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a b s t r a c t 

As a way to accelerate stochastic schemes, mini-batch optimization has been a popular choice for large 

scale learning due to its good general performance and ease of parallel computing. However, the per- 

formance of mini-batch algorithms can vary significantly based on the choice of the step size sequence, 

and, in general, there is a paucity of guidance for making good choices. In this paper, we propose to use 

the Barzilai–Borwein (BB) update step to automatically compute step sizes for the state of the art mini- 

batch method (mini-batch semi-stochastic gradient descent (mS2GD) method), thereby obtaining a new 

optimization method: mS2GD-BB. We prove that mS2GD-BB converges linearly in expectation for non- 

smooth strongly convex objective functions. We analyze the complexity of mS2GD-BB and show that it 

achieves as fast a rate as modern stochastic gradient methods. Numerical experiments on standard data 

sets indicate that the performance of mS2GD-BB is superior to some state of the art methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Machine learning poses data-driven optimization problems in

hich the objective function involves the summation of loss func-

ions over a set of data to be modeled. Deterministic optimization

ethods must evaluate this sum in its entirety for each evaluation

f the objective, respectively its gradient. Therefore, as available

ata sets grow ever larger and larger, such optimization methods

ecome increasingly inefficient. They are also inapposite for the

nline setting, where partial data must be modeled as it arrives. 

By contrast, stochastic gradient descent (SGD) methods

1–8] work with gradient estimates obtained from a single

ample of training data. This greatly reduces computational costs

or large and redundant data sets. However, the total number

f gradient evaluations of SGD depends on the variance of the

tochastic gradients, which results in very slow convergence. In

rder to deal with the issue of high variance, SGD [9–13] usually

se a diminishing step size, but not too rapidly, i.e., the step size

s proportional to 1 
k a 

with 

1 
2 < a ≤ 1 . However, diminishing step

ize further makes SGD converge slowly [14] . For example, the

onvergence rate is sublinear, even if the objective function is

trongly convex and smooth. 
∗ Corresponding author. 
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Another effective way to reduce the high variance in SGD is

ini-batching, where each iteration is updated based on the aver-

ge gradient with respect to several samples at a time rather than

 single sample. Compared with the classic batch algorithm, mini-

atch algorithms [15–20] reduce computational cost by orders

f magnitude and yield significantly better solutions than online

tochastic gradient. Does using a mini-batching strategy allow the

tochastic optimization methods to use a non-decreasing step size?

Actually, in mini-batch algorithms (cf. [17,18,21–25] ), almost-

ure convergence is guaranteed assuming the step size is diminish-

ng. Typically, for SGD and mini-batch algorithms, there is no guid-

nce on the specific choice of the step size sequence, and problem

arameters play a very small role in refining this choice. 

Some recent works that discuss the choice of step size in mini-

atch algorithms are summarized as follows. Reddi et al. [26] ana-

yzed the stochastic variance reduced gradient (SVRG) method for

onconvex finite-sum problems and proposed a mini-batch non-

onvex stochastic variance reduction gradient (MSVRG) method. In

SVRG, they showed that its step size depends on the number of

terations. However, they pointed out that because, in practice, it

s difficult to compute step size of MSVRG, it is typical to try mul-

iple step sizes and choose the one with the best results, which is

ime consuming in practice. Li et al. [20] proposed a new way of

erforming mini-batch updates beyond simple parameter averag-

ng and argued that, under certain conditions, for their proposed

ethod, diminishing step size can develop into a constant step

ize. Kone ̌cn ̀y et al. [27] proposed the mini-batch semi-stochastic

https://doi.org/10.1016/j.neucom.2018.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.06.002&domain=pdf
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1 We adopt the definition of sub-gradient from [42] . Namely, if P is a convex 

function, then a vector g ′ is called the sub-gradient of the function, P , at the point 

w 0 ∈ dom R if, for any w ∈ dom P , we have that P(w ) ≥ P(w 0 ) + 〈 g ′ , w − w 0 〉 . 
gradient descent (mS2GD) method for solving nonsmooth

objective functions. The mS2GD method works with a constant

step size. They showed that mS2GD can reach any predefined

accuracy with less overall work than a method without mini-

batching and is suitable for further acceleration by parallelization.

We conclude that the common practice in mini-batch algorithms

is either to use a diminishing step size, or a tuning step size by

hand, which, in practice, can be time. 

In this paper, we propose to use the Barzilai–Borwein (BB) up-

date step to automatically compute step size for the state of the

art mini-batch method: mS2GD, thereby obtaining a new method:

mS2GD-BB. We prove that mS2GD-BB converges linearly in ex-

pectation for nonsmooth strongly convex objective functions. We

analyze the complexity of mS2GD-BB and show that, under cer-

tain conditions, mS2GD-BB has as fast a rate as modern stochastic

methods such as SAG [28] , SDCA [29] and SVRG [30] . Finally, we

conduct experiments using mS2GD-BB to solve logistic regression.

The experimental results demonstrate that our proposed method

obtains an appropriate step size sequence and achieves better per-

formance than some state of the art methods. 

The remainder of this paper is organized as follows.

Section 2 introduces the details of our proposed method.

Section 3 analyzes the convergence of our proposed method

and shows its complexity. Section 4 presents our numerical results

and Section 5 concludes the paper. 

2. Algorithm 

2.1. Problem statement 

In many machine learning problems, the following uncon-

strained optimization problem is usually considered: 

min 

w ∈ R d 
P (w ) = F (w ) + R (w ) , (1)

where F ( w ) is the average of many smooth component functions

f i ( w ), i.e., 

F (w ) = 

1 

n 

n ∑ 

i =1 

f i (w ) , (2)

and R ( w ) is relatively simple, but possibly nonsmooth [e.g., R (w ) =
‖ w ‖ 1 or R ( w ) ≡ 0]. 

A standard method to solve the above optimization problem is

the proximal gradient method [31–33] . Given an initial point, w 0 ∈
R 

d , the proximal gradient method employs the following update

rule for t = 1 , 2 , . . . : 

w t+1 = arg min 

w ∈ R d 

{ 

∇F (w t ) 
T w + 

1 

2 ηt 
‖ w − w t ‖ 

2 
2 + R (w ) 

} 

, 

where ηt > 0 is the step size at the t th iteration. With the defini-

tion of proximal mapping 

prox R (z) 
def = arg min 

w ∈ R d 

{ 

1 

2 

‖ w − z‖ 

2 
2 + R (w ) 

} 

, 

the proximal gradient method is compactly written as: 

w t+1 = prox ηt R 
(w t − ηt ∇F (w t )) . (3)

In a large scale setting, it is more efficient to consider instead

the stochastic proximal gradient method, in which the proximal

operator is applied to the following stochastic gradient step: 

w t+1 = prox ηt R 
(w t − ηt G t ) , (4)

where G t is a stochastic estimate of the gradient ∇F ( w t ). 
.2. mS2GD 

Kone ̌cn ̀y et al. [27] proposed the mS2GD method for solving

roblem (1) . They showed that mS2GD reaches a predefined accu-

acy with less overall work than a method without mini-batching.

he mS2GD method performs a deterministic step (evaluating the

radient of the objective function at the starting point), followed

y a large number of stochastic steps. 

In the stochastic steps of mS2GD, the stochastic estimate of

F ( w t ) takes the form 

 t = ∇�I (w t ) − ∇�I ( ̃  w ) + ∇F ( ̃  w ) , (5)

here ∇ �I (w t ) = 

1 
| I| 

∑ 

i ∈ I ∇ f i (w t ) , ∇ �I ( ̃  w ) = 

1 
| I| 

∑ 

i ∈ I ∇ f i ( ̃  w ) ,

 F ( ̃  w ) = 

1 
n 

∑ n 
i =1 ∇ f i ( ̃  w ) , I ⊂ { 1 , 2 , . . . , n } is a random mini-batch

f size b , and 

˜ w is an “old” reference point for which the gradient,

F ( ̃  w ) , has previously been evaluated. 

.3. Barzilai-Borwein update step 

The BB method, proposed by Barzilai and Borwein [34] and

quipped with some quasi-Newton property, has proven to be a

owerful paradigm for solving nonlinear optimization problems. To

olve the unconstrained minimization problem, 

in f (w ) , (6)

here f is differentiable, a typical iteration of the BB method uses

he following iteration scheme: 

 t+1 = w t − ηt ∇ f (w t ) , (7)

here ηt is evaluated as follows: 

t = ‖ s t ‖ 

2 
2 / (s T t y t ) , (8)

here s t = w t − w t−1 and y t = ∇ f (w t ) − ∇ f (w t−1 ) for t ≥ 1. 

The way to determine step size in Eq. (8) is in accordance with

he so called quasi-Newton equation (a.k.a. secant equation): 

 t s t = y t . (9)

In Eq. (9) , H t is an approximation of the Hessian matrix of

 at the current iteration, w t , and appears in the quasi-Newton

teration scheme: w t+1 = w t − H 

−1 
t ∇ f (w t ) . Barzilai and Borwein

34] regarded H t = η−1 
t I as an approximation for the Hessian of

 at w t . Hence, one can find ηk such that the residual of the

ecant equation, i.e., ‖ (1 /ηt ) s t − y t ‖ 2 2 
, is minimized, which leads

o Eq. (8) . In practice, such a method to calculate step size in

q. (8) effectively reduces computational cost and achieves better

erformance. (For detailed information, such as convergence anal-

sis and variants of the BB method, please see [35–41] and the

eferences therein.) 

.4. mS2GD with BB step size 

According to the introduction about the mS2GD and the BB

tep size in Sections 2.2 and 2.3 , we now describe mS2GD-BB

 Algorithm 1 ). The only difference between mS2GD and mS2GD-

B is that in the latter, instead of using a prefixed η in mS2GD, we

se the BB update step to compute step size, ηs . 

Note that, to deal with the nonsmooth case, we introduce the

ub-gradient 1 of objective function, P ( w ), to compute the step size

n Algorithm 1 . As indicated in Algorithm 1 , if we always set ηs = η
n mS2GD-BB instead of using Eq. (10) , then mS2GD-BB is reduced
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Algorithm 1 mS2GD-BB. 

1: Input: m (max of stochastic steps per iteration); mini-batch 

size b ∈ [ n ] ; initial point ˜ w 0 ; initial step size η0 

2: for s = 0 , 1 , 2 , . . . , do 

3: Set ˜ w = 

˜ w s 

4: Compute and store g s = (1 /n ) 
∑ n 

i =1 ∇ f i ( ̃  w ) , g 
′ 
s = ∂P ( ̃  w ) 

5: if s > 0 then 

6: 

ηs = 

b 

m 

‖ ̃

 w s − ˜ w s −1 ‖ 

2 
2 / ( ̃  w s − ˜ w s −1 ) 

T (g 
′ 
s − g 

′ 
s −1 ) (10) 

7: end if 

8: Set w 0 = 

˜ w 

9: Randomly choose t s ∈ { 1 , 2 , . . . , m } 
10: for t = 0 to t s − 1 do 

11: Randomly choose mini-batch I t ⊂ { 1 , . . . , n } of size b 

12: Compute a stochastic estimate of ∇F (w t ) ; 

G t = ∇�I t (w t ) − ∇�I t ( ̃  w ) + g s 
13: w t+1 = prox ηs R (w t − ηs G t ) 

14: end for 

15: Set ˜ w s +1 = w t s 

16: end for 
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r  
o the original mS2GD. In addition, for the first epoch of mS2GD-

B, we set an initial step size η0 . However, we observed from nu-

erical experiments that the performance of our proposed method

s insensitive to the choice of initial step size η0 . Moreover, with a

inor modification, the BB update step can also be easily incorpo-

ated in other mini-batch algorithms, such as MSVRG, etc. 

. Analysis 

In this section, we state our assumptions, analyze the conver-

ence of our proposed method, and show how our method con-

erges linearly in expectation for strongly convex and nonsmooth

unctions. Finally, we analyze the complexity of mS2GD-BB. 

.1. Assumptions 

Our analysis is conducted taking into account the following as-

umptions: 

ssumption 1. Each gradient of the convex function f i ( w ) in

q. (2) is differentiable and Lipschitz continuous with a positive

onstant, L , which means that for all w and v ∈ R 

d 

∇ f i (w ) − ∇ f i (v ) ‖ 2 ≤ L ‖ w − v ‖ 2 . (11) 

Assumption 1 implies that the gradient of the average function,

 ( w ), is also Lipschitz continuous, i.e., there exists a positive con-

tant, L , such that for all w , v ∈ R 

d , holds as follows: 

∇F (w ) − ∇F (v ) ‖ 2 ≤ L ‖ w − v ‖ 2 . (12) 

ssumption 2. P ( w ) is μ-strongly convex, i.e., there exists μ> 0

uch that for all w , v ∈ R 

d , holds as follows: 

 (w ) ≥ P (v ) + ξ T (w − v ) + 

μ

2 

‖ w − v ‖ 

2 
2 ∀ ξ ∈ ∂P (w ) . (13) 

The convexity parameter of a function is the largest μ for which

he above condition holds. Let F ( w ) and R ( w ) have convexity pa-

ameters μF and μR , respectively; then we take μ ≥ μF + μR . Note

hat, although we must have μF ≤ L , it is possible for μ> L . 

.2. Main result 

The following theorem establishes the linear convergence in ex-

ectation of the mS2GD-BB method: 
heorem 1. Suppose that Assumptions 1 and 2 hold. Let w ∗
def= 

rg min w 

P (w ) and choose b ∈ { 1 , . . . , n } . Additionally, assume that

 L α( b ) b / m μ< 1, and m is sufficiently large, so that 

def = 

1 

b [ 1 − 4 Lα(b) b/mμ] 
+ 

4 Lα(b) b(m + 1) 

m [ μm − 4 Lα(b) b] 
< 1 , (14) 

here α(b) = ((n − b) /b(n − 1)) . Then, mS2GD-BB has linear conver-

ence in expectation with rate ρ: 

 [ P ( ̃  w s ) − P (w ∗)] ≤ ρs [ P ( ̃  w 0 ) − P (w ∗)] . 

roof. Proofs and lemmas related to Thereom 1 are given in

ppendix A . �

As seen from Theorem 1 , for any fixed b , by choosing m large

nough, we force ρ to be arbitrarily small. It seems that for the

S2GD-BB method to achieve a solution of any prescribed ac-

uracy, only single outer loop ( s = 1 ) is required. This is indeed

he case. However, such a choice of the parameters, ( m, b, s ), for

he method are not optimal. To satisfy E [ P ( ̃  w s ) − P (w ∗)] ≤ ε and

chieve linear convergence, one needs to perform s = O ( log (1 /ε))

uter loops and choose the parameters b and m to an appropriate

alue (generally, m = O (κ) ). 

.3. Complexity analysis 

For a clean comparison, we first show the complexity of the

odern stochastic gradient methods and proximal gradient de-

cent methods. Then, we analyze the complexity of our mS2GD-BB

ethod. 

To achieve ε-accuracy, i.e., 

 [ P ( ̃  w s ) − P (w ∗)] ≤ ε[ P ( ̃  w 0 ) − P (w ∗)] , (15) 

he complexity of the modern stochastic gradient methods, such as

DCA, SAG, and SVRG is 

 

(
(n + κ) log 

(
1 

ε

))
, (16) 

here κ = L/μ is a condition number. 

The complexity bound ( 16 ) should be compared with that of

he proximal gradient descent methods (e.g., ISTA [43] ), which

s O ( n κ log (1/ ε)), or FISTA [31] , which is O (n 
√ 

κ log (1 /ε)) . Note

hat while all these methods enjoy linear convergence rate, the

odern stochastic gradient methods are many orders of magni-

ude faster than classical deterministic methods. Indeed, we have

 + κ ≤ n 
√ 

κ ≤ nκ . 

Now, we analyze the complexity of mS2GD-BB. When m � 1,

rom (14) , we have 

≈ 1 

b [ 1 − 4 Lα(b) b/mμ] 
+ 

4 Lα(b) b 

μm − 4 Lα(b) b 
. (17) 

hen setting m = 10 Lα(b) b/μ, i.e., m = 10 κα(b) b, from (17) , we

ave 

≈ 5 

3 b 
+ 

2 

3 

. 

herefore, with appropriate choice of parameter b , we can make

less than 1. Specifically, if we set the number of outer itera-

ions to s = � log (1 /ε) � and choose m = 10 α(b) bκ, the mS2GD-BB

ethod needs (n + 10 α(b) bκ) log (1 /ε) units of work for achieving

15) . Note that this recovers the fast rate (16) . 

In addition, when choosing b = n, we have α(b) = 0 and hence

= 1 /n . We obtain the complexity of mS2GD-BB as O ( nm log (1/ ε)).

hen we set m = O (κ) , this rate approximates the proximal gra-

ient descent methods. 

Hence, by modifying the mini-batch size, b , in mS2GD-BB, the

ate of mS2GD-BB varies between the fast rate of the modern



180 Z. Yang et al. / Neurocomputing 314 (2018) 177–185 

Fig. 1. Comparison of mS2GD-BB with different mini-batch sizes on w 8 a (left) and cina 0 (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Summary of data sets used in the numerical experiments. 

Data sets n d λ1 λ2 L 

rcv1 20,242 47236 10 −5 10 −4 0.2500 

ijcnn1 49,990 22 10 −5 10 −4 0.9841 

w8a 4 9,74 9 300 10 −5 10 −4 28.50 0 0 

cina0 16,033 132 10 −4 10 −4 0.2500 

(  

t  

b  

c  

o  

c

4

 

o  

o  

g  

H  

s

 

2  

t

4

 

fi  

i  

f  

f  

c  

1

 

s  

n  

a  
stochastic gradient methods and the slow rates of the proximal

gradient descent methods. 

Comparing the analysis of mS2GD in [27] , we see that mS2GD-

BB and mS2GD have similar properties. Actually, the benefit of our

mS2GD-BB method is that it automatically computes step size by

using the BB method for mS2GD, but does not affect the advan-

tage of mS2GD in practical applications and even can improve the

performance of mS2GD. 

4. Numerical experiments 

In this section, we present results of several numerical exper-

iments to illustrate the properties of our mS2GD-BB method and

compare its performance with several state of the art methods.

In Section 4.1 , we show the properties of mS2GD-BB that are in-

volved in solving standard testing problems for different values of

b . In Section 4.2 , we compare mS2GD-BB with mS2GD in regard to

standard testing problems. Finally, in Section 4.3 we compare our

proposed method with other state of the art methods. 

Of all the experiments, we discuss those that were performed

with R (w ) = 

λ2 
2 ‖ w ‖ 2 

2 
+ λ1 ‖ w ‖ 1 . Each f i ( w ) in Eq. (2) is the logistic

loss function given as follows: 

f i (w ) = log (1 + exp (−b i a 
T 
i w )) . (18)

These functions are usually used in machine learning, with

(a i , b i ) ∈ R 

d × { +1 , −1 } , i = 1 , . . . , n, being a training data set of

example-label pairs. The resulting optimization problem (1) , em-

ployed in machine learning for binary classification, takes the fol-

lowing form: 

min 

w ∈ R d 
P (w ) := 

1 

n 

n ∑ 

i =1 

log (1 + exp (−b i a 
T 
i w )) + 

λ2 

2 

‖ w ‖ 

2 
2 + λ1 ‖ w ‖ 1 .

(19)

For the experiments discussed in this work, the following four

publicly available data sets were used: rcv 1, ijcnn 1, w 8 a , 2 and

cina 0. 3 

In logistic regression, the Lipschitz constant of function f i is

equal to L i = ‖ a i ‖ 2 2 
/ 4 . Although unnecessary, for convenience, we

normalize the rcv 1 and cina 0 data sets so that ‖ a i ‖ 2 = 1 for all i =
1 , 2 , . . . , n, which leads to the same upper boundary hold on the

Lipschitz constants L = ‖ a i ‖ 2 / 4 . In addition, our analysis assumes

2 

2 rcv 1, covertype and w 8 a are available at https://www.csie.ntu.edu.tw/ ∼cjlin/ 

libsvmtools/datasets/ . 
3 cina 0 are available at http://www.causality.inf.ethz.ch/home.php . 

F  

s  

t  

s  

t

 Assumption 1 ) the same constant, L , for all functions. Hence, for

he other two data sets, we have L = max i ∈ [ n ] L i . Table 1 presents

asic information, such as size ( n ), dimension ( d ), and Lipschitz

onstant ( L ). Also in Table 1 are the values of λ1 and λ2 used in

ur experiments. ( λ1 and λ2 are typical benchmarks used in ma-

hine learning to obtain good classification performance for (19) .) 

.1. Properties of mS2GD-BB 

Fig. 1 illustrates the results of mS2GD-BB under various values

f b . In Fig. 1 , the x -axis represents the number of effective passes

ver the data, where each effective pass evaluates n component

radients. The y -axis denotes the sub-optimality P (w ) − P (w ∗) .
ere, w 

∗ is obtained by running mS2GD with the best-tuned step

ize until mS2GD converges. 

As seen in Fig. 1 , when the mini-batch size increases to b =
 , 4 , 8 , 16 , the performance of mS2GD-BB is the same or better

han that of mS2GD-BB with b = 1 . 

.2. Comparison with mS2GD 

In this sub-section, we compare mS2GD-BB and mS2GD with

xed step size for solving Eq. (19) using the four data sets listed

n Table 1 . We employed the best-tuned step size for mS2GD, and,

or mS2GD-BB, three different initial step sizes, η0 . ( η0 was chosen

rom {0.1, 1, 10}.) For mS2GD and mS2GD-BB, using the rcv 1 and

ina 0 data sets, we set b = 4 ; using the ijcnn 1 data set, we set b =
6 ; using the w 8 a data set, we set b = 2 . 

The results of the comparing mS2GD with mS2GD-BB are

hown in Fig. 2 . In all the sub-figures, the x -axis represents the

umber of effective passes over the data. In Fig. 2 (a), (c), (e)

nd (g), the y -axis denotes the sub-optimality P (w ) − P (w ∗) ; in

ig. 2 (b), (d), (f) and (h), the y -axis denotes the corresponding

tep sizes, ηs . In all the sub-figures, the dashed lines (shown in

he legends of the figures) stand for mS2GD with different fixed

tep sizes. The solid lines represent mS2GD-BB with different ini-

ial step sizes, η . 
0 

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.causality.inf.ethz.ch/home.php
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Fig. 2. Comparison of mS2GD-BB and mS2GD with fixed step sizes on different data sets. The dashed lines represent mS2GD with different fixed step sizes ηs given in the 

legend. The solid lines stand for mS2GD-BB with different initial step size η0 ; for example, the solid lines in Fig. 2 (a) and (b) correspond to mS2GD-BB with η0 = 10 , 1 , 0 . 1 , 

respectively. 
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Fig. 3. Comparison of different methods on four data sets: rcv 1 (top left), cina 0 (top right), ijcnn 1 (bottom left) and w 8 a (bottom right). We have used mS2GD-BB with b = 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a), (c), (e) and (g) shows that mS2GD-BB always achieves

the same level of sub-optimality as mS2GD with the best-tuned

step size and achieves even better performance than mS2GD with

the best-tuned step size. As seen from Fig. 2 (a), (c), (e) and (g), the

performance of mS2GD-BB is better than that of mS2GD with the

other choice of step size. Moreover, as shown in Fig. 2 (b), (d), (f)

and (h), the step sizes computed by mS2GD-BB converge to the

best-tuned step sizes after about ten or fifteen epochs. Also, as

seen from Fig. 2 , mS2GD-BB is insensitive to the choice of the ini-

tial step size, η0 . 

4.3. Comparison with other algorithms 

To further confirm the effectiveness of our proposed method,

we experimented on mS2GD-BB in comparison with determinis-

tic (FISTA) and stochastic gradient (Modified-SVRG-BB, Prox-SAG,

Prox-SVRG, and MSVRG) methods for Eq. (19) . The full gradient and

stochastic gradient methods are specified as follows: 

(1) FISTA: FISTA is a version of the fast iterative shrinkage-

thresholding algorithms [31] for solving linear inverse prob-

lems. 
(2) Prox-SAG: Prox-SAG is a proximal version of the SAG method

[28] . In Prox-SAG, as suggested in [44] , we used the standard

backtracking line search to obtain the step size. 

(3) Prox-SVRG: Prox-SVRG is a proximal version of the stochastic

variance-reduction gradient method. Xiao and Zhang [33] re-

ported that, in theory, the algorithm achieves better perfor-

mance when a step size of η = 0 . 1 /L is adopted. In Prox-

SVRG, we employed m = 2 n between full gradient evalua-

tions. 

(4) Modified-SVRG-BB: The SVRG-BB [45] method is used to

deal with the smooth case of Eq. (2) . To solve the non-

smooth case, we enhance SVRG-BB, and call the resulting

method Modified-SVRG-BB. Modified-SVRG-BB uses the sub-

gradient of the nonsmooth objective function to determine

the step size sequence { ηk }. Moreover, to update the solu-

tion sequence, { w k }, the proximal operation is introduced

into Modified-SVRG-BB. In addition, as suggested in [45] , we

set m = 2 n . 

(5) MSVRG: MSVRG is a mini-batch version of SVRG proposed in

[26] for nonconvex finite-sum problems. In MSVRG, a con-

stant step size was used. Same as in [26] , we use mini-

batches of size 10 for all data sets. 
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4 We note that in Lemma 3.7 it need 0 < η ≤ 1/ L . In the following, we will give the 

upper bound of ηs , i.e., ηs ≤ b / m μ. Obviously, if let m large enough, we can make ηs 

no more than 1/ L . 
5 Although we not use in the mS2GD-BB algorithm, we can still use it in the 

analysis nevertheless. 
Fig. 3 shows that, with most data sets listed in Table 1 , mS2GD-

B achieves a better performance than the competing methods.

n our experiments, for mS2GD-BB, we set b = 4 . The best perfor-

ance was given when we employ m = { 0 . 14 n, 0 . 13 n, 0 . 11 n, 0 . 08 n }
n different data sets listed in Table 1 , respectively. 

. Conclusion 

In this paper, we have proposed a new class of iterative meth-

ds, mS2GD-BB, which employs the BB update step to automati-

ally compute step size in mini-batch settings. We proved that our

roposed method converges linearly in expectation for nonsmooth

trongly convex objective functions. We analyze the complexity of

S2GD-BB and show that it achieves as fast a rate as the modern

tochastic gradient methods. The results obtained on standard data

ets indicate that the appropriate step size is obtained by running

S2GD-BB. Finally, comparative experiments in logistic regression

how that mS2GD-BB converges more rapidly than the competing

ethods. 
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ppendix A. 

1. Technical results 

In the convergence analysis, we also employ the non-

xpansiveness of proximal mapping, which can be found in the op-

imization literature [46] . 

emma 1. Let R be a closed convex function on R 

d and w , v ∈ R 

d ,

hen ‖ prox R (w ) − prox R (v ) ‖ 2 ≤ ‖ w − v ‖ 2 . 
In addition, before giving the proof of Thereom 1 , the bound

ariance of the modified gradient G k is given in the following

emma, where it can be found in [27] : 

emma 2 (Bounding variance) . Let α(b) 
def = ((n − b) /b(n − 1)) . Con-

idering the definition of G t in Thereom 1 , conditioned on w t , we have

he E [ G t ] = ∇F (w t ) and the variance satisfies, 

 

[‖ G t − ∇F (w t ) ‖ 

2 
2 

]
≤ 4 Lα(b)[ P (w t ) − P (w ∗) + P ( ̃  w ) − P (w ∗)] . 

(A.20) 

2. Proof of Theorem 1 

Now, we give the proof of Theorem 1 . The proof follows the

teps in [33] . For convenience, we define the stochastic mapping

s follows: 

 t = 

1 

ηs 
(w t − w t+1 ) = 

1 

ηs 
(w t − prox ηs R (w t − ηs G t )) , 

o that the updated iterations are written as w t+1 = w t − ηs d t . Let

s estimate the change of ‖ w t+1 − w ∗‖ 2 2 . It holds that 

 w t+1 − w ∗‖ 

2 
2 = ‖ w t − ηs d t − w ∗‖ 

2 
2 

= ‖ w t − w 

∗‖ 

2 
2 − 2 ηs d 

T 
t (w t − w 

∗) + η2 
s ‖ d t ‖ 

2 
2 . 

(A.21) 
pplying Lemma 3.7 4 in [33] with w = w t , v = G t , w 

+ = w t+1 , g =
 t , y = w ∗ and � = �t = G t − ∇F (w t ) , we obtain 

d T t (w t − w ∗) + 

ηs 

2 

‖ d t ‖ 

2 
2 ≤ P (w ∗) − P (w t+1 ) − μF 

2 

‖ w t − w ∗‖ 

2 
2 

−μR 

2 

‖ w t+1 − w ∗‖ 

2 
2 − �T 

t (w t+1 − w ∗) , (A.22) 

aking into account (A.21) and (A.22) we get: 

 w t+1 − w ∗‖ 

2 
2 ≤ ‖ w t − w ∗‖ 

2 
2 − 2 ηs [ P (w t+1 ) − P (w ∗)] 

−2 ηs �
T 
t (w t+1 − w ∗) . (A.23) 

To bound −2�T 
t (w t+1 − w ∗) , we define the proximal full gradi-

nt update as 5 w t+1 = prox ηs R (w t − ηs ∇F (w t )) . Then, we have 

−2 ηs �
T 
t (w t+1 − w ∗) 

= −2 ηs �
T 
t (w t+1 − w t+1 ) − 2 ηs �

T 
t ( w t+1 − w ∗) 

≤ 2 ηs ‖ �t ‖‖ w t+1 − w t+1 ‖ − 2 ηs �
T 
t ( w t+1 − w ∗) 

= 2 ηs ‖ �t ‖‖ prox ηs R (w t − ηs G t ) − prox ηs R (w t − ηs ∇F (w t )) ‖ 

−2 ηs �
T 
t ( w t+1 − w ∗) 

≤ 2 η2 
s ‖ �t ‖ 

2 − 2 ηs �
T 
t ( w t+1 − w ∗) 

In the first inequality, we used the Cauchy–Schwarz inequality,

nd in the second inequality we used Lemma 1 . Combining with

A.23) , we have 

 w t+1 − w ∗‖ 

2 
2 ≤ ‖ w t − w ∗‖ 

2 
2 − 2 ηs [ P (w k +1 ) − P (w 

∗)] 

+2 η2 
s ‖ �t ‖ 

2 − 2 ηs �
T 
t ( w t+1 − w ∗) . 

By taking expectation on both sides of the above inequality

ith respect to i t , we obtain 

 ‖ w t+1 − w ∗‖ 

2 
2 ≤ ‖ w t − w ∗‖ 

2 
2 − 2 ηs [ E P (w k +1 ) − P (w ∗)] 

+2 η2 
s E ‖ �t ‖ 

2 − 2 ηs E [�T 
t ( w t+1 − w ∗)] . 

Note that with E (�t ) = 0 and combining Lemma 2 , we have 

 ‖ w t+1 − w ∗‖ 

2 
2 ≤ ‖ w t − w ∗‖ 

2 
2 − 2 ηs [ E P (w t+1 ) − P (w 

∗)] 

+8 Lα(b) η2 
s [ P (w t ) − P (w ∗) + P ( ̃  w ) − P (w ∗)] . 

Using the strong convexity of P ( w ), we obtain the following up-

er bound on the BB step size evaluated in Algorithm 1 : 

s = 

b 

m 

· ‖ ̃

 w s − ˜ w s −1 ‖ 

2 
2 

( ̃  w s − ˜ w s −1 ) T (g 
′ 
s − g 

′ 
s −1 

) 

≤ b 

m 

· ‖ ̃

 w s − ˜ w s −1 ‖ 

2 
2 

μ‖ ̃

 w s − ˜ w s −1 ‖ 

2 
2 

= 

b 

μm 

By using the last two inequalities, we ascertain that 

 ‖ w t+1 − w ∗‖ 

2 
2 ≤ ‖ w t − w ∗‖ 

2 
2 − 2 

b 

μm 

[ E P (w t+1 ) − P (w ∗)] 

+8 Lα(b) 
b 2 

μ2 m 

2 
[ P (w t ) − P (w ∗) + P ( ̃  w ) − P (w ∗)] .

We consider a fixed stage s , so that w 0 = 

˜ w = 

˜ w s . In addition,

y the definition of ˜ w s +1 in Algorithm 1 we have 

 [ P ( ̃  w s +1 )] = (1 /m ) 
m ∑ 

t=1 

E[ P (w t )] . (A.24) 

By summing the previous inequality for 1 ≤ t ≤ m , we have 

 ‖ w t+1 − w ∗‖ 

2 
2 + 

2 b 

μm 

[ E P (w m 

) − P (w ∗)] + 

2 b 

μm 

(
1 − 4 Lα(b) 

b 

μm 

)

https://doi.org/10.13039/501100001809
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×
m −1 ∑ 

t=1 

[ E P (w t ) − P (w ∗)] 

≤ ‖ w 0 − w ∗‖ 

2 
2 + 8 Lα(b) 

b 2 

μ2 m 

2 

×[ P (w 0 ) − P (w ∗) + m (P ( ̃  w ) − P (w ∗))] . 

Further, we have 

2 b 

μm 

(
1 − 4 Lα(b) 

b 

μm 

)
m ∑ 

t=1 

[ E P (w t ) − P (w ∗)] 

≤ ‖ ̃

 w − w ∗‖ 

2 
2 + 8 Lα(b) 

b 2 

μ2 m 

2 
(m + 1)[ P ( ̃  w ) − P (w ∗)] . 

By using Eq. (A.24) and strong convexity of P implies ‖ ̃  w −
w ∗‖ 2 2 

≤ 2 
μ [ P ( ̃  w ) − P (w ∗)] , we obtain 

2 b 

μm 

(
1 − 4 Lα(b) 

b 

μm 

)
m [ E P ( ̃  w s +1 ) − P (w ∗)] 

≤
(

2 

μ
+ 8 Lα(b) 

b 2 (m + 1) 

μ2 m 

2 

)
[ P ( ̃  w s ) − P (w ∗)] . 

Dividing both sides of the above inequality by 2 b[ μm −
4 Lα(b) b] /μ2 m, we arrive at 

E P ( ̃  w s +1 ) − P (w ∗) ≤
(

1 

b [ 1 − 4 Lα(b) b/mμ] 
+ 

4 Lα(b) b(m + 1) 

m [ μm − 4 Lα(b) b] 

)

×[ P ( ̃  w s ) − P (w ∗)] . 

Finally using the definition of ρ in Eq. (13) , and applying the

above inequality recursively, we obtain the desired results. 
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