is needed in the image segmentation step,
an aggressive parameter selection could improve computational
efficiency. The first parameter affecting computation speed is
ntree , the number of trees in random forest. According to the
author’s previous study [59], 20 would be sufficient for SAR
image classification. Another parameter setting that influences
efficiency is that three thresholds (T1 , T2 , T3) can be multiplied
by coefficients (C, C2 , C3) considering different circumstances.
With a larger coefficient, fewer variables would be left in each
step. The three coefficients were set according to several testing
results. Finally, 6 variables, as shown in Table II, were finally
selected, and these features were calculated for all 15 scenes to
perform image segmentation.

D. Proposed Image Segmentation Workflow

In this study, a semiautomated workflow is proposed to seg-
ment full scene Sentinel-1 imagery into reasonable number of
classes. There are three main steps: 1) image preprocessing, 2)
feature extraction, and these features were determined by feature
selection, and 3) image segmentation with desired parameter
settings. The first two steps were introduced in the previous
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sections. The images were calibrated into σ0 values, and
land regions and the first subswath were removed. Afterward,
GLCM features were extracted on the preprocessed images,
and image segmentation would be performed on these features.

In sea ice studies, because of the large in-class variation of the
ice classes, it is difficult to determine the appropriate number
of classes in image segmentation in either supervised or unsu-
pervised methods. For example, water suffers incidence angle
effects, adding that the response of water may be different at
different wind speeds, so that the variation of backscatter val-
ues may be larger than the difference of that between two ice
types, such as gray ice and gray white ice. From the perspective
of image classification, it might be more appropriate to assign
several class labels to one single class with large variations,
especially when an unsupervised method is taken. IRGS [24],
the state-of-the-art algorithm, assigns six labels in segmentation
step before automatically classify one scene into two classes,
ice and water. In this study, we intended to propose a workflow
that can segment SAR images into a larger number of classes,
so that selecting a suitable number of classes is crucial. In addi-
tion, during winter time there might be five or more ice classes,
while only one or two types of ice appears during freeze-up and
melting periods; thus, whether one single selection of number
of classes can be applicable in different scenes becomes a chal-
lenge. An optimization algorithm utilizing label cost, which is
capable of determining the number of labels dynamically, was
chosen in this study. The detailed description of this method can
be found in [38].

Image segmentation can be transformed into a multilabel op-
timization problem, and three costs are taken into consideration:
1) data cost, 2) smooth cost, and 3) label cost. The total energy
E of a set of label l can be denoted as

E(l) = wd ·
data cost

︷ ︸︸ ︷∑

p∈P

Dp (lp) + ws ·
smooth cost

︷ ︸︸ ︷∑

q∈Np

Vpq · (lp , lq ) + wl

·
label cost

︷ ︸︸ ︷∑

l⊆L

hl · δ(l) (3)

where wd , ws, and wl stands for the weights of data cost, smooth
cost, and label cost, respectively. These three weights are rel-
ative weights, so that wd was set to 1. A larger ws promotes
smoothness but boundaries between classes may become un-
clear, and a larger wl encourages fewer classes but some classes
covering small areas may be lost. ws is referred as scale, while
wl is referred as label cost in the rest of the paper.

Data cost measures how well the assigned label lp of a pixel
p, which minimizes in-class variation of the variables. The cost
was defined as the Euclidian distance to cluster centre

Dp(lp) =
√∑

(xp − μl)
2 (4)

where xp represents all values of the six variables at pixel p and
μl represents mean values of all pixels with label l.

Smooth cost measures label consistency between neighboring
pixels, which reduces typical “salt and pepper” problem in image

classification. In this study, the eight adjacent pixels around pixel
p were defined as neighbors. A “smoother” segmentation result
encourages neighboring pixels to have the same label. If pixel
q is within the neighborhood Np of pixel p, the function Vpq

penalizes the segmentation if lp �= lq . Any class could border
any other class and no specific priori was defined, so Vpq was
defined as

Vpq =

{
1, lp �= lq

0, lp = lq
. (5)

Label cost penalizes excessive number of labels to promote
data compactness. The indication function δ(l) was defined as

δ(l) =

{
1, ∃p : lp ∈ l

0, else
. (6)

The order of label l was not preset, and each label does not
have a specific class name, so that all the labels were given the
same penalty if exists by setting the coefficient hl as 1. During
the process of image segmentation, one or more labels might be
merged with other labels if a subset l was found in the initial
label set L that lead to smaller total energy.

The energy minimization problem with data cost, smooth
cost, and label cost can be solved using graph cut, a method
of partitioning vertices of a graph to achieve energy minimiza-
tion [37]. In this study, an extended version of the α-expansion
method [38] was used to achieve energy optimization. The α-
expansion method is able to switch labels of a large number
of pixels simultaneously via graph cut, which results in faster
approximation to energy minimization compared to traditional
pixel-by-pixel swap. The workflow of α-expansion used is as
following: 1) start with initial labeling L, 2) α-expansion on
each label in L and find the minimum E(l), 3) if E(l) < E(L),
L = l, save labeling result and iterate 2) and 3). During this
process, some labels may be merged into the α label, and the
number of labels could be reduced.

The initial labeling was produced by K-means unsupervised
labeling, and the optimization process kept iterating until less
than 1% of the pixels changed averaged by the three last it-
erations, or the number of iterations reached 100. Thus, final
segmentation map was produced. The segmentation was done
using software “GCoptimization” [60] in MATLAB.

E. Accuracy Assessment

Since egg codes of ice charts do not have clear boundaries
of each ice type, it is not feasible to evaluate the segmentation
accuracy for different ice types. As a compromise, accuracy
assessment can only be performed to evaluate the correctnesss
of distinguishing ice and water, two most obvious classes, using
this proposed segmentation workflow.

There are three classes: water, ice, and land present in the
15 scenes, and land can be determined by DEM or other maps;
thus, ground truth for either ice or water is needed. However,
after removal of the first subswath, only 13 scenes contain water.
The ground truth of water was generated by manual digitization
based on the interpretation of SAR images with reference to ice
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TABLE III
ACCURACY ASSESSMENT FOR IMAGE SEGMENTATION

Label cost 15∗ Label cost 20 Label cost 25

Date UA PA OA NT NW UA PA OA NT NW UA PA OA NT NW

0104 75.4% 83.6% 94.7% 6 1 47.5% 85.6% 86.8% 5 1 47.5% 85.6% 86.8% 5 1
0111 90.1% 96.6% 96.0% 7 2 90.1% 96.6% 96.1% 7 2 91.8% 96.1% 96.5% 4 1
0118 61.8% 99.8% 85.4% 5 2 61.6% 99.8% 85.3% 5 2 61.9% 99.8% 85.5% 5 2
0121 85.3% 91.2% 97.9% 4 1 29.3% 99.9% 79.5% 3 1 29.3% 99.9% 79.5% 3 1
0204 88.3% 99.4% 96.0% 6 2 87.9% 99.3% 95.9% 5 2 88.0% 99.3% 95.9% 5 2
0316 14.2% 88.2% 86.9% 5 1 14.2% 88.8% 86.7% 5 1 12.4% 89.9% 84.5% 4 1
0323 95.3% 95.9% 97.0% 8 3 96.2% 95.2% 97.0% 7 2 85.9% 98.1% 93.8% 4 2
0402 97.6% 86.9% 95.8% 5 1 93.4% 91.1% 95.8% 4 1 93.4% 91.1% 95.8% 4 1
0409 96.7% 98.7% 97.4% 4 1 96.7% 98.7% 97.4% 4 1 96.7% 98.7% 97.4% 4 1
0426 88.7% 84.2% 95.2% 5 1 87.8% 84.2% 95.1% 4 1 78.3% 86.4% 93.3% 3 1
0520 90.9% 99.6% 95.4% 4 1 86.5% 99.9% 93.1% 3 1 86.5% 99.9% 93.1% 3 1
0527 97.1% 98.6% 97.0% 5 2 93.0% 99.0% 94.1% 4 2 93.0% 99.0% 94.1% 4 2
0613 97.8% 99.5% 98.3% 3 1 97.8% 99.5% 98.3% 3 1 97.8% 99.5% 98.3% 3 1
Overall 88.4% 96.6% 94.9% 82.4% 97.2% 92.4% 81.2% 97.5% 91.9%

PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; NT: number of total labels; NW: number of water labels.
∗15 was finally selected as label cost.

charts provided by CIS. A ground truth image with two classes:
water and others, was produced for 13 scenes.

The results of image segmentation may contain different num-
ber of classes ranging from 3 to 8, and this proposed method
does not include a classification step due to uncertainties of sea
ice types. Therefore, a pixel-by-pixel accuracy assessment was
conducted with manual labeling of ice and water. The possi-
ble water segments were manually picked and merged, and the
others were also merged accordingly. An error matrix [61] was
produced for each of the segmentation scenarios, and overall ac-
curacy, user’s accuracy, and producer’s accuracy of class water
were calculated.

IV. RESULTS

There are three main parameters in the segmentation
algorithm: 1) initial number of classes K, 2) ws as the weight
of smooth cost, represented by “scale”, and 3) wl as the weight
of label cost.

K determines the maximum number of classes during the
segmentation process, and tests starting with different values
of K were conducted. Generally, the final number of classes
is determined by the selection of label cost, and similar results
were achieved with different values of K. Thus, K should be
set according to a desired final number of classes. In this study,
only the separation of ice and water would be assessed, so that
the optimal final classes would be as water, ice, and land. To
successfully separate ice and water, six classes were used for
initial segmentation in IRGS to fit different conditions [24].
Therefore, the final number of classes in this study would target
at around 6 or a smaller number. Finally, 10 was chosen for K
at initial K-means labeling after testing to assure completeness
of class scheme, and to validate the performance of label cost.

The second parameter, scale, determines the smoothness of
the segments. With a larger scale, the results would become
smooth but some details might not be preserved, while with a
small scale, small fragments would remain which affects in-
terpretation. Generally, scale affects the results more from a

visual perspective, and a larger scale would promote the merge
of classes during iteration. By visual comparison, scale was set
to 20 to achieve a sensible smoothness of segments.

The third parameter, label cost, is the most important param-
eter in this study, which determines how aggressively number
of labels is reduced. Generally, a larger label cost promotes
smaller number of labels, but may inappropriately merge dif-
ferent classes if the cost is too large. In addition, depending
on the distribution of pixel values in different scenes, the same
label cost setting may result in different number of labels during
image segmentation.

After testing with different label costs, 15, 20, and 25 were
considered to be candidates of parameters. The results of ac-
curacy assessment using the three label cost settings are listed
in Table III. Generally, all three label cost settings generated
sensible results in distinguishing water from other classes, with
the overall accuracy of 94.9%, 92.4%, and 91.9%, with label
cost settings as 15, 20, and 25, respectively. By comparing the
three label cost settings, 15 generated the highest user’s accuracy
and overall accuracy. The label cost of 20 led to slightly higher
producer’s accuracy but lower user’s accuracy, while reduced
number of labels could be observed. The label cost setting of
25 further reduced the number of labels, and the user’s accu-
racy and producer’s accuracy also decreased, but the producer’s
accuracy slightly increased. The larger label cost settings may
result in excessive merging of some classes so that producer’s
accuracy increases at the cost of user’s accuracy.

By comparing the producer’s and the user’s accuracy, it can be
observed that producer’s accuracy is higher than user’s accuracy
in all three cases, which means that certain types of sea ice may
have very similar response to water. However, the producer’s
accuracies could reach over 96% percent, indicating that most
of the water in the images could be identified. For demonstration
purpose, four of the segmentation results with the highest overall
accuracy is shown in Fig. 5.

The workflow was tested on a personal computer with dual-
core 1.8 GHz Intel Core i5 processer and 8G memory. The
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Fig. 5. Sample image segmentation results with scale: 20, label cost: 15. (PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy.) Left: segmentation
result, Middle: RGB (R: σHH , G: σHV , B: σHH /σHV ) combination of SAR images, Right: ground truth. (a) Scene: June 13; UA:97.8%; PA: 99.5%; OA: 98.3%.
(b) Scene: January 21; UA:85.3%; PA: 91.2%; OA: 97.9%. (c) Scene: April 9; UA:96.7%; PA: 98.7%; OA: 97.4%. (d) Scene: May 27; UA:97.1%; PA: 98.6%;
OA: 97.0%.

feature selection algorithm took approximately 2 h with the final
coefficient settings, and it could be reduced with a more powerful
CPU. Nevertheless, feature selection only needs to be processed
once. The segmentation process took approximately 30 min
per iteration with testing weight settings, and the processing
time was different for each image. Generally, it took less than
ten iterations to converge. Since the segmentation algorithm
is a single-thread computation, the processing time could be
reduced with a more powerful CPU and multiple images could
be processed in parallel with multiple cores.

V. DISCUSSION

A. Noise in Sentinel-1 Images

As mentioned previously, backscatters close or below the
noise floor show some variations in Sentinel-1 imagery of sea
ice and water, and the noise from the sensor may result in
misinterpretation of the imagery. The backscatter variance on
the surface with lowest values would show some noise patterns.

Fig. 6 illustrates the backscatter variation on water at different
incidence angles in the scene on January 18, 2016, where pixels
of water were manually selected. σHH of water has very large
variation from around 0 to −30 dB, which may largely affect
classification purely from σHH values. However, an obvious
linear trend could be found as incidence angle increase σHH of
water decrease, which corresponds well with previous studies
on ScanSAR imagery.

In terms of σHV , water shows a wavy shape as incidence
angle increases. In the first subswath, water shows larger vari-
ation compared to the rest, but generally σHV is not as ob-
viously affected by incidence angle. With this special pat-
tern in HV in Sentinel-1 imagery, previous methods tested on
ScanSAR images, for instance, IRGS [23] which performs initial

Fig. 6. Backscatter variation of water at different incidence angles in scene
captured on January 18, 2016.

segmentation on HV bands, may not be applicable. Besides wa-
ter, no obvious backscatter intensity differences were found in
different incidence angles in most ice types. In addition, from
the σHV values shown in Fig. 6, majority of the values were be-
low noise floor in HV. Though the values would be unreliable,
some patterns could still be observed.

However, despite some patterns could be found in HV, the
noise in the first subswath brings too many uncertainties as the
backscatter values greatly constrains the identification of differ-
ent ice types and water. Attempts have been made on applying
the proposed workflow on full Sentinel-1 scenes, but the seg-
mentation results were not desirable, as patterns of the noise
rather than ice were selected. As a result, removing the first sub-
swath would be a compromise before ESA produces an official
noise reduction solution.

B. Training Samples

The training samples were selected from four scenes: January
4, January 18, March 16, and April 2, 2016, with reference to
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TABLE IV
MEAN σ0 OF TRAINING SAMPLES

Dates Jan 4, 2016 Jan 18, 2016 Mar 16, 2016 Apr 2, 2016

σHH σHV σHH σHV σHH σHV σHH σHV

New ice −21.1 −33.8 −32.4 −33.9 −23.8 −34.4 NA NA
Grey ice −14.2 −27.7 −12.8 −23.5 −16.5 −29.4 −14.7 −29.1
Grey white ice −9.9 −22.3 −15.6 −28.3 −11.1 −26.7 −13.6 −25.7
Thin first year ice −10.3 −22.1 −19.9 −33.0 −21.8 −33.8 −10.1 −26.4
Medium first year ice NA NA NA NA −10.2 −22.4 −11.6 −23.0
Water −7.28 −25.7 −18.4 −34.4 −14.0 −33.8 −16.9 −29.1

The unit of σ0 is dB; NA: not applicable

Fig. 7. Scatterplots of training samples in the scene on January 18, 2016.

sea ice charts provided by the CIS. A total of 11 353 pixels were
selected, and Table IV shows a summary of the training samples
and mean values of σ0 . It can be observed that mean σHH and
σHV values were very different in ice across different scenes and
few patterns could be found. The ice types in different scenes
are visually different as well only from σHH and σHV . Taking
gray ice and gray white ice as an example, gray white ice is
thicker than gray ice, which may result in higher response in
both σHH and σHV , but in the scene on January 18, 2016, gray
ice has both higher than σHH and σHV values. In addition, in
water class, mean σHH values are highest among all the classes,
except for the scene on April 2, 2016, where water locates at
larger incidence. This may be a result of the incidence angle
effect on water in σHH .

Two scatterplots are shown in Fig. 7 to show the separability
of the training samples in this scene. From the scatterplot on the
left, it can be observed that water has a large variation in σHH and
values decrease as incidence angle increase, but other classes are
relatively stable. No significant incidence angle dependence in
σHV was found in all classes so that the scatterplot is not shown.
From the scatterplot on the right, it can be concluded that water
has the largest variation in both σHH and σHV , so that it could
be mixed with ice classes just from a numerical perspective.
New ice also showed some variation in σHH as some samples
were selected in the first subswath. Gray ice and gray white ice
have very similar σHH values, but some separability could be
found in σHV . New ice, thin first year ice, and water are close
in σHH values, while they could be easily separated in σHV , but

there are still some confusion majorly from the large variation
of backscatter from water.

Considering the noise floor of Sentinel-1 EW mode is –22 dB,
most of the σHV values in the images involved in this study were
below −22 dB, making the backscatter from HV unreliable.
However, the differences in σHV of different ice types can still
be found both visually and from the selected samples shown in
Table IV and Fig. 7. Thus, HV is expected to have contribu-
tions to image segmentation, and feature selection would justify
whether HV is effective in identifying ice and water.

All training samples were selected manually based on our in-
terpretation of the Sentinel-1 imagery with reference to sea ice
charts. However, there are some uncertainties that may lead to
errors or deficiency in the training samples. First, misinterpreta-
tion of ice charts may be one of the uncertainties. In ice charts,
each polygon marked by egg codes usually contains two to three
classes or even more, which increases the difficulty determining
one certain ice type. Second, the strategy of sample selection
may result in uncertainties. In order to efficiently select training
samples, the strategy was to select “pure” pixels to capture the
most significant features. As a result, some areas with ambi-
guity such as MIZ, where several ice types with different flow
sizes occur, or where egg codes are difficult to understand, were
avoided, and some patterns in these regions may be lost due to
complexity and uncertainty. Finally, the scheme of labels may
have an impact on the next steps. During training sample selec-
tion, labels were determined by referring to egg codes, and the
six classes were: water, new ice, gray ice, gray white ice, thin
first year ice, and medium first year ice. Among these classes,
water alone may have a large variance in σ0 values. Thus, in
an unsupervised classification or segmentation framework, the
ideal class scheme may not statistically fit in different images,
and sometimes two or more subclasses would be more precise
instead of one. However, the training samples were only used in
feature selection, and the final segmentation result did not fol-
low the labels in training samples, but a more reasonable class
scheme might provide more effective feature selection results.

C. Feature Selection

During the three steps in the feature selection algorithm, three
corresponding coefficients could be altered to achieve a smaller
subset or to improve computational efficiency. Generally, by
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Fig. 8. Selection of coefficient C2 in interpretation step.

choosing larger coefficients promote fewer features and faster
selection speed. By conducting tests on how each of the three
coefficients affect the number of features selected in each step,
suitable coefficients could be selected. The first coefficient C1
was used for setting the threshold for feature elimination, and
it was multiplied by a minimum variable importance generated
by CART function. Fewer features selected in the first step, the
faster the interpretation step would be. A test using C1 from 1
to 50 was conducted, and the number of remaining variables
at the first step decrease as the coefficient increase. However,
the selection from 1 to 50 did not change the result of the
second step. The second coefficient C2 in the interpretation step
determines the smallest number of features that could produce
comparable results comparing to using all features. A test was
also conducted on how C2 affects the number of feature selected
during interpretation step. As shown in Fig. 8, two jumps could
be found at 11 and 12 variables, and the two jumps indicate
that the variables rank at 12th and 11th could be able to reduce
Eoob significantly. Although another jump occurred when a
relatively large coefficient (around 40) was adopted, it would
result in only 5 variables selected in this step, which might be
too aggressive using this setting. By referring to mean Eoob from
the first 12 to 11 features, the error rate increase was minimal.
Thus, 20 was selected as the coefficient in the interpretation
step, and 11 variables were selected in this step. In terms of
the third coefficient C3 in the prediction step, it determines the
final number of most effective features. During the test of C3 , 6
features were selected using C3 from 1 to 30, and a coefficient
larger than 30 led to 5 selected features or less. Since a coefficient
of 30 would be considerably large, and using six features would
result in significantly lower mean Eoob compared to 5, C3 was
kept as 1.

Fig. 9 shows the images of the six selected features in the
scene on January 18, 2016. Among the six features, four of them
were derived from σHV and the rest two were from σHH . The
result indicated that HV could be more effective in separating
different ice types and water regardless of its values are below
the noise floor. From the appearance of the features in Fig. 9,
features derived from σHH are still affected by incidence angle
on water, while those derived from σHV have less influence
of the banding effect and horizontal lines except “σHV Mean
11 × 11 step 1.” Generally, the selected GLCM features from

Fig. 9. Six selected features of the scene on January 18, 2016.

σHV could potentially mitigate the influence of noise in HV in
Sentinel-1 imagery.

There are some uncertainties during the process of feature
selection. First, the quality of training samples directly affects
the results of feature selection. Since the selected training sam-
ples mostly from “pure” pixels and complicated regions were
avoided, uniform characteristics could be expected within each
class as well as surrounding pixels. However, some patterns
may not be captured due to the strategy, so that these features
may not be effective in those complicated regions. Second, the
selected six features from the four scenes may not be the most
significant features in each of them. Therefore, the selected six
features may not lead to best performance in distinguishing dif-
ferent ice types and water in a certain scene, but an overall
effective differentiation could be achieved. Third, the feature
selection algorithm itself may not generate the optimal set of
variables. In this forward searching algorithm, the searching or-
der is based on the rank of importance produced by random
forests. However, most significant individual variables may not
eventually transform into an optimal variable set. Though the
final six variables were able to produce a low error rate, they
might not be the most effective set of 6, or a smaller set may
exist with comparable performance.

D. Image Segmentation

Table III shows that most scenes were well segmented, and
some scenes that are worth noting are discussed as follows.

The segmentation result of scene on March 16, 2016 is shown
in Fig. 10, and the result achieved the user’s accuracy of 14.2%,
which is the lowest among all the results of 13 scenes. In addi-
tion, with the other two candidate label cost settings: 20 and
25, the user’s accuracy did not increase, but the producer’s
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Fig. 10. Segmentation result of scene on March 16, 2016. (a) Segmentation
result. (b) RGB (R: σHH , G: σHV , B: σHH /σHV ) image of data. (c) Reference
map of water.

Fig. 11. Segmentation result of scene on March 23, 2016. (a) Segmentation
result. (b) RGB (R: σHH , G: σHV , B: σHH /σHV ) image of data. (c) Result
with label cost 25.

accuracy reached 88.2%, which is below average but still could
be considered to be good. By comparing Figs. 10(a) and (b),
which are the segmentation result and the RGB image, it could
be found that the ice type in the red box was considered to be
the same type with water. According to the ice chart on that
date, the marked ice type was majorly new ice, which is the
type that is difficult to separate from water. Though the water
identification was not successful, the segmentation of water and
new ice in this scene were relatively complete and accurate by
visual comparison with the ice chart. Further tests on using dif-
ferent label cost settings did not provide satisfying results so
that the mislabeling could be owed to the backscatter similarity
between new ice and water. Therefore, the result shows that the
discrimination between new ice and water needs to be improved
to achieve an accurate segmentation result.

Among the segmentation results achieved using label cost
of 15, the results of scene on March 23, 2016 resulted in the
most number of labels. As Fig. 11(a) shows, a total of eight
labels were produced by this segmentation algorithm, and three
of them were presenting water. Both numbers are the highest
among all the segmentation results listed in Table III. Though
the large number of labels makes image interpretation unintu-
itive, user’s accuracy, producer’s accuracy, and overall accuracy
reached 95.3%, 95.9%, and 97.0%, respectively, which could be
considered a successful segmentation result. However, a better
segmentation result could be achieved as the number of labels
has the potential to be further reduced. By referring to the results
shown in Table III, the number of class reduces as label cost in-
creases to 20 and 25. As shown in Fig. 11(c), with the label

Fig. 12. Segmentation result of scene on January 18, 2016. (a) Segmentation
result. (b) RGB (R: σHH , G: σHV , B: σH H

σH V
) image of data. (c) Reference map

of water.

cost setting at 25, four total number of labels were produced by
the segmentation algorithm, among which two classes represent
water, but by further increasing label cost, unreasonable results
were produced because of excessive merging. The label cost
setting at 25 resulted in user’s accuracy, producer’s accuracy,
and overall accuracy of 85.9%, 98.1%, and 93.8%, respectively.
The larger label cost resulted in 10% decrease in user’s accuracy
since some ice areas were incorrectly merged with water at the
right side of the image as shown in Fig. 10(c), but the reduc-
tion in overall accuracy was not that obvious. Therefore, though
lower user’s accuracy was generated with the large label cost
setting, 25 may be considered a better choice in the scene on
March 23, 2016 since it reduces number of labels significantly,
enabling more intuitive interpretation of water contents in the
image in the scope of the study.

Fig. 12 illustrates the segmentation result of the scene on
January 18, 2016 where some ambiguities occur. The user’s
accuracy, producer’s accuracy, and overall accuracy of this seg-
mentation result were 61.8%, 99.8%, and 85.4%, respectively.
The relatively low accuracy was mainly caused by the misla-
beling in the two areas in red boxes as shown in Fig. 11(b).
In the upper red box shows an area that might be new ice, as
evidence could be seen in HH but not in HV (as shown pre-
viously in Fig. 4.). This region was labeled as ice in manual
labeling and training sample selection, but it is questionable as
the backscatter values were below the noise floor in both σHH
and σHV . Another area shown in the lower red box shows the
area close to the land, and the area would be ambiguous as low
ice concentration was found in the ice chart. The regions close to
land may have more uncertainties as the radar backscatter may
be influenced by water depth below ice or the regions could be
ice frozen to the ground. The selected six features were not able
to successfully capture effective patterns to distinguish water
and ice, and the algorithm could be further improved in these
ambiguous regions.

The results of the selected parameter setting could generate
results of close to 95% in the overall accuracy, but there are
some identified uncertainties and limitations in the image seg-
mentation process. First of all, according to the results listed
in Table III and the discussions on specific images, it could be
concluded that no parameter setting was perfect for all of the
15 images, or even most of them, not mentioning if the method
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is applied in operational image segmentation. In evaluation of
successfulness of water identification, the appropriate number
of labels might vary. Even though the label cost settings could
decrease the number of labels in each image, different data
distribution, different ice types, and different incidence angles
may result in different number of labels during the optimization
process. Second, in this study, the selected features and the data
model may not be optimal. Banding effect of Sentinel-1 imagery
was mitigated by the selected features to some extent, but some
parts of water may be similar to some ice classes in some cases.
In addition, the features were selected using random forests,
which are based on decision trees with arbitrary thresholds, but
the data model used in segmentation optimization was different.
Consequently, high classification results in features selection
may not necessarily lead to satisfying labeling results. In terms
of selection of data model, Euclidian distance was chosen, but
it may not be the best choice with the selected features or the
Sentinel-1 SAR imagery. Third, shortage of ground truth may re-
sult in biased training sample selection and accuracy assessment.
Training sample selection based on the author’s preferences may
not have a complete representation of each class. In addition, the
misinterpretation of ice chart could bring error and uncertainties
in the selected samples. This kind of problem also exist when
manually providing ground truth for water, especially at MIZ.
The boundaries of water and ice are very smooth in ice charts,
while the true boundaries are not. Since very thin ice may not
be captured by C-band SAR imagery, these “ice-water” bound-
aries in this study could actually be the threshold of whether ice
could be identified by the sensor. Considering the development
or melting of ice is a gradual process, the threshold might not
be easy to find. Last but not least, the segmentation algorithm
has limited comparison with other popular image segmentation
methods. The segmentation algorithm has the unique advantage
of identifying number of labels with prior settings and the ap-
plication in remote sensing is limited; thus, makes it difficult to
compare with other methods. Even if the performance is not as
good as other segmentation methods with predefined number of
labels, it is still worth testing and developing.

VI. CONCLUSION

SAR imaging satellites has been approved as an impor-
tant data source for sea ice monitoring in Canada. However,
the limited revisiting time of a single SAR satellite such as
RADARSAT-2 and large volume of manual work are two main
challenges in providing high-quality sea ice map products timely
and effectively. To deal with the two challenges, new data
sources and automated image processing algorithms are in de-
mand. This study proposed a semiautomated SAR image seg-
mentation workflow, which has been tested on 15 scenes of
Sentinel-1 SAR images in the study area of Labrador coast.

Three main objectives were designed in this study: 1) to deter-
mine the most important features in identifying different types
of sea ice, 2) to examine the effectiveness of the proposed work-
flow, and 3) to evaluate the capability of Sentinel-1 SAR imagery
in sea ice mapping. A prototype automated image segmenta-
tion method has been developed, and experimental results have

derived some insights on the three objectives. The results are
concluded as follows.

First, six GLCM features were selected as the most significant
features in distinguishing water and different ice types. These
six features are: σHH Variance 11 × 11 step 1, σHV Contrast
25 × 25 step 5, σHV Mean 11 × 11 step 1, σHV Correlation
25 × 25 step 1, σHH Variance 25 × 25 step 5, and σHV Dis-
similarity 25 × 25 step 5. Second, the proposed method was
able to segment the 13 test images into 3–8 classes with the
selected parameter set, which may potentially provide a solu-
tion to determine the suitable number of labels. However, it
was also found that one setting of parameters was not able to
provide optimal results in all images. Third, in Sentinel-1 SAR
imagery, incidence angle effects in copolarized bands of water
and banding effects in cross-polarized bands may affect the in-
terpretation of sea ice, but these effects were mitigated by the
selected features and the segmentation algorithm. The overall
accuracy of the tests reached 95% in distinguishing water in
the images, and most errors comes from the similarity between
water and thin ice types. After all, higher accuracies could be
achieved when tuning parameters in individual images, but it
may not be applicable if an automated method is needed.

In conclusion, Sentinel-1 SAR imagery is able to monitor sea
ice conditions effectively, and the proposed workflow has the
potential of developing into an automated image segmentation
solution with further development. However, the selected fea-
tures and the algorithm settings limit to the study area and the
involving ice types, performance in other areas and other ice
types needs further exploration to enable operational use of the
proposed workflow.

In the future, more work and experiments will be done in
the following areas: 1) ground truth with higher quality should
be acquired to enable training and validation of more precise
ice types, and automatic training and classification could be
developed; 2) more features and data models should be tested to
improve the proposed image segmentation workflow, and other
areas with different ice regimes should be tested; 3) correction
of thermal noise in Sentinel-1 data should be performed to
evaluate the workflow on full scene images; 4) more products
of Sentinel-1 could be utilized, and extra ancillary data should
be integrated to sea ice mapping.
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