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Indoor building models are essential in many indoor applications. These models are composed of the
primitives of the buildings, such as the ceilings, floors, walls, windows, and doors, but not the movable
objects in the indoor spaces, such as furniture. This paper presents, for indoor environments, a novel
semantic line framework-based modeling building method using backpacked laser scanning point cloud
data. The proposed method first semantically labels the raw point clouds into the walls, ceiling, floor, and
other objects. Then line structures are extracted from the labeled points to achieve an initial description
of the building line framework. To optimize the detected line structures caused by furniture occlusion, a
conditional Generative Adversarial Nets (cGAN) deep learning model is constructed. The line framework
optimization model includes structure completion, extrusion removal, and regularization. The result of
optimization is also derived from a quality evaluation of the point cloud. Thus, the data collection and
building model representation become a united task-driven loop. The proposed method eventually out-
puts a semantic line framework model and provides a layout for the interior of the building. Experiments
show that the proposed method effectively extracts the line framework from different indoor scenes.
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1. Introduction

With the growth of urban populations and the prevalence of
large buildings, there is an increasing demand for up-to-date spa-
tial information of indoor environments. Traditionally, 2D floor
plans have been regarded as the main source of indoor spatial
information. In recent years, 3D modeling and reconstruction of
the interior of buildings provide essential 3D models for applica-
tions, such as location-based services, building maintenance, disas-
ter rescue, and building renovation planning. The major
requirement for these applications is the 3D indoor building mod-
els, which are composed of the primitives of the building interiors,
such as the ceilings, floors, walls, windows, and doors, but not the
objects in the indoor spaces, such as furniture. In this paper, the
focus is on the reconstruction of the 3D indoor building model.

Recently, acquiring indoor point clouds has become easier. Pop-
ular 3D point cloud measurement systems include stereo cameras,
terrestrial laser scanning (TLS), hand-held laser scanning devices,
and low-cost depth cameras. Perez-Yus et al. (2016) used RGB-D
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and fisheye cameras to obtain a scaled 3D model with wide scene
reconstruction. Liu et al. (2015) proposed a small set of monocular
images of different rooms to form a 3D indoor model using a Mar-
kov Random Field model. In addition, to provide 3D data for indoor
environments, movable or backpacked systems have been devel-
oped based on RGBD cameras or laser scanners (Wen et al., 2014,
2016).

Several methods have been developed for the automated gener-
ation of 3D indoor models from point clouds (Jung et al., 2015;
Oesau et al., 2014; Ochmann et al., 2014; Xiong et al., 2013;
Mura et al., 2014; Wang et al., 2016). Babacan et al. (2016) demon-
strated a method to automatically extract floor plans from raw
point clouds without using the 3D structure of the indoor environ-
ment. Michailidis and Pajarola (2016) presented a method to
extract the wall openings (windows and doors) of interior scenes
from indoor 3D point clouds. Their method directly extracts win-
dows and doors from a single wall surface. These two methods
can be applied only to a single plane surface, such as a floor or wall.
Ochmann et al. (2016) developed an automated approach for the
reconstruction of parametric 3D building models from indoor point
clouds. Armeni et al. (2016) proposed a semantic parsing method
for an entire building based on a point cloud acquired by a 3D
camera.
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However, the following two challenges remain for the task of
indoor 3D building modeling:

(1) Data quality challenge. Indoor environments are composed
of many independent spaces. The walls between these
spaces obstruct vision from one space to another. Thus, 3D
data collection must move through different spaces and be
measured from different locations. Compared with static
TLS and near-ranged RGBD sensors, Simultaneous Localiza-
tion and Mapping (SLAM)-based mobile laser scanning solu-
tions exhibit better efficiency, range coverage, and
geometric consistency (Bosse et al., 2012; Wen et al., 2014,
2016). However, due to the failure of SLAM processing and
noises, low-quality sections in SLAM-based laser scanning
data are still inevitable. At the same time, heavyocclusions
are often on the floor, walls, doors, and windows due to
obstacles from furniture.

(2) The challenge of how to effectively represent the indoor
model. The indoor building model requires each component
to be labeled with its semantic meanings, which will be used
in further applications. As primitives of the representation,
planes and lines are essential elements for building a 3D
model of an indoor scene (Jung et al., 2015; Oesau et al,,
2014; Ochmann et al., 2014; Xiong et al., 2013; Mura et al.,
2014). However, due to a high level of incompleteness of
the point clouds caused by occlusions from furniture, the
state-of-the-art methods are ineffective for extracting cor-
rect lines and planes. In addition, most existing indoor mod-
eling methods wuse rule-based prior knowledge or
assumptions, such as the ceiling and floor planes should be
horizontal, the wall planes should be vertical, etc. In com-
plex cases, these rules may be invalid.

In this paper, we present a novel line framework-based seman-
tic indoor building modeling method using 3D indoor backpacked
mapping point clouds in cluttered and occluded indoor environ-
ments. Using a self-built backpacked indoor mobile laser scanning
system, we effectively and accurately acquire an indoor 3D point
cloud. Our proposed method includes three stages: patch-based
semantic labeling, 3D line structure feature extraction, and line
framework optimization. At the patch-based semantic labeling
stage, a trained Conditional Random Fields (CRFs)-based method
automatically classifies the raw laser scanning point cloud into
four categories: floors, walls, ceilings, and other objects. At the line

Backpacked laser Original point cloud

Patch-based

semantic labeling

Line framework

structure feature extraction stage, 3D line structure features are
extracted from labeled point clouds. A semantic Level of Details 3
(LOD3) (Biljecki et al., 2014) building model is obtained by provid-
ing a 3D line framework of the walls, ceiling, floor, windows, and
open doors. At the line framework optimization stage, a condi-
tional Generative Adversarial Nets (cGAN)-based deep learning
model is constructed and applied to the line framework to deal
with structure completion, extrusion removal, and line regulariza-
tion. Also, in this stage, to detect the failure of the SLAM mapping
process, the result of line optimization is derived as the quality
evaluation of point cloud data.
The main contributions of this paper are as follows:

(1) A SLAM-based backpacked laser scanning system is pro-
posed to collect indoor environment point clouds. With data
quality evaluation and filtering, data collection and model
representation become a united task-driven loop.

(2) A line framework is proposed to represent the structure of
an indoor building model. Our proposed method does not
require an assumption of the specific structure of the build-
ing, such as that the vertical wall or horizontal floor
hypothesis.

(3) A cGAN-based deep learning model is developed to optimize
the line framework against clutter background and heavy
occlusion in indoor environments.

The pipeline process for our proposed method is shown in Fig. 1.

2. Related works
2.1. Point cloud semantic labeling

In the problem of point cloud labeling, a class label is assigned
to each single point or voxel as a label entity in scenes of 3D point
clouds. CRFs are often used to propagate contextual information,
such as a classification task, between adjacent sites in the field of
the computer vision (Schnabel et al., 2007; Moghadam et al,,
2013). CRFs usually are based on maximum a posteriori (MAP)
learning. To better model correlations in structured data, the
Max-Margin Markov Networks (M3N) model (Taskar et al., 2003)
has been developed based on max-margin learning. Munoz et al.
(20093, 2009b) used a functional gradient algorithm to learn an
Associative Markov Networks (AMNs) (Taskar et al., 2004) model
(a type of M3N model) and successfully applied it to 3D point cloud

Line structure

Floor, ceiling and
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3D line structure
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Line framework
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Optimization examples

Fig. 1. Pipeline of the proposed method.
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classification. Moreover, Munoz et al. (2009b) trained a high-order
Markov random field (MRF) model to classify 3D point clouds.
Shapovalov et al. (2010) proposed applying a non-associative
Markov network to classify 3D point cloud data. Luo et al. (2016)
extracted 3D patches for colorized point cloud classification,
where, in the training process, 3D patches are first extracted from
the colorized point cloud data. Then, a 3-D patch-based match
graph (3D-PMG) structure is constructed to imply the contextual
relationship between various 3D patches.

2.2. Indoor modeling and reconstruction

Current methods for modeling and constructing indoor scenes
from point clouds are mainly classified according to 3D line-
based, plane fitting-based.

3D point clouds can be represented by a set of 2D images.
Extracting 3D lines from 2D planes is much easier than directly
extracting 3D lines in 3D point clouds. Jain et al. (2010) proposed
a method to extract straight 3D line segments from a set of 2D
images. They used a depth value of each single 2D image and then
merged the 2D lines from each part for building reconstruction. Lin
et al. (2015) proposed a Line-Half-Planes (LHP) model to extract 2D
lines by projecting original point clouds onto different image views
and then projecting these lines back into 3D space to obtain 3D
lines. Lin’s method performs well on high density and high accu-
racy point cloud data; however, it produces excessive noise and
details for the indoor laser scanning of point clouds. Oesau et al.
(2014) presented a method of permanent structure reconstruction
from 3D point clouds. A space-partitioning step, which splits
multi-level buildings into several horizontal slices, was first intro-
duced. Then a Hough transform was applied to extract the wall line
segments on each horizontal slice projection. The result contains a
multi-level structure of an indoor environment, but no windows or
doors are involved. This method also assumes that the wall plane is
vertical to the floor plane, and the floor and ceiling planes are
horizontal.

In an indoor environment, the floor and walls are mostly even
planes; therefore, plane fitting-based methods are widely used in
indoor modeling and reconstruction based on point cloud data.
Sanchez and Zakhor (2012) proposed a model-fitting method
based on RANSAC to extract interior planes such as ceilings, floors,
and walls from laser scanner point cloud data. Planar regions were
detected from point cloud data to extract the plane intersections
and corners (Chen and Chen, 2008).

Other techniques, such as Ochmann et al. (2016), developed
a parametric modeling approach for the reconstruction of para-
metric 3D building models from indoor point clouds. Their tech-
nique automatically rebuilds a structural model of a multi-room
indoor scene. However, this method requires a specific paramet-
ric model for a building structure. Furthermore, the method
works only for piecewise linear wall structures. The grammar-
based modeling method has also been developed for indoor
modeling applications (Ikehata et al, 2015). However, this
method requires building the modeling grammars manually.
We propose in this work to learn from a small number of man-
ually designed examples and automatically created samples. Our
proposed indoor modeling method overcomes the shortage of
requiring specific parametric models and manually designed
grammars.

3. Indoor mobile laser scanning point cloud
3.1. Indoor backpacked laser scanning system

Based on our previous indoor mobile laser scanning systems
(Wen et al., 2014, 2016), we built an upgraded backpacked 3D laser
scanning system (Fig. 2). Detailed hardware information for the
upgraded backpack system is shown in Table 1.

This system contains two 16-beam 3D laser scanners. Each
laser scanner consists of sixteen individual laser-detector pairs
over the 30° (—15° to +15°) field of view. One laser scanner is
placed horizontally to acquire the point cloud Pyi,; the other
laser scanner is mounted at 45° below the horizontal one to
acquire the point cloud Pgy. Using Eq. (1), we merge the scan-
ners to acquire the global point cloud Pgppy, Where Teyis a
transform matrix calculated between the two laser scanners
(Gong et al., 2018).

Piobat = Phioriz + Teati * Prin 1)

Table 1
Hardware information.

Equipment Specifications

Laser scanner Two 16-beam laser scanners (Velodyne VLP-16)

Battery lithium battery, 12V 20 AH, 127 x 72 x 52 mm, 0.973 kg
Processing unit HP ENVY 15-ae125TX, 384 x 255 x 23 mm, 1.9 kg
Trestle Carbon fiber, 3.5 kg

(@) (b)

Fig. 2. Indoor mobile laser scanning system. (a) Robot-based mapping system (Wen et al., 2014). (b) Single-beam backpacked laser scanning system (Wen et al., 2016). (c)

Multi-beam backpacked laser scanning system.
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A human operator, carrying the backpack mapping system, per-
forms the survey at a normal walking speed. To achieve mapping
results, the consecutive frames taken by the two laser scanners,
from time to time, are registered by the LOAM algorithm (Zhang
and Singh, 2014). Compared with our previous systems, the
upgraded laser scanning system, by using multi-beam laser scan-
ners and an improved mapping algorithm, acquires indoor 3D
point cloud data with higher density and efficiency.

3.2. Characteristics of the indoor point cloud data

Examples of the acquired 3D indoor laser scanning point
cloud by our system are shown in Fig. 3 (Data available online:
http://www.mi3dmap.net). Point clouds acquired in two complex
underground parking areas are given in Fig. 3(a) and (b). Point
clouds acquired in a rectangular corridor with a closed-loop
are shown in Fig. 3(c). Specifically, Scene 3 consists of two parts
with different building heights. The left part of the building is
higher than the right part of the building. Point clouds acquired
by our system for a multi-room scene are shown in Fig. 3(d). The
mapping results indicate that our backpacked laser scanning sys-
tem provides robust point cloud mapping results for different
indoor scenes.

The nature of indoor and outdoor environments is quite dif-
ferent. Compared with an open outdoor environment, an indoor
environment is usually complex, narrow, and GNSS-denied. Espe-
cially, severe occlusion exists due to the presence of a large
amount of furniture. Regarding the nature of the indoor environ-
ment, the characteristics of the indoor 3D point clouds acquired

AN A
o8y 4o
; ',.t. ,"‘ v gmd

e

(c)

by our proposed backpacked laser scanning system are as fol-
lows: (1) data incompleteness due to the occlusion and mis-
scanned areas caused by narrow space; and (2) data uncertainty
due to the cluttered background. Fig. 4 shows the indoor laser
scanning point clouds and the corresponding images of two typ-
ical indoor scenes. Fig. 4(a) shows simple occlusion by a monitor
in a corridor. Fig. 4(b) shows an indoor scene with a high level
of occlusion and a cluttered background. As shown in Fig. 4(b),
the incompleteness and uncertainty of the data increases dra-
matically when there is more occlusion and a cluttered background.

4. 3D line framework construction
4.1. Patch-based point cloud semantic labeling

Our proposed method provides prior knowledge of the building
data by automatically and semantically labeling the 3D point cloud
scenes via learning a labeling model from a certain number of
training samples. The labeling task is to assign each 3D point a
label from the class set {floor, walls, roof, other objects}. To allevi-
ate the computational burdens associated with labeling a huge
number of points, we first extract and describe 3D patches (Luo
et al.,, 2016) from the point clouds and treat them as operating
units when labeling.

In the training stage, to yield improved classification results
over locally independent classifiers, the learning framework of
the AMNs for point cloud labeling is applied to exploit contex-
tual information (Munoz et al, 2009b). A category label
Ik e {l,,---,Ik} is given to the 3D patch, i. To describe the 3D

(@

Fig. 3. Examples of 3D point clouds built by our system. (a) Scene 1-Underground parking area. (b) Scene 2-Underground parking area. (c) Scene 3-A closed-loop corridor. (d)

Scene 4-Connected rooms.
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(a)

Fig. 4. Typical examples of indoor laser scanning point clouds. (a) Corridor. (b) Room.

patches, Fast Point Feature Histogram (FPFH) descriptors (Rusu
et al,, 2009) and the height information of the centroid of the
points in a patch are computed to form feature vectors
X = {x;,x3,x}, where i=1---N, N is the number of 3D patches
contained in a point cloud scene; x; is the feature vector that
describes the 3D patch, i, by giving statistics of the local distri-
bution of the points in the 3D patch, i. x; is the feature vector
describing the two spatially adjacent 3D patches i and j; x{ is
the feature vector describing the clique, ¢, to which the 3D
patch, i, belongs. The assigned labels for the patches are defined

as y={y;,---,yn}. The potential function used in the AMNs
model is:
(D(X7y7 W) = (Dn(X,y, Wn) + (De(x’y7 WB) + q)C(x7y7 WC) (2)

where ®,,®, and ®, represents node, edge, and clique poten-
tials, respectively. W = [W,, W,,W,] are the parameters in the
AMNs model. Then, we use log-linear potentials to represent the
dependence of the node potentials on the extracted features as
follows:

N N
log(®, (x,y,Wy)) = > log(&,(vF)) = Wy -xi 3)
i1

i=1

where y¥ = I, (the label value assigned to node i), and W’,j € A
are the weights used when a node is assigned to . Similarly, the
potential over an edge models an associative/Pott’s behavior that
favors the two linked nodes taking on the same labels and penal-
izes as indicated by Eq. (4).

g, (x.y. W) = 3 log (,(.57))

(ij)eE

(b)

Wlé - Xij, l’ﬁélo

4
0, Ik =1, @

log 23y (¥¥.v¢) = {

where [and [,are the labels of neighboring nodes i and j, and
¥? =l,. E is the edge set, where each edge is defined by two neigh-
boring nodes. A P" Pott model (Boykov et al., 2001), which can be
efficiently minimized, was used as an energy function. Following
this model, the clique potentialsVc € S, where Sis the clique set.
E.(y.) = —log ¢.(y.)are defined by the high-order energy terms in
the AMNSs log-liner model, and:

IOg((Dc(vav WC)) = Z IOg ¢C(YC)

ceC

WE-x<, ifviecy =l
0, otherwise

IOgd)c( c) = { (5)

For the AMN learning process, the objective function Eq. (6) is
optimized by the subgradient method and graph-cut inference
method (Munoz et al., 2009b).

A - -
min 5 |[W[* + max(®(x.y, W) + {(y. §)) — @(x. 3, W) (6)

where {(y,y) is a loss function that computes the Hamming dis-
tance between the inferred labeling (y) and the true labeling (¥). 7
is a regularization term.

For the AMN inference process, inferring category labels from
unlabeled scenes is carried out in the labeling stage. The cate-
gory labels, y*, for 3D patches are estimated effectively by max-
imizing Eq. (7) via the a-expansion graph-cut method (Boykov
et al., 2001).
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y* = argmax Py, (ylx) = argmax (®(x,y, W)) (7)

For the four categories of point clouds obtained, only the floor,
ceiling, and wall points are used in the further indoor modeling.

4.2. Line structure extraction on 3D point cloud

To minimize the effects from occlusion on line extraction, a
line structure extraction method is developed directly on the
3D point cloud. We first extract a flat (but not specifically hori-
zontal) boundary line using floor and ceiling points obtained
from the above labeling results. However, due to the complexity
of the indoor environment, the labeled floor and ceiling planes
can be highly incomplete. In this situation, we merge the floor
and ceiling points to obtain a more complete flat plane only if
the floor and ceiling planes are relatively parallel. If the floor
and ceiling planes are not parallel, line extraction is applied
directly to each plane.

The first step of this method is to calculate the normal vector,

n;, of every single point p;. We choose the dimensional coordi-
nate system origin 0(0,0,0) as the starting viewpoint. To calcu-

late the normal vector n; of point p;, we select the k points
nearest to point p; as one plane, and the normal vector of the
plane is taken as the normal vector of the point. Too many num-
bers of k may result in lower accuracy of the calculated normal
vector. Too few numbers of k result in a large computational
cost and may result in a greater number of errors included dur-
ing the calculation. In the method, we set the value of k at 35
for our data.

Then, the tangent plane of each point is calculated. For each
input point, p;, of the original point cloud P, the tangent plane

T, is expressed by its center pointo;, and the normal vector, n;, is
as follows:

Ty, = (01, ;) (8)

The Euclidean distance from any point, p;, to T, in 3D space is
calculated as follows:

dist(pi,Ty) = |(pi — o)+ | (9)

For the set of K neighborhoods of p;: B(p;), the best fitting plane
is obtained by solving the following equation:

argmin ) dist(p;, T,)’ (10)

Toi  picBe(py)

Because all tangent planes, T, for all p; have been computed,
we randomly select one point from the original point cloud as a
seed point. Next, we select one point, p;, and create a new facet,

fi= <{K{”}7xi7i> for the seed point, p;, where ﬁ is the unit nor-

mal vector of T,. Then, an improved region growing procedure
commencing with f; is carried out. We add each adjacent point,
p;» to the facet, f;, if p; is not used until now and satisfies the fol-

lowing three criteria: (i) the angle between fl and f, does not
exceed the tolerance 0, (ii) the distance from p;to p; does not
exceed Rgeq, and (iii) the orthogonal distance from p; to f; is smal-
ler than /2. Here, Ryeq is used to constrain the radius of the
facets to ensure that the large facets can be segmented into smal-
ler pieces.

When the facet f; is determined, we choose another point p,
from among the last points of the original points and repeat the
steps to find another facet f,. This iterative process is performed
until most of the points have been divided into different facets as
shown in Algorithm 1:

Algorithm 1. Generating Facets

Input: Original point set P, point to facet distance threshold o,
the tolerance angle 6 between tangent planes, the number of
neighboring points (k)

Output: facets set F

. For each p; In P Do

Calculate Ty, using Eq. (10)

. End For

. Used(P) « false

. For each p; In P Do

If Used(p;) # false Continue

fi— ({W}-ﬂnﬂ)
For each p;In P Do
If Used(p;) # false Continue
{ angle(T;, T;) < 0
If

©o N ouswN=

_
o

dist(p;,f;) < 6/2 Then
diSt(piapj) < Rseed

11. fi = fiUp;

12. Used(p;) « true

13. End If

14. End For

15. End For

We then extract line segments from these facets. Inspired by
Lin’s work (Lin et al., 2015, 2017), we improved their work to
make it suitable for indoor point cloud data. Lin’s original
method works specifically for extracting the lines of building
exteriors from high resolution and high accuracy point clouds.
To apply Lin’s method to relatively low resolution and low accu-
racy indoor laser scanning point clouds, we first increase the
area of the facets (the parameter, Ry ey, mentioned above) to
reduce the number of lines in the internal plane and maintain
as long a border line as possible. Second, we decrease the angle,
0, between two tangent planes to separate different tangent
planes better. Last, we generate a continuous head-to-tail
straight line to approximate the edge of the curve structure. In
Lin’s method, several discontinuous straight lines with gaps are
generated in this stage.

To obtain positive line results, the first step is to extract
the boundary points of each facet, f;. The vertices of the o-
shape of f; are presented as the boundary points of the f;.
However, these boundary points can also contain the inter-
secting points of two adjacent coplanar facets. To overcome
this problem, we define a facet, F; of f;, which contains adja-
cent coplanar facets and the current facet, f;. Then we extract
the a-shape points of F; and compute the desired intersecting
points, P;.

The next step is to obtain a line segment of F; based on
the boundary points, P;. Because of the relatively low-cost
single/multi-beam laser scanner used in data acquisition,
indoor mobile laser scanning point clouds have the character-
istics of relatively low density and limited precision, which
results in messy extracted lines and multiple close parallel
lines. Rather than directly group the boundary points into line
segments, we group the boundary points into a cylinder to
filter false detections by a cylinder-based alignment method
(Lin et al, 2017). To reduce line extraction false positives
and ensure a good line segment result, we extended the
Number of False Alarms (NFA) algorithm (Desolneux et al.,
2000; Von Gioi et al., 2010) to 3D and kept only one line
for each cylinder.
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4.3. Wall opening detection and line framework formation

The wall line results are different from the floor and ceiling
line results. We retain as many floor or ceiling lines as possible.
Because the wall borderlines have been extracted already from
the floor and ceiling point clouds, the wall line results require
only the door and window lines. Therefore, we drop the wall
borderlines and retain only the internal lines from the windows
and doors.

For indoor scenes, the windows and doors are mostly rect-
angular. Only two intersecting edges are necessary to deter-
mine a rectangle. As for the original wall line extraction
results, a k-means method is applied to capture potential door
and window lines. For each wall plane, to find the best line
extraction result, a different k value is set from 0 to 9. When
the potential door or window lines are obtained, the longest
line length is calculated to determine if it belongs to a door
or a window. In this step, the detection results are refined
using the hypothesis that doors and windows are rectangular.
The last step is line framework formation. Because 3D line
structures are extracted in 3D space, we obtain the line frame-
work result by combining all the line structures extracted from
floors, ceilings, and walls.

5. Line framework optimization using deep learning model
5.1. Problems of line structure extraction

The results obtained using the line extraction framework, pre-
sented in Section 4, are usually imperfect because of the occlusion
and cluttered background (Fig. 5). The problems of line structure
extraction are summarized as follows: (1) Irregular structures (a
parallel or orthogonal relationship between some lines) are due
to the uncertainty and noise level in the data (Fig. 5(a)). (2) Incom-
plete structures and disconnected lines exist because of the occlu-
sion (Fig. 5(b)). (3) Extrusions remain because of the uncertainty
and noise in the data (Fig. 5(c)).

Usually, a line regularization step, commonly using the rule-
based method, is required after line extraction. The general line
framework of a building meets some specific building rules, and
lines can be further refined by regularization based on these rules.
However, the above-mentioned rule-based line regularization
method requires a large amount of human interaction and depends
on pre-defined assumptions. Likewise, in complex indoor environ-
ments, fixed rules often become invalid.

1 a _
—7 \\ — ~
- — e
(a) (b) ()]

Fig. 5. Examples of imperfect and incomplete line structure extraction.

5.2. CGAN deep learning model

To remove the extrusions, to complete and to regularize the line
structure, we introduce a conditional Generative Adversarial Nets
(cGAN)-based deep learning model to optimize the imperfect line
framework. The GAN (Goodfellow et al., 2014) model trains a gen-
erator, G, to produce outputs that are indistinguishable from the
“real” sample, and trains a discriminator, D, to distinguish the out-
puts of the generator as much as possible. The cGAN model (Isola
et al., 2017), an improved network of the GAN model, originally
completes the translation between semantic labels and photos,
architectural labels and photos, edges and photos, etc. In this
paper, we innovatively apply the cGAN model to optimize the line
structure.

A GAN learns the mapping from the random noise vector, z, to
output, y; cGAN learns a mapping from input, x, and random noise
vector, z, to output, y. The same as GAN, the cGAN model learns a
loss function automatically to satisfy different tasks without
designing a new loss function. cGAN uses an objective function
as follows:

G =arg mcin mng‘CGAN(G, D) + 2L11(G) (11)

L11(G) = Exypdataixy) z~p, @ |y — G, 2)|]1] (12)

By introducing a bound term, L1 distance, the outputs of gener-
ator, D, are not only similar to the real sample, but also more clo-
sely related to the input conditional sample. In generator
architecture, a U-net encoder-decoder network is adapted because
that U-net makes better use of the low-level information
(Ronneberger et al., 2015). A PatchGAN (Isola et al., 2017) is
designed as the new discriminator architecture to improve the effi-
ciency of the discriminator. This new discriminator architecture
attempts to classify whether each N x N patch in an image is real or
fake, then averages all responses to provide the ultimate output of D.

5.3. Line framework optimization using cGAN model

Since the cGAN model is working in a 2D plane, all the line
structures extracted from each point cloud category (floor, wall,
and ceiling) are first projected onto their own planes. To project
each point, the coordinate system of every point is transformed
from the previous oxyz coordinate system to a new oxyz coordi-
nate system. In the new coordinate system, to achieve projection,
the z coordinate of each point is set to zero. The detailed steps to
project are as follows: Firstly, a point o(xo,Y,,Z20) is randomly cho-
sen in the plane as the new origin. Then, two orthogonal unit vec-

tors u, = (i, Uy, Us) and u, = (uy],uyz,uy3> are chosen in the

plane as the new x axis and the new y axis; the starting point of
these vectors is 0. Next, a unit vector u, = (u,,u,,1,;) is chosen
as the new z axis from the normal vector of the plane; the starting
point of this vector is also o. Finally, a translation matrix

M1 0 0 O
0 1 0 o . .
T= 0 0 1 0o and a rotation matrix
|—X Yo —20 1
uxl uxZ ux3 0
R= |t e Us 0 are obtained resulting in new coordinates
uzl uzZ uzB 0
L0 0 0 1
for each point as follows:
(X,y,z,l):(x,y,z,1)~T~R (13)

After obtaining the projection, xand yare converted into rows
and columns in a 2D image. The 2D image is divided into several
256 x 256 sub-images. These sub-images are classified by a



C. Wang et al./ ISPRS Journal of Photogrammetry and Remote Sensing 143 (2018) 150-166 157

VGG-16 convolutional neural network (Simonyan and Zisserman,
2014) to extract features and use three full connected layers to
classify the features. The convolution layers use 3 x3 kernel and
add batch normalization. Max-pooling is used to do down-
sampling. During the training, 2000 training samples were used.
The batch size and epoch were set to be 32 and 200, respectively.
The results are the input to different cGAN models (see Fig. 6).
After obtaining the optimized 2D lines by cGAN models, the pixels
on the optimized 2D lines are transformed back to 3D points by
Eq. (13). Finally, the 3D points are fitted to the 3D lines by the
linear least squares fitting algorithm.

During this process, the main precision loss comes from the
process of projecting 3D lines onto 2D lines. The original 3D lines
are vectors in 3D space, and the 2D lines on the image are several
sets of discrete pixels. Different pixels per unit length of a 3D line
results in different precision loss. In general, the more pixels per
unit length of a 3D line converted, the smaller the resulting preci-

VGG
Classification
|
y y y
Class 1 cGAN Class 2 cGAN Class 3 cGAN
Optimization Optimization Optimization

Optimized
2D lines

Fig. 6. The flow chart of processing 2D data.

Table 2
Precision loss comparison.

Pixels per meter of a 3D  Average distance Average distance

line (Scenel) (Scene3)
50 5.13 mm 4.81 mm
100 2.61 mm 2.56 mm
200 1.34 mm 1.17 mm

sion loss. A precision loss comparison for Scene 1 and Scene 3 with
50, 100 and 200 pixels per meter of a 3D line is given in Table 2.
The average distance from all projected 3D points onto the original
3D lines is used to measure the precision loss. In this paper, taking
into consideration both computational cost and precision loss, a
meter of the 3D line is converted into 200 pixels. The average pre-
cision loss is about 1 mm. The results indicate that the impact of
the precision loss during projection is relatively small.

To complete the structure optimization task, we construct three
cGAN modules: structure completion, extrusion removal, and line
regularization modules (see Fig. 7). Each module only deals with
the imperfections in each data. The generator is a symmetrical fully
convolutional network containing 16 convolutional layers with 4
x 4 convolution kernels. The first eight layers of the generator form
an encoder; the second eight layers form a decoder. The discrimi-
nator network consists of four convolutional layers; the final layer
outputs the discrimination result by a sigmoid activation function.

All training samples are divided into three categories to meet
different optimization cases. Training data of the structure comple-
tion module consists of samples with two disconnected lines and
the corresponding connected lines. The training data of the extru-
sion removal module consists of samples with extra parts and the
corresponding samples without extra parts. The training data for
line regularization consist of the samples with unparallel or non-
orthogonal lines and the corresponding samples after regulariza-
tion. To ensure sufficient training samples for the cGAN deep learn-
ing model, we prepared the training samples in two ways. A small
number of training samples is manually created by cutting from
the rule-based manual regularization results. A large set of training
samples is generated by a computer program using manually
developed rules-related building principles. Some examples of
these rules are: an indoor structure should be a closed structure;
the boundary of an indoor structure is unique; indoor framework
lines should be continuous; building interior framework lines are
either parallel or orthogonal.

Specifically, this framework optimization method can be further
applied to other building structures by easily replacing the training
samples generated from the new building structure. Meanwhile,
since the imperfections of the data are detected automatically by
the cGAN models, the data requires optimization at the same time.
The data requiring optimization usually refers to the point cloud
data with low quality. Meanwhile, the quality of the indoor laser
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Fig. 7. Three cGAN modules for framework structure optimization. (a) Structure completion module. (b) Extrusion removal module. (c) Line regularization module.
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scanning data is affected directly by the mapping process. For
example, the varied walking speed of the human operator may
result in inconsistent point cloud density. A too fast turning angle
of the system may result in the failure of the SLAM process and
eventually lead to mis-registration of point cloud frames. With
these references, we can trace back to the original mapping process
and assess the data quality, as well as filter the low-quality point
cloud data. With the close looped data quality evaluation and fil-
tering, the data collection and model representation become a uni-
ted task-driven loop.

6. Experiments and results
6.1. Patch-Based point cloud semantic labeling

The labeling model was trained on labeled point clouds
extracted from different indoor 3D scenarios. The learning param-
eters were determined by classifying validation point clouds. The
training data consists of more than 300,000 points. The class label

for each 3D point in the training samples was manually selected
and labeled for learning parameters in AMNs. Some examples of
training samples are shown in Fig. 8.

Labeling results for Scene 1 and Scene 2 are given in Figs. 9 and
10, respectively. The original point cloud of the parking area (Fig. 9
(a)) is labeled by the proposed labeling method (Fig. 9(b)). To bet-
ter demonstrate the labeling results, we provide each category of
point cloud data separately in Fig. 9(c). The segmented point clouds
are labeled into ground (blue), wall (green), ceiling (red), and
others (yellow).

To quantitatively assess the accuracy and correctness of the
semantic labeling results on a test dataset, we selected the follow-
ing three measures: Precision, Recall, and F1-measure. Precision
describes the percentage of true positives in the ground truth.
Recall depicts the percentage of true positives in the semantic
labeling results. F1-measure is an overall measure. The three mea-
sures are calculated on points as follows:

P
TP + FN

precision = (14)

Fig. 8. Examples of training samples. Different colors represent different categories. Blue points represent the floor, green points represent the wall, red points represent the
ceiling, and yellow points represent other objects. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(0

Fig. 9. Labeling results of indoor Scene 1: (a) Original point cloud. (b) Semantic labeling results. (c) Labeling results for different categories: ground (blue), wall (green), ceiling
(red), others (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



C. Wang et al./ ISPRS Journal of Photogrammetry and Remote Sensing 143 (2018) 150-166

(b)
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Fig. 10. Labeling results of indoor Scene 2: (a) Original point cloud. (b) Semantic labeling results. Color code: ground (blue), wall (green), ceiling (red), others (yellow). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

TP
2 x precision * recall
Fl—measure = *p - (16)

precision + recall

where TP, FN, and FP represent the number of true positives,
false negatives, and false positives, respectively. The quantitative
evaluation results using these three measures of indoor Scene 1
and indoor Scene 2 are shown in Tables 3 and 4, respectively.
The proposed semantic labeling method achieved, in labeling
Scene 1, an average precision, recall, and F;_eqsure Values of 0.86,

Table 5

Important parameters used in algorithm.

0(A°) o(m) Length-threshold(m) Min clusters (number)
10 0.2 0.1 30
Table 6

Different Ryeq and K values VS. different line number extracted.

0.89, and 0.87, respectively, and, in Scene 20.90, 0.84 and 0.87, Scene 3 Recea(m) K(number) Line number
respectively. Ground-plane 1.0 15 338
Ground-plane 1.0 30 235
Ground-plane 3.0 15 292
6.2. Line framework construction Ground-plane 3.0 30 243
Ceiling-planel 1.0 15 245
We take Scene 3 as an example scene to show the detailed line Ceiling-plane1 1.0 30 168
extraction results by the proposed line structure extraction Ceiling-planel 3.0 15 232
method. In this experiment, we set some parameters to be constant \C/\zl]‘l’_‘lgaifrl;“el 3'8 ‘:’g ;fs
(see Table 5). As we mentlongd in Section 4.2, 0 is the tol.erance Wall-plane 10 30 79
between the tangent planes, ¢ is the orthogonal Euclidean distance Wall-plane 3.0 15 43
from point to tangent plane. Lines are discarded if their lengths are Wall-plane 3.0 30 40
smaller than the length-threshold. Min clusters is the minimal
Table 3
Labeling confusion matrix for Scene 1.
Inferred label Recall
Floor Wall Ceiling Others
True Label Floor 152,025 556 3459 362 0.97
Wall 2361 124,452 8801 3311 0.91
Ceiling 9885 11,274 222,147 3242 0.90
Others 766 145 3444 14,170 0.77
Precision 0.92 0.91 0.93 0.67
Table 4
Labeling confusion matrix for Scene 2.
Inferred label Recall
Floor Wall Ceiling Others
True Label Floor 363,190 1079 28,176 401 0.93
Wall 3421 322,084 29,145 1284 0.91
Ceiling 11,762 18,899 401,651 1750 0.93
Others 455 5338 6675 16,230 0.57
Precision 0.96 0.93 0.86 0.83
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Ej I e
“ % PRI e

Fig. 14. Examples of training samples. On top are the input samples, and on the
bottom are the target samples.

\
— —| o .
‘ "W [ \ number of points in the tangent plane. The tangent plane is aban-
L L I doned if it has a fewer number of points than min clusters.
The main parameters affecting the line extraction results are

Fig. 11. Line extraction results on floor point cloud. Rseeqd and K values. Ry.q is used to determine the size of a facet; K

Fig. 12. Line extraction results on ceiling point cloud 1 (first two) and ceiling point cloud 2 (latter two).

Fig. 13. Line extraction results on wall point cloud.

Table 7
Number of line extracted and running time for each category point cloud of Scene 3.
Description Number of points Number of lines Line segmentation (s) Line extraction (s) Total running time (s)
Ground plane 0.92 million 424 38.35 29.296 67.65
Floor plane 1 0.69 million 351 3145 18.044 49.49
Floor plan 2 0.23 million 117 23.91 6.341 30.25
Wall plan 0.06 million 79 12.93 1.541 14.47
Table 8
Number of line extracted and running time for different scenes.
Description Number of Points Number of lines Line segmentation (s) Line extraction (s) Total running time (s)
Scene 1 7.90 million 2652 292.19 84.88 377.07
Scene 2 3.85 million 1819 166.44 62.73 229.17
Scene 3 2.10 million 1652 114.66 69.99 184.66

Scene 4 8.62 million 1289 456.74 87.64 544.38
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Testing sample size, time and average non-overlapping percentage.

Module Testing Time Average non-overlapping
sample size (s) percentage (%)

Structure completion 500 23.34 0.08

Extrusion removal 500 23.09 0.17

Line regularization 500 23.38 0.52

is used to filter the isolated points. As shown in Table 6, different
Rseeq and K values lead to a different number of lines extracted. Also
indicated in Table 6 is the larger the [Rg.q4, K] value, the fewer num-
ber of lines extracted from floor, ceiling, and wall point clouds.
However, [Rs.q, K] should not be so large that some important
missing lines are avoided. Considering the above situations, we
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set [Rseed, K] =[3.5,35] in the experimental data to obtain the
final results. The line extraction results on floor, ceiling, and wall
point clouds of Scene 3 are shown in Figs. 11, 12, and 13,
respectively.

In addition, Table 7 provides the runtime of line extraction for
each point cloud category in Scene 3. Our code runs on a Windows
10, CPU Inter® Core™ i5-4460@3.20 GHz, 12G RAM. We found that
the larger number of points required longer running times. For
example, with the point number of 0.92 million, the total running
time is about 67 s. Meanwhile, the running time of the line seg-
mentation step is more than two times the running time of the line
extraction step. The number of lines and the running time are also
provided for Scenes 1, 2, 3, and 4 in Table 8. The greater the num-
ber of points, the greater the number of lines extracted, and the
total running time is longer.

input output target input output target
(@ (b)
input output target input output target
(0 (d)

Fig. 15. Examples of testing results. (a) Structure completion. (b) Extrusion removal. (c) and (d) Line regularization.
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Fig. 16. The before and after framework optimization of lines extracted from Scene 3. (a) Floor lines. (b) and (c) Ceiling lines. (d) Door and window lines.
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6.3. Line framework optimization

To optimize the line framework, the line structures extracted
are first carefully studied. Besides the real line extraction results,
the training data are automatically generated by a computer pro-
gram. The training data falls into three categories:

(1) Structure completion: We first generated two disconnected
lines in a 256x256 pixel size image as input samples, then
we connected them as target samples.

(2) Extrusion removal: We first generated a corner as target
samples (ground truth), then we lengthened two lines to
obtain extrusion parts as input samples.

(3) Line regularization: We first generated some lines, which are
unparalleled or non-orthogonal as input samples, and then
we adjusted them to be parallel or orthogonal as target
samples.

For each category, there are 1000 samples in a training set. Dur-
ing the training, the batch size and epoch of the cGAN model were

Fig. 18. Result comparison on Scene 3. (a) Raw point cloud. (b) Our method. (c) Oesau’s method. (d) Lin’s method.
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set to be 4 and 500, respectively. The average training time for each
category ranged from six to eight hours on two Nvidia Titan X
GPUs. Some examples of training samples are shown in Fig. 14.

The testing sample size and time consumption are shown in
Table 9. For each category, 500 samples are used for testing. The
running time for each category is about 23 s. In addition, based
on the principle of rule-base regularization, the target sample
results were also provided manually. Then, we compared the gen-
erated target results to the manual target results point by point
and counted the number of points overlapping in the two results.
Lastly, we used the proportion of non-overlapping points to evalu-
ate the performance of the proposed cGAN-based line framework
optimization method.

Average percentages of non-overlapping points of each category
from 500 testing samples are also given in Table 9. Overall, the
structure completion module has the lowest average non-
overlapping percentage of 0.08%; the extrusion removal module
has an average non-overlapping percentage of 0.17%, and the line
regularization module has the highest average non-overlapping
percentage of 0.52%. The results are understandable, because, even
for a human operator, it is more difficult to regularize a line struc-
ture than to complete a line and remove the extrusions. In general,
the average non-overlapping percentages of the three modules are
all less than 1%, which indicates the cGAN model is effective for
line framework optimization.

To further analyze the performance of the proposed framework
optimization method, we give some challenging testing results for
each category (see Fig. 15). For example, for structure completion,
even though the distance between two lines is relatively long, it
can still be used to connect the lines (Fig. 15(a)). Since line regular-
ization is a more difficult task, we give a fail testing example in
Fig. 15(c). As shown in the figure, the line is partially regularized,
but a part of the line remains missing.

After optimizing the line framework, we obtain a better indoor
framework structure. The before and after framework optimization
of floor lines extracted from Scene 3 are shown in Fig. 16(a). The
before and after framework optimizations of ceiling lines extracted
from Scene 3 are shown in Fig. 16(b) and (c). The before and after
framework optimization of window and door lines extracted from
Scene 3 are shown in Fig. 16(d). Shown in Fig. 17 are the combined
line framework optimization results, which indicate that the pro-
posed line framework optimization achieves good results.

6.4. Comparison and more testing results

We compared our method with Lin’s (Lin et al, 2017) and
Oesau’s (Oesau et al., 2014) methods (Figs. 18 and 19).

Our method vs. Lin’s method. Lin’s method provides too many
detailed lines and requires a line-refining process (Figs. 18(d) and
19(d)). Our method borrows the basic idea of Lin’s method to

(c)

Fig. 19. Result comparison on Scene 4. (a) Raw point clouds. (b) Our method. (c) Oesau’s method. (d) Lin’s method.

(d)
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extract the 3D lines directly from 3D point clouds. However, it is
impossible to use excessively noisy and detailed lines as inputs
for modeling. Instead, we extract lines from different labeled cate-
gories and combine the lines extracted from each category. The
results show that our process is more suitable for indoor scene
point cloud data.

Our method vs. Oesau’s method. Following the steps pre-
sented in Oesau’s method, we tested that method on our data. As
shown in Figs. 18 and 19, Oesau’s method provides line results,
but the wall openings are missing (Figs. 18(c) and 19(c)). Moreover,
Oesau’s method does not provide the line results for the wall open-
ings, like windows and doors. Also, assuming vertical walls and

C. Wang et al./ISPRS Journal of Photogrammetry and Remote Sensing 143 (2018) 150-166

Fig. 21. Line framework extraction result using incomplete terrestrial laser scanner
data.

(@)

Fig. 20. Line framework extraction results. (a) A photo of Scene 1. (b) Point cloud frame of ceiling in Scene 1. (c) Scene 1. (d) Scene 2.
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Fig. 22. Part of 11-12-17c data result from http://www.navvis.Imt.ei.tum.de/data-
set/.

Fig. 23. Part of 2C03 data result from http://www.ifi.uzh.ch/en/vmml/re-
search/datasets.html.

Fig. 24. Conference room data from Stanford 2D-3D-Semantics Dataset (Armeni
et al.,, 2016).

horizontal floors and ceilings, Oesau’s method does not provide
correct building models when dealing with buildings of inconsis-
tent ceiling height.

Our method provides both optimized structure lines as well as
window and door lines (Figs. 18(b) and 19(b)). In addition, because
all lines are extracted directly from the 3D point cloud, our method
works on buildings with uneven ceiling height. As shown in Figs. 18
(b) and 19(b), two uneven ceiling areas, locating in different planes,
are correctly extracted. More importantly, our method provides
lines with semantic information, which exactly satisfies the LOD
3 building modeling requirement. In the results, the floor, wall,
and ceiling areas are represented by blue, green, and red lines,
respectively.

Fig. 20 shows more line framework extraction results using our
method on larger testing scenes. Here, both testing scenes are
underground parking areas. Unlike common building interiors,
the ceilings of these two parking areas are very uneven. As shown
in Fig. 20(a) and (b), the background of the ceiling area is cluttered,
as noted by the many pipes and parking instruction lights. Our
method is effective for obtaining the line framework of these chal-
lenging scenes (Fig. 20(c) and (d)). However, due to the incomplete
data caused by severe occlusion, some parts of the line are still
missing. Also, as shown in Fig. 20(d), the sloping path on the right
side is extracted correctly.

In addition, we also tested our method on point cloud data
acquired by other systems. For the terrestrial laser scanning RIEGL
VZ 1000 data (see Fig. 21), the acquired data is incomplete. Because
serious occlusion occurs in this building, most of the floor points
are missing. Our method, though, still provides reasonable line
framework extraction results with our labeling, 3D line extraction
and framework optimization procedures. Moreover, our proposed
method extracts the 3D line frameworks from the following four
scenes: 2D laser scanner-based corridor (Fig. 22), 3D laser
scanner-based single room (Fig. 23), 3D camera-based conference
room (Fig. 24) and 2D laser scanner-based multi-floor building
(Fig. 25). Especially, the sloping ceiling in Fig. 25 is extracted suc-
cessfully, indicating that our proposed method is effective for
uneven ceiling scenes. The results indicate that out method works
well with different types of indoor point cloud data.

7. Conclusion

This paper presented a novel semantic line framework model-
ing method for indoor environments using backpacked laser scan-
ning point cloud data. We first proposed a patch-based labeling
result provided by the CRFs-based method to process 3D modeling

Fig. 25. TUB2 dataset of the ISPRS benchmark on indoor modeling (Khoshelham et al., 2017).
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without prior knowledge of the building. Then, to provide a rich
structural representation of the cluttered and occluded building
interior, we directly extracted a 3D line structure from the 3D point
cloud. In addition, we proposed a cGAN-based deep learning model
to optimize the line framework. By using different training data,
the optimized framework can be further applied to buildings with
other structures. Line optimization can further instruct the point
cloud quality evaluation to form a closed loop of the data collection
and the representation of the indoor environment. Experimental
results show that the algorithm provides a good line framework-
based semantic model for the indoor point clouds acquired by
our self-built backpacked laser scanning system, as well as other
laser scanning point clouds.
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