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Abstract— This letter presents a line structure-based method
for integration of centimeter-level indoor backpacked scanning
point clouds and millimeter-level outdoor terrestrial laser scan-
ning point clouds. Using 3-D lines for registration, instead of
matching points directly, can improve the robustness of the
method and adapt to multisource point cloud data of different
qualities. Considering the limited overlapping between indoor
and outdoor scenes, line structures are extracted from overlapped
wall areas that may be included in interior and exterior data.
Here, a patch-based method labels a point cloud into wall, ceiling,
floor categories, as well as assigning the candidate overlapping
walls. Then, lines structures are extracted from the wall plane
point cloud. Potential door and window line structures are
detected and refined for point cloud registration. Last, an iterative
closest point-based method is used to fine tune the registration
results. Our results show that the proposed method effectively
integrates a promising map of indoor and outdoor scenes.

Index Terms— Indoor outdoor integration, line feature, point
clouds, semantic labeling.

I. INTRODUCTION

IN RECENT years, 3-D building models have received more
and more attention. Current building modeling is generally

achieved by modeling software or automated methods based
on image/point cloud data. To better serve the needs of com-
plete building modeling, indoor and outdoor 3-D scene data
must be integrated. Because of the differences between indoor
and outdoor environments, indoor and outdoor 3-D scene
data are commonly acquired by different mapping devices,
which create a demand to develop a method that integrates
multisource indoor and outdoor data of different qualities. This
integration problem is quite different from the registration of
the same-source 3-D scene data [1].
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Fig. 1. Pipeline of the proposed method.

The key to matching indoor and outdoor data is to find
the same structure that appears in both scenes. Windows and
doors, which connect indoor and outdoor areas, are commonly
used as matching structures. Many methods have been devel-
oped to integrate indoor and outdoor building data based on
images. Koch et al. [2] proposed a method to align indoor and
outdoor building models using 3-D line segments extracted
from the image structure from motion (SFM) data [3]. To
align the interior and exterior of a building, Cohen et al. [4]
proposed using SFM models and images to generate corre-
spondences, based on the windows between the two models.

Compared with images, point cloud data provide denser,
more accurate feature information to register indoor and
outdoor scenes. Mellado et al. [5] proposed super four-points
congruent sets (4PCS) registration method based on the orig-
inal 4PCS method [6]. Most current methods are suitable for
same source point cloud registration. Because different devices
and methods are commonly used to obtain indoor and outdoor
point cloud data, the qualities (e.g., density, noise level, and
accuracy) of the data are different. Meanwhile, the overlapping
region of the indoor and outdoor data is usually very limited.
These difficulties create a challenge for the integration of the
indoor and outdoor data.

To integrate backpacked indoor data with terrestrial laser
scanning (TLS) outdoor data, we propose an indoor–outdoor
integration method based on 3-D line structures. (The pipeline
is shown in Fig. 1.) To obtain a candidate wall area,
patch-based point cloud semantic labeling is first performed.
To ensure the registration between the different quality data,
3-D line structures are extracted directly from an overlapped
point cloud for coarse registration. Final fine registration is
achieved by an iterative closest point (ICP)-based method.

II. INDOOR AND OUTDOOR DATA ACQUISITION

A. Backpacked Indoor 3-D Mobile Mapping

Based on our previous indoor backpacked laser scanning
system [7] shown in Fig. 2(a), to acquire indoor point cloud
data, we built an upgraded indoor backpacked laser scanning
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Fig. 2. Backpacked indoor laser scanning system. (a) Single-beam back-
packed system [7]. (b) Upgraded multibeam backpacked system [8].

system [8] as shown in Fig. 2(b), which consists of two
calibrated 16-beam 3-D laser scanners (Velodyne VLP-16).

Indoor 3-D mapping was achieved by a light detection
and ranging (LIDAR)-based simultaneous localization and
mapping method. Based on the LIDAR odometry and mapping
method [9], the feature points on sharp edges and planar
surface patches were first extracted in each LIDAR data frame.
Because each acquired frame included multiple individual
lines, the smoothness of every point was evaluated through
the spatial relationship with its surrounding points. Then these
features were matched to reconstruct a 3-D point cloud map,
as well as a trajectory. Loop closures were detected by the
distance between the frames. If, for an extended period, two
frames are discontinuous, and their spatial distance is less than
a threshold, a possible closed loop is detected. Last, a general
framework for graph optimization (G2O) framework [10] was
adopted to optimize the map.

B. Outdoor Data Acquisition

With the assistance of the global positioning system/global
navigation satellite system, there are many commercial sur-
vey systems available to acquire outdoor data, for example,
the air/UAV-borne laser scanning system (ALS), vehicle-borne
mobile laser scanning system (MLS), and TLS. The MLS and
TLS are commonly used survey-level systems which provide
up to 1 angular resolution and millimeter precision. In this
letter, we acquired the outdoor scene data by a TLS device.

III. LINE STRUCTURE-BASED INDOOR AND

OUTDOOR INTEGRATION

A. Patch-Based Point Cloud Semantic Labeling

Line extraction from a single plane yields better results than
line extraction directly from the entire point cloud. Semantic
labeling is first performed on the entire point cloud to obtain
a suitable plane (e.g., wall, ceiling, and floor for an indoor
scene). To reduce the computational cost of labeling a large
number of point clouds, 3-D patches were first extracted using
an octree-based method from the point cloud and treated as
operating units when labeling them. Based on data quality and
density, a patch size of 5 m × 5 m was adopted.

During the training phase, a patch-based point cloud anno-
tated learning framework [11] was applied to use context
information to generate classification results that are better
than the results generated by local independent classifiers.
The entire point cloud was labeled by the trained model
into four categories of wall, ceiling, floor, and others. Then,
the labeled planes (points with the same label) were moved
to the line structure extraction step. In the proposed method,
discrimination between the planes with the same label is not
required.

B. Line Structure Extraction on 3-D Point Cloud

To reduce the impact of different qualities and densities
of the obtained point cloud data on the registration results,
the line structures extracted from the point cloud data is used
for registration.

Based on labeling results, a line extraction step was
performed on each single labeled plane. First, the normal
vector, nl , of every single point, pi was calculated as a small
facet normal, consisting of a few surrounding points. Then,
the tangent plane, Tpi , of each point, pi was calculated. The
tangent plane, Tpi , of each point, pi , is defined as follows:

Tpi = (oi , nl) (1)

where oi is the centroid of the small facet used to calculate
the normal vector. In 3-D space, the Euclidean distance from
any point, p j , to tangent plane, Tpi , is calculated as follows:

dist(p j , Tpi ) = |(p j − oi ) · nl |. (2)

The best fitting plane for the set of K neighborhoods of pi :
Bk(pi ) is obtained by solving the following equation:

argmin
Tpi

∑

p j ∈Bk(pi )

dist(p j , Tpi )
2. (3)

When all tangent planes, Tpi , for all pi were calculated,
the whole point cloud were divided into small pieces using
an improved region growing method. The original region
growing method locates as large a plane as possible. In our
method, the size of a plane is limited using a parameter, Rseed.
A point, pi , was randomly selected as a seed point to create a
new facet, fi = (

{
K m

i

}
, xi , �Ti ), where �Ti is the unit normal

vector of Tpi . For the rest of the point cloud, point p j was
added (or not added) to facet fi , depending on whether the
following three conditions were satisfied.

1) The angle between �Ti and �Tj did not exceed the thresh-
old, θ .

2) The distance between p j and pi did not exceed Rseed.
3) The orthogonal distance from p j to fi is less than σ/2.

When no more points, p j , could be added to facet, fi , another
point, pk , was chosen as the seed point, and the search to find
facet, fk , continued until most of the points (80% in this letter)
were distributed among the different facets.

Our previous method [12] was improved upon to make it
more suitable for indoor point cloud data. Here, we increased
the facet size (Rseed mentioned above) to: 1) reduce the
number of lines in the internal plane and maintain as long
a border line as possible; 2) decrease the angle θ between
two tangent planes to separate different tangent planes better;
and 3) generate a continuous head-to-tail straight line to
approximate the edge of the curve structure. To obtain a
better line result, we first extract the boundary points of each
facet, fi . Then, to reduce repeated boundary points, we define
a facet, Fi , that contains adjacent coplanar facets. Then group
boundary points into a cylinder rather than directly group
boundary points into line segments. The final step is to obtain
a satisfactory line segment from one cylinder using a least
median of squares method.

C. Line-Based Point Cloud Integration

Given data for the two point clouds, P and Q, our goal was
to find a rigid body transformation, τ , to minimize the distance
from (τ (P)) to Q. The rigid body transformation was further
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decomposed into a rotation transformation, R, and a translation
transformation, T , according to the following equation:

τ (P) = R(Q) + T (4)

where R is a 3×3 matrix and T is a 3-D translation vector. The
distance function adopts the nearest point principle as follows:

E(R, T ) = min
R,T

∑

pi∈P

||qi − (Rpi + T )||2 (5)

where qi ∈ Q is the nearest point in Q to the point, pi after the
transformation. Considering that the number of overlapping
points is limited, the number of common points (NCP) was
chosen as the distance function.

Given a threshold, �, NCP (calculated as follows) is the
number of points of the two point clouds whose closet distance
is less than �:
NCP(R, T )

= |{qi |qi ∈ Q ∩ ∃p j ∈ P → ||qi − (Rp j + T )|| ≤ �|. (6)

The target function, defined as finding the R and T that
maximize NCP, is as follows:

ENCP(R, T ) = min
R,T

NCP(R, T ). (7)

Considering the quality of the data used, we chose � equals
to 15 cm in this letter. Point density between indoor and
outdoor point cloud data is different but the density inside
a point cloud is relatively uniform. Occlusions in the point
cloud decrease the NCP value but the occlusions have the
same effect on the NCP value for both indoor and outdoor
data.

Most of the door and window (wall opening) structures are
quadrilateral structures. Thus, using the above line structure
extraction method, a line segment on a wall was extracted,
and the potential wall opening structures were extracted using
the k-means method. Two lines are grouped if they meet any
of the following conditions.

1) The angle between the two lines is smaller than θ , and
the shortest distance between the end points of two lines
is smaller than d.

2) The angle between the two lines is larger than θ and the
longest distance between the endpoints of two lines is
less than the sum of the lengths of the two lines.

In this letter, θ and d are set to be 45° and 15 cm, respec-
tively. For wall opening structures, a rigid body transformation
is determined from four points. Considering that four edge
points are found in each wall opening structure, each of the
two-different wall opening structures were matched in a brute
force manner. Then, the singular value decomposition (SVD)
method was used to find the only transformation matrix. The
outdoor point cloud was used as the reference point cloud
and the indoor point cloud as the registration point cloud. For
each obtained transformation matrix, the NCP values of the
converted indoor and outdoor point clouds were calculated,
and the optimal matching relationship was selected. In this
stage, a coarse registration is obtained because the indoor and
outdoor data are not exactly the same data. The ICP-based
method [13] fine tunes the coarse registration results for a
better result using the structures found in both indoor and
outdoor data.

Fig. 3. Indoor mapping results. (a) Underground garage mapping results.
(b) Multifloor mapping results.

TABLE I

ACCURACY OF OUR POINT CLOUD MODEL

IV. EXPERIMENTS AND RESULTS

A. Indoor Point Clouds Results

1) Accuracy: For analysis, mapping accuracy results were
given based on the following two indoor scenes: 1) a single-
floor underground garage [Fig. 3(a)], which is relatively
empty and with fewer interior objects other than vehicles and
2) a multifloor office building [Fig. 3(b)], which is narrow,
complex, and with many pedestrians.

a) Single-floor underground garage: Highly reflective
reference points were stuck to four walls (Wa , Wb, Wc, and
Wd ), with each wall having four reference points. Then a Lecia
Viva TS11 total station was used three times to measure the
distance from one wall to the other three walls. The three
measurements were averaged and considered as ground truth.

b) Multi-floor office building: For this scene, because of
serious occlusion, it was inconvenient to use a total station
to measure corresponding points at a long distance. A Riegl
VZ 1000 TLS [14], which has an error range of millimeters,
was first used to scan indoor scenes and measure the distance
between two specified points in a point cloud data as a
ground truth. Then, from the backpacked point cloud data,
two corresponding points were selected and calculated the
distance between them. To reduce the errors in the selection
of the corresponding points, 20 groups of target points were
randomly selected for calculation.

As shown in Table I, the averaged relative accuracies of the
garage and the four-floor building are about 0.14% and 0.33%,
respectively. The standard deviations of the parking garage and
the four-floor building are 9.02 and 5.23 cm, respectively.

2) Precision: To access mapping precision, the RANSAC
method was first used to fit the floor and wall planes in the
point cloud model. Then, the average standard deviation of
the distance from points on the plane to points on the fit
plane was calculated. To reduce errors caused by plane fitting,
several groups of floor data within a small rectangle were
randomly sampled to calculate the weighted average of the
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TABLE II

PRECISION OF OUR POINT CLOUD MODEL

Fig. 4. Line extraction results. (a) Indoor point cloud. (b) Line extraction
result of (a). (c). Outdoor TLS point cloud. (d) Line extraction result of (c).

precision of each plane to describe the vertical precision of the
mapping result. Similarly, data on a vertical wall within a small
area were selected to assess planimetric precision. We chose
5 m × 5 m rectangles about every 10–15 m for the floor, and
3 m × 3 m (according to real wall height) rectangular for the
flat wall.

For the underground garage scene, to calculate vertical and
planimetric precision, ten small areas of ground or ceiling
data and ten small areas of wall or cylinder data were
selected, respectively. The average vertical and planimetric
standard deviations are about 1.71 and 4.93 cm, respectively
(see Table II). For multifloor data, 12 planes in each floor
were selected to calculate the local precisions. The average
vertical and planimetric standard deviations are about 1.27 and
3.86 cm, respectively (see Table II). The vertical and plani-
metric local precisions in different indoor scenes indicate our
backpacked system provides centimeter-level mapping preci-
sion. Larger average planimetric standard deviations are due
to significant roll and pitch of the system during movement.

B. Line Structure Extraction

In this experiment, the upgraded backpacked 3-D laser
scanning system and a Riegl VZ-1000 TLS were used to obtain
indoor [Fig. 4(a)] and outdoor point cloud data [Fig. 4(c)],
respectively. Thus, the acquired indoor data are centimeter-
level precision and the acquired outdoor data are millimeter-
level precision, respectively. The indoor scene consists of two
levels of corridors. Only the end of the corridor is connected to
the outdoor scene. In all experiments, according to the quality
of point cloud data and tests, the Rseed was set at 3.5 m, and
σ was set at 0.2 m. Line structure extraction results of the
indoor and outdoor point cloud data, obtained by the method
mentioned in Section III-B, are shown in Fig. 4(b) and (d),
respectively.

As shown in Fig. 4, the line structures extracted from the
original point cloud data is too complex and noisy. It is
difficult to match the line structures from the backpacked and
TLS point cloud sources directly based on this line results.

Fig. 5. Line extraction results of wall area. (a) Indoor backpacked point
cloud. (b) Line extraction result of (a). (c) Outdoor TLS point cloud. (d) Line
extraction result of (c).

Fig. 6. Wall openings. (a) Indoor backpacked data. (b) Outdoor TLS data.

Fig. 7. Registration results. Blue represents outdoor data and red represents
indoor data. (a) Coarse registration. (b) Fine registration.

Therefore, the wall point cloud data were first labeled out,
and 3-D lines were extracted only on the wall plane (Fig. 5).

C. Registration Results

Based on wall line structures, the potential window and door
structures were detected using a k-means clustering method
first, and then regularized them based on the assumption that
they are quadrilaterals (Fig. 6).

There are not very many matched structures between two
point cloud data sets. (In Fig. 6, there are 17 rectangles on
the left and 140 on the right.) Thus, a brute force manner
was adopted to match structures, and the SVD method was
adopted to calculate the transformation matrix for every single
match. The computational time to find the best transformation
matrix was 623 s. (Our code runs on windows 10, CPU Intel
Core i5-4460 at 3.20 GHz, 12-GB RAM.)

Based on coarse registration results, refinement of the results
was achieved by an ICP-based method [13]. To quantify our
registration results, the rms distance between corresponding
points of outdoor and indoor point clouds (after registration)
were used. For a pair of points {p, q} (∀p ∈ P,∀q ∈ Q) in the
data of two point clouds, the pair {p, q} are the common points
if they satisfy the following two conditions: 1) point, p, is the
closet one in P to point q or vice versa and 2) the distance
between point, p, and point, q , is less than a predefined



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEN et al.: LINE STRUCTURE-BASED INDOOR AND OUTDOOR INTEGRATION 5

TABLE III

REGISTRATION DISTANCE

Fig. 8. Room scene registration results. Blue represents outdoor data and
red represents indoor data. (a) Indoor backpacked point cloud. (b) Outdoor
TLS data. (c) Registration results. (d) Another view of registration results.

Fig. 9. Building scene registration results. Blue represents outdoor data and
red represents indoor data. (a) Indoor backpacked point cloud. (b) Outdoor
TLS data. (c) Registration results. (d) Another view of registration results.

threshold (set at 10 cm in this letter). The rms values for coarse
and fine registration are 7.54 and 6.81 cm, respectively, which
indicates the effects of the refinement process in our method.

The 4PCS and super-4PCS methods were used to test this
scene too. These two methods use the point cloud’s geometric
features the affine invariance of the planar quadrilateral to find
the corresponding points. In this scene, to register the indoor
and outdoor point cloud data, both methods try to find the
points at the top of the corridor. However, they fall into a
local optimum and cannot register the scene correctly.

To further test the accuracy of our method, the ceiling of the
corridor in the outdoor scene data were extracted and fit the
ceiling to obtain a plane (Fig. 7). In Fig. 7, the blue point
cloud is outdoor data, red point cloud is indoor data, and
the gray point cloud is outdoor data that does not involve
registration. Then, to calculate the distance from the ceiling
of the corridor to the fit plane in the outdoor scene data,
the ceiling at the same location in the indoor scene data were
selected. Detailed numerical values are shown in Table III.

The average distances for the two planes of coarse and fine
registrations are 0.1632 and 0.0485 cm, respectively.

Another two test scene results are shown in Figs. 8 and 9. To
obtain the indoor [Figs. 8(a) and 9(a)] and outdoor point cloud
data [Figs. 8(b) and 9(b)], the upgraded backpacked laser scan-
ning system and a Riegl VZ-1000 TLS were used, respectively.
The fine registration results for indoor and outdoor are given
in Figs. 8(c) and (d) and 9(c) and(d), respectively. As seen
in Figs. 8(c) and (d) and 9(c) and (d), the proposed method
deals with the indoor and outdoor integration for point cloud
data with different quality and scenes with different structure.

V. CONCLUSION

This letter presented an indoor and outdoor integration
method using backpacked laser scanning point cloud data and
TLS point cloud Data. Although the proposed method uses
the above two types of data, in practice, this method can be
adapted to the point cloud data obtained by different sensors.
However, this method requires the buildings to be registered,
have coincident parts, and contain the quadrilateral structure
of windows and doors (not including cylinders and curved
shapes). To locate potential indoor-outdoor overlapping areas,
a semantic labeling method was used to label wall areas. To
register two point clouds with different data qualities, a 3-D
line structure was extracted directly from the point clouds
for further registration. The results show that our method is
promising for use with point cloud data of different qualities.
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