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a b s t r a c t 

Procedural model fitting (PMF) is a generalization of classical model fitting and has numerous applica- 

tions for computer vision and computer graphics. The task of PMF is to search a geometric model set for 

the model that is most similar to a set of data points. We propose a strict and robust similarity estimator 

for PMF to handle imperfect data. The proposed estimator is based on the error from model to data, while 

most other estimators are based on the error from data to model. We then use the proposed estimator to 

guide the cuckoo search algorithm to search for the most similar model. To accelerate the search process, 

we also propose a coarse-to-fine model dividing strategy to early reject dissimilar models. In this paper, 

the proposed PMF method is applied to fit building models on laser scanning data. It is also applied to fit 

character models on eighteen variants of imperfect MNIST data to achieve few-shot pattern recognition. 

In the 5-shot recognition, our method outperforms the state-of-the-art method on thirteen variants of 

the imperfect data. In particular, for one of the data corrupted by grid lines, our method obtains a high 

accuracy of 65%, whereas the state-of-the-art method only obtains an accuracy of 30%. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

A procedural model set is defined by a probabilistic program

consisting of several parametric rules [1,2] . Retrieving desired mod-

els from a procedural model set is a newly growing topic called

inverse procedural modeling [3] or probabilistic program induction

[4] . As a special case of probabilistic program induction, procedural

model fitting (PMF) aims to search a procedural geometric model

set for the model that is most similar to (i.e., best explains) a given

set of data points. PMF has achieved remarkable progress in com-

puter vision and computer graphics as it can extract rich structure

information from the data [4,5] . For example, PMF has achieved

human-level performance in the one-shot pattern recognition

task [4] . 

However, it is difficult to perform PMF as it has three challeng-

ing issues. The first issue is the creation of the probabilistic pro-

gram, which is manually addressed in some methods [6–9] . Several
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ethods have also been proposed to automatically create the prob-

bilistic program [4,10–12] . Given the probabilistic program that

efines the procedural model set, the second issue is the opti-

ization problem to find the desired model from the model set.

his can be addressed by Markov chain Monte Carlo [6,7,13] , re-

nforcement learning [14,15] , sequential Monte Carlo [8] , active-set

4] , cuckoo search [16,17] , genetic algorithm [9] , or neural parsing

18,19] . 

Different from the aforementioned two issues that come from

he model side, the third issue comes from the data side. That is,

MF needs a geometric similarity estimator to estimate the simi-

arity between model and data to guide the optimization process.

ost existing PMF methods pay major attention to address the

odel-side issues, while tackle the data-side issue using common

stimators. Such a commonly used estimator is voxel difference,

hich is used in PMF methods [4,6,8,9] . Another commonly used

stimator is the Error from Data to Model (E D M), which is intro-

uced in the well-known least squares method and is still widely

sed in modern computer science [20,21] . Voxel difference and

 D M are simple to understand and easy to implement. However,

https://doi.org/10.1016/j.patcog.2018.07.027
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Table 1 

An example probabilistic program. 

rule Building() rule Facade( i, α) rule Floor( i, β) 

Sample α ∼ p α ( α) if i < α //Generate a rectangle 

Facade(0, α) Sample β ∼ p β ( β) //at height i , 

end rule Floor( i, β) //dig out a square hole 

Facade( i + 1 , α) //with size β

end if //from the rectangle. 

end rule end rule 
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 D M is sensitive to outliers [22] . Voxel difference is also sensitive

o imperfect data. In practice, data usually suffer from imperfec-

ion. That is, data are commonly contaminated by gross-outliers

23] , pseudo-outliers [24,25] , noise, and missing data [26] . 

In this paper, we propose a novel geometric similarity estimator

or PMF to robustly handle imperfect data. The proposed estimator

s based on the Error from Model to Data (E M D), with our key in-

ight that E M D is more reliable than E D M if the data are imperfect.

s the counterpart of E D M, E M D is as simple as E D M. Although ex-

ensive investigations have been conducted in E D M [27] , only a few

orks can be found in E M D. Note that, similar to E D M, using E M D

nly is insufficient to represent the similarity between a model

nd data [28] . A regularization term should be used to regularize

 M D to ensure that only one model is most similar to the data.

he ground-truth model cannot be distinguished from some triv-

al (null) models by the method proposed in [29] , as it uses E M D

ithout regularization [30] . The method proposed in [31] also uses

 M D but requires the model to be within a narrow crust, which

imits the application of E M D. In contrast, the proposed estimator

as very few requirements for the model using a novel regulariza-

ion approach. 

Given the similarity estimator, we use the cuckoo search algo-

ithm [16] to perform optimization for PMF in this paper. With

ew parameter to tune, the cuckoo search algorithm is a recently

opular random optimization algorithm. In general, the optimiza-

ion algorithm needs to accurately estimate the similarity, which

s time-consuming. Observing that the dissimilarity can be deter-

ined by sampling only one point from the model, we propose a

ovel coarse-to-fine model dividing strategy to early reject dissim-

lar models to accelerate the optimization process. 

The contributions of this paper can be summarized as follows.

1) A novel geometric similarity estimator is proposed to strictly

nd robustly estimate the similarity between a complex geometric

odel and an imperfect data point set; (2) A novel early rejection

trategy is proposed to accelerate the cuckoo search based PMF;

3) Several robust PMF applications are explored to fit cylinders,

haracters, and buildings. 

The rest of this paper is structured as follows. In Section 2 ,

e review the related work. In Section 3 , we give the preliminary

nowledge for PMF. We then present our similarity estimator, our

arly rejection strategy, and the experiments in Sections 4 –6 , re-

pectively. We finally conclude the paper in Section 7 . 

. Related work 

Most existing robust model fitting methods were proposed to fit

lassical models. A classical model is usually represented by a sin-

le parametric rule. For example, a line, a circle, or a polynomial

unction can be represented by a single equation. One of the most

opular robust methods is RANdom SAmple Consensus (RANSAC)

32] . Assuming that a candidate model can be determined by a

ubset of the data points, RANSAC finds the desired model from

he candidate models using inlier number criterion [33] . A lot of

ethods have been proposed to improve RANSAC in terms of ac-

uracy [34–36] , efficiency [37–39] , and global consistency [24,40–

2] . Another popular robust method is Hough transform [43,44] ,

hich achieves model fitting by implicitly maximizing inlier num-

er through voting in the space of model parameters [45] . Hough

ransform has been used to extract some classical models such as

ines [46–48] , circles [49,50] , ellipses [51–53] , curves [54–56] , and

lanes [57,58] . 

However, a procedural model is usually more complex than a

lassical model, as it is usually represented by a number of para-

etric rules. For example, a procedural building model [59] can

ontain boundaries and holes, which are rare in a classical model.

n practice, a procedural model can consist of different types of
ub-models, while a classical model is normally composed of sub-

odels with the same type. Furthermore, the relation between

odel parameters and model points is commonly straightforward

n a classical model, while it can be complicated in a procedu-

al model as defined by a black-box probabilistic program. More-

ver, the number of model parameters is usually fixed in a classical

odel, while it can vary in a procedural model set [6] . Therefore, it

s unclear how to extend a classical model fitting method to handle

rocedural models. For example, the aforementioned assumption

f RANSAC-like methods are usually not applicable to procedural

odels. For another example, Hough transform is typically used to

andle models with less than 10 parameters [60] , while a proce-

ural model can have tens of even thousands of parameters [9] . 

Nevertheless, the similarity estimator used by a classical model

tting method can be used for PMF. One of the most popular

obust estimators is inlier number or its extension M-estimator

33,61] . However, inlier number needs a hard threshold to deter-

ine if a point is an inlier or not. Similarly, it is not straightfor-

ard to choose an appropriate robust function for M-estimator to

andle different types of imperfect data. Moreover, inlier number

nd M-estimator are suffered from overfitting to data, as they use

 D M without regularization. Actually, using E D M only is insuffi-

ient to strictly represent the similarity between a model and data

28] . To overcome overfitting, an E D M-based estimator usually has

wo terms, the E D M term and a regularization term. The regular-

zation term is used to ensure that only one model is most simi-

ar to the data. There are two major types of regularization terms:

 M D and model smoothness. The frequently used Hausdorff dis-

ance [62] is an E D M-based estimator regularized by E M D. Vari-

us forms of model smoothness have been proposed [27] , includ-

ng local smoothness [63–65] , global smoothness [66,67] , piece-

ise smoothness [68] , and volumetric smoothness [69] . 

. Preliminaries 

A k -dimensional point set P is a subset of R 

k , i.e., P ⊂ R 

k . In

his paper, k ∈ {1, 2, 3}. A geometric model is a special point set

onsisting of one or more continuous sub-point sets. For example,

 character is composed of several strokes. As it is uncountable, a

ontinuous point set is usually represented by a parametric rule.

or instance, a 2-dimensional line segment is a continuous point

et and can be represented by a rule with parameters θ1 ∈ R 

2 and

2 ∈ R 

2 : { θ1 + t θ2 | t ∈ [0 , 1] } . It is easy to know that, if the param-

ters of a rule are variable, then the rule defines a set of models. 

.1. Probabilistic program 

As a generalization of parametric rule, a probabilistic program

s composed of several parametric rules. Actually, a probabilistic

rogram is able to represent any model [70] . This paper focuses on

uilding models [59] and character models [4] . Table 1 shows an

xample of probabilistic program, which has three rules: Building,

acade, and Floor. Building is the start rule and calls Facade with

ariable α sampled from the prior p α( · ). α implicitly determines

he number of Floors. The prior p α( · ) is uniformly distributed. That
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Fig. 1. Our PMF pipeline. 
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is, α ∈ [0 , αmax ] ∩ Z , where αmax is a predefined maximum num-

ber of Floors. For simplicity, this paper only investigates uniformly

distributed priors, although they play important roles in a proba-

bilistic program. 

Facade is a recursive rule. Before calling itself, Facade calls Floor

with variable β . Furthermore, β specifies the size of the hole gen-

erated by the Floor rule. During the execution of this probabilistic

program, multiple instances of Facade may be produced. Therefore,

multiple instances of β may exist. For PMF, it is needed to identify

different instances of the same variable. For this example proba-

bilistic program, β can be simply identified with the parameter i:

β i . For more complex cases, a calling trace can be used for the

identification. 

3.2. Procedural model fitting 

Given a data point set D and a probabilistic program g , the task

of PMF is to search the model set defined by g for the model that

is most similar to D . As shown in Fig. 1 , our PMF method proceeds

as follows. Given the data D and the probabilistic program g with

parameter θ, a similarity calculation procedure is used to calcu-

late the geometric similarity between D and the model generated

according to g . Based on the calculated similarity, θ is iteratively

updated by the optimization procedure. 

From a Bayesian perspective, the PMF optimization problem can

be formulated as follows: 

max 
θ

f 
(
θ| D 

)
∝ L (D | θ)p( θ) , (1)

where D is the data point set, f ( · | · ) is the posterior of the param-

eters given the data, L ( · | · ) is the likelihood of the data given the

parameters, and p ( · ) is the parameter prior predefined in the in-

put program g . As the prior is assumed to be uniformly distributed,

the posterior is reduced to the likelihood. Let M g be the model set

defined by g , we define the likelihood L ( · | · ) as: 

L (D | θ) = s ( M 

θ
g , D ) , (2)

where M 

θ
g ∈ M g is the model corresponding to θ, and s ( · , · ) is the

geometric similarity between M 

θ
g and D ( Sections 3.3 and 4 ). Equa-

tion (1) defines a non-convex optimization problem, for which tra-

ditional mathematical optimization methods are inapplicable. We

use the cuckoo search algorithm [16] , which is a random optimiza-

tion algorithm, to solve Eq. (1) ( Sections 3.4 and 5 ). 

3.3. Strict geometric similarity 

A geometric similarity estimator is used to estimate the similar-

ity between two point sets. In this paper, an estimator is consid-
red as a strict estimator if it can ensure that a point set is most

imilar to itself. Formally, an estimator s ( · , · ) is strict if it satisfies

he following property: 

 (Q, P ) < s (P, P ) ∀ P ∈ P u ∀ Q ∈ P u \ { P } , (3)

here P u is the universal set of point sets. In the context of model

tting, one of the two point sets involved in similarity estimation

s a geometric model. To achieve procedural model fitting, the sim-

larity estimator should be strict. Only with a strict estimator, it

an be guaranteed to find the ground-truth model if the data is

erfect (i.e., the data point set is the ground-truth model itself). 

A well-known strict estimator for P u is Hausdorff distance

28,62] , which is defined as: 

 H (P, Q ) = max { d(P, Q ) , d(Q, P ) } , (4)

here P ∈ P u , Q ∈ P u , and d ( P, Q ) is the error from P to Q : 

(P, Q ) = max 
p ∈ P 

min 

q ∈ Q 
‖ 

p − q ‖ 

, (5)

here ‖ · ‖ is Euclidean norm. In general, the error from P to Q

oes not equal the error from Q to P , and using only one of these

wo errors is insufficient to represent the similarity between P and

 [28] . That is, neither d ( P, Q ) nor d ( P, Q ) is a strict estimator. 

.4. Random optimization 

To maximize an objective function f ( θ ) for θ ∈ [ θmin , θmax ] , a

andom optimization algorithm usually works as follows [6] . Let
( i ) be the value of θ in iteration i . First, θ is randomly initial-

zed as θ (0) . In each iteration, a tentative ˜ θ is sampled from a pro-

osal function q ( θ | θ ( i ) ). If f ( ̃  θ ) > f (θ (i ) ) , then 

˜ θ is accepted (i.e.,
(i +1) = 

˜ θ ), otherwise ˜ θ is rejected (i.e., θ (i +1) = θ (i ) ). The proposal

unction q plays a critical role in a random optimization algorithm.

ne of the simplest proposal functions is the uniform function.

hat is, ˜ θ ∼ [ θmin , θmax ] . 

The cuckoo search algorithm [16] is a random optimization al-

orithm inspired by the breeding behaviour of cuckoo birds. To

void the tedious work of offspring breeding, a cuckoo lays its egg

o replace the egg in the nest of a host bird with the hope that

he host could help breeding the offspring. The host will also lay

ew egg to replace discovered cuckoo egg. The cuckoo search algo-

ithm iteratively mimics the egg replacement. The egg corresponds

o θ , the quality of egg corresponds to the objective function f ( θ ).

he egg laying of cuckoo and host are modelled as sampling ˜ θ
rom the Levy function and the uniform function, respectively. In

ach iteration, the algorithm sequentially performs the egg laying

f cuckoo and the host, and the egg replacement happens if the

uality of new egg is better than that of old egg. So far, we have

escribed the simplified algorithm with one cuckoo and one host

ird. In practice, the algorithm mimics the behaviour of a popula-

ion of cuckoos and host birds. 

. Proposed similarity estimator 

Let M be the model point set and D be the data point set in-

olved in model fitting. As discussed in Section 3.3 , Hausdorff dis-

ance can be used to estimate strict similarity between M and D .

owever, it is time-consuming to calculate Hausdorff distance as

t requires to calculate both EDM d ( D, M ) and EMD d ( M, D ). Con-

equently, a similarity estimator for model fitting is usually based

n either EDM or EMD. Most estimators are based on EDM. Our

nsight is that EMD is more reliable than EDM if the data is im-

erfect. As shown in Eq. (5) , all the data points are involved in

he max operator to calculate EDM d ( D, M ), however, only the data

oints survived from the min operator are involved in the max op-

rator to calculate EMD d ( M, D ). In other words, the outliers in
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Fig. 2. An illustration of EDM and EMD. Top row: the overlaps between a nearly perfect data point set (blue dots) and different models (green curves). Bottom row: the 

overlaps between an imperfect data point set (blue dots) and different models (green curves). The imperfect data contains one outlier. From left to right: good-fitting model, 

over-fitting model, under-fitting model, and incomplete-fitting model. The red arrow denotes EDM, while the black arrow denotes EMD. The values of EDM or EMD are 

indicated by the lengths of the arrows. A long arrow means a large error, i.e., a small similarity. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 3. An illustration of similarity. (a) Curve C 1 , (b) Curve C 2 , (c) Curve C 3 , and (d) the overlap between C 1 , C 2 and C 3 . The overlapping part (black) shows that C 2 is a part 

of C 1 and C 3 . 
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ata have chances to contribute to EDM but have no chance to

ontribute to EMD, making EMD more robust than EDM. 

As shown in Fig. 2 , EDM is unable to distinguish the good-

tting model ( Fig. 2 (a)) from the over-fitting model ( Fig. 2 (b))

or the nearly perfect data. For the imperfect data, EDM even

refers the over-fitting model ( Fig. 2 (f)) than the good-fitting

odel ( Fig. 2 (e)). It is worth noting that the over-fitting problem is

otorious in machine learning. For both of the data, EMD prefers

he good-fitting models ( Fig. 2 (a) and (e)) than the over-fitting

odels ( Fig. 2 (b) and (f)) and the under-fitting models ( Fig. 2 (c)

nd (g)). However, EMD is unable to distinguish the good-fitting

odels from the incomplete-fitting models ( Fig. 2 (d) and (h)). To

ddress this problem, a regularization term should be used to reg-

larize EMD. 

.1. Full similarity 

It is challenging to design a regularization term to regularize

MD. We observe that, in real world, two models M ⊂ R 

k and

 ⊂ R 

k are identical if and only if every point of N is in M (i.e.,

(N, M) = 0 ) and the measure of N is equal to the measure of M .

hat means the measure can be used as a regularization term to

stimate similarity. It is worth noting that different types of mod-

ls have different types of measures. For example, the measure of

 curve is its length, while the measure of a surface is its area. 

We hence propose a mean measure to represent the similarity

etween a model M ⊂ R 

k and a data point set D ⊂ R 

k . Denoting

he measure of M as | M |, the mean measure r ( · , · ) is defined as

he ratio of | M | to EMD: 

(M, D ) = 

| M | 
ε + d λ(M, D ) 

, (6) 

here λ> 0 is used to tune the weight of the measure and EMD,

nd ε is a small positive number used to derive different similari-

ies for the models with different measures but the same EMD of

. For example, as shown in Fig. 3 , both d ( C 1 , C 1 ) and d ( C 2 , C 1 ) are

qual to 0. If ε is 0, then both r ( C 1 , C 1 ) and r ( C 2 , C 1 ) are infinite

espite C 1 is more similar to C 1 than C 2 . In practice, when ε is suf-

ciently small, the mean measure can ensure that a model is most

imilar to itself than any other models. 
We now prove that the mean measure is a strict estimator in

ome 1-dimensional case. We consider a 1-dimensional model M

hat consists of only one continuous point set and has a positive

nite measure, i.e., M = [ x, y ] , −∞ < x < y < + ∞ . Let M u ⊂ P u be

he universal set of such models. 

emma: | N| ≤ | M| + 2 d(N, M) , ∀ N ∈ M u . 

Proof . Let N = [ z, t] . Note that, | M| = y − x and | N| = t − z. There

re six cases of relations of x, y, z and t : (1) x < z < t < y , (2)

 ≤ x < t < y , (3) z < t ≤ x < y , (4) z ≤ x < y ≤ t , (5) x < z < y ≤ t , and (6)

 < y ≤ z < t . Cases 2 and 5 are similar. Cases 3 and 6 are similar. We

nly need to prove the first four cases. For Case 1: From the case

ondition we have x < z and t < y , so t + x < z + y, so t − z < y − x,

.e., | N | < | M |. Meanwhile, it is easy to compute that d(N, M) = 0

or this case. Therefore, | N| ≤ | M| + 2 d(N, M) . For Cases 2 and 3:

(N, M) = x − z, | M| + 2 d(N, M) − | N| = y − x + 2(x − z) − (t − z) =
(y − t) + (x − z) > 0 , proved. For Case 4: if t − y > x − z, then

(N, M) = t − y, | M| + 2 d(N, M) − | N| = y − x + 2(t − y ) − (t − z) =
(t − y ) − (x − z) > 0 . If t − y ≤ x − z, then d(N, M) = x − z, | M| +
 d(N, M) − | N| = (x − z) − (t − y ) ≥ 0 . proved. 

Theorem: Given a ε > 0, let M 

(ε) 
u = { M| M ∈ M u , | M| > 2 ε} .

hen λ = 1 , the mean measure ( Eq. (6) ) is a strict similarity esti-

ator ( Eq. (3) ) for the model set M 

(ε) 
u . That is, when λ = 1 , for a

> 0 , ∀ M ∈ M 

(ε) 
u , ∀ N ∈ M 

(ε) 
u \ { M} , r ( N, M ) < r ( M, M ). 

Proof . ∀ M ∈ M 

(ε) 
u , ∀ N ∈ M 

(ε) 
u \ { M} , noting that | M | > 0

nd | N | > 0, (1) If d(N, M) = 0 , then N ⊂ M , then | N | < | M |, so

(N, M) = (| N| /ε) < r(M, M) = (| M| /ε) ; (2) If d ( N, M ) > 0, then

 d ( N, M ) ε < d ( N, M )| M | because 2 ε < | M |, then | M | ε + 2 d(N, M ) ε <

 M | ε + d(N, M ) | M | , so | N| ε < | M | (ε + d(N, M )) according to the

emma, so | N| / (ε + d(N, M)) < | M| /ε, i.e., r ( N, M ) < r ( M, M ). 

As shown in Eq. (6) , to maximize the mean measure similar-

ty over a model set for a data point set, we first minimize the

MD (denominator) (e.g., Fig. 2 (d)), and then maximize the mea-

ure | M | until it equals the measure of the ground-truth model

e.g., Fig. 2 (a)). After that, the model M has no chance to become

arger (i.e., | M | becomes larger). Because the similarity will become

maller as EMD will inevitably be much larger if | M | is larger than

he ground-truth measure (e.g., Fig. 2 (b)). 
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Algorithm 1 The proposed PMF method with early rejection. 

input : a probabilistic program g with parameter θ, a data point 

set D , the posterior function f ( θ| D ) , a proposal function q , an 

iteration tolerance i max , and a minimal model dividing resolution 

δmin . 

output : a maximum a posteriori estimate of θ: θ
∗
. 

Randomly initialize θ
(0) 

, θ
∗ ← θ

(0) 

for i = 0 to i max do 

Sample ˜ θ ∼ q ( θ| θ(i ) 
) 

Compute ηmax of M 

˜ θ
g according to δmin 

for η = 0 to ηmax do 

if f η( ̃  θ| D ) > f ( θ
(i ) | D ) then θ

(i +1) ← 

˜ θ

else θ
(i +1) ← θ

(i ) 
, break 

if f ( θ
(i +1) | D ) > f ( θ

∗| D ) then θ
∗ ← θ

(i +1) 

return θ
∗
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Note that, the values of mean measure are comparable on the

same data point set, but are incomparable on different data point

sets. That is, it does not make sense to compare the mean mea-

sure values across different data point sets. For example, as shown

in Fig. 3 , it is meaningless to compare r ( C 2 , C 2 ) and r ( C 2 , C 1 ), al-

though r(C 2 , C 2 ) = r(C 2 , C 1 ) . It is also worth noting that, the data

is unnecessary to have a geometric measure. That is, the data can

be a discrete point set (i.e., a point cloud). If the data D is dis-

crete, then ε is trivial because d ( M, D ) is always larger than 0 (e.g.,

Fig. 2 ). 

4.2. Partial similarity 

Mean measure is defined as a full similarity estimator as it as-

sumes that the data is complete. However, if the data is incom-

plete, we have to calculate partial similarity, which is challenging.

Partial similarity is not straightforward and is fundamentally differ-

ent from full similarity. If two models have a common part, then

these two models are partially similar. As shown in Fig. 3 , each

pair of C 1 , C 2 and C 3 are partially similar. We expect that the par-

tial similarity between C 1 and C 2 is equal to the partial similarity

between C 2 and C 2 . Because the common part between C 1 and C 2 
is the same as the common part between C 2 and C 2 . 

Therefore, we propose a Weighted Mean Measure (WMM) to

represent the partial similarity between a geometric model M and

a data point set D . We divide M into c non-overlapping sub-

models: M = 

c ∪ 

i =1 
M i , and define WMM as: 

r w 

(M, D ) = 

c ∑ 

i =1 

w i | M i | 
ε + d λw 

(M, D ) 
, (7)

where w i is the weight: w i = exp ( −d( M i , D )h ) , h is a non-negative

weighting factor. When h is 0, WMM becomes a full similarity es-

timator. d w 

( · , · ) is the weighted mean error: 

d w 

(M, D ) = 

c ∑ 

i =1 

w i d( M i , D ) 

c ∑ 

i =1 

w i 

. (8)

By weighting, the sub-models of M far away from D have less

contribution to the computation of WMM than those close sub-

models. In other words, the common part of M and D makes major

contribution to WMM, making WMM plausible to estimate partial

similarity. 

4.3. Computational complexity 

The computational complexity of mean measure almost de-

pends on that of EMD, as the measure of a model can be imme-

diately obtained from the model parameter. The computation of

EMD consists of two steps. First, the model is uniformly divided

into sub-models, and the center points of the sub-models are sam-

pled ( Section 5 ). Second, the nearest point is searched in the data

for a point sampled from the model. This is time-consuming if the

data contains a large number of points. A common way to perform

the nearest neighbour searching is using a k -dimensional tree [71] .

Let m be the number of points sampled from a model M and n

be the number of points of data D , the complexity to compute the

mean measure between M and D is about O (m log (n )) . 

5. Proposed early rejection strategy 

In our PMF method, the optimization algorithm ( Section 3.4 )

accepts a proposed model with a larger similarity. However, it is

time-consuming to accurately compute a similarity, as many points
ave to be sampled from the model to compute an accurate sim-

larity. We observe that, it is sufficient to determine the dissim-

larity by sampling only one point from the model. As shown in

he left part of Fig. 4 , Curve C 4 consists of one horizontal line seg-

ent, and Curve C 5 consists of two vertical line segments, these

wo curves are dissimilar. The similarities computed by sampling

ne point ( Fig. 4 (c)) and four points ( Fig. 4 (a)) are the same and

qual to the true similarity. However, if two points are sampled

 Fig. 4 (b)), the computed similarity will be incorrect as it shows

hat C 4 and C 5 are similar. It can be inferred that a small sim-

larity between two point sets means that these two point sets

re dissimilar. However, a large similarity between two point sets

oes not mean that these two point sets are really similar. In other

ords, a proposed model should be accepted carefully but rejected

oldly. 

Consequently, to reduce computational time, we propose a

oarse-to-fine model dividing strategy for similarity calculation to

eject dissimilar models in advance. We take a square surface for

xample (as shown in the right part of Fig. 4 ), and the conclusions

an be easily adapted to other types of geometric models. Assum-

ng that the length of the square surface is γ , given a predefined

inimal dividing resolution δmin , the maximum dividing level is:

max = log 2 (γ / δmin + 1) . (9)

t each level η, we uniformly divide the surface into 2 2 η sub-

urfaces, and sample only one point (center point) from each sub-

urface to calculate EMD. The similarity is then calculated to de-

ide whether to accept or reject the proposed surface. If it is ac-

epted, then the surface is divided into more sub-surfaces and

ore points are sampled at a higher level to obtain more accurate

imilarity. Otherwise, a new surface is proposed. 

The pseudo code of our PMF method is presented in

lgorithm 1 , where f η( · | · ) denotes the posterior computed at

ividing level η. Let δD be the resolution of the data D : δD =
in 

p ∈ D 
min 

q ∈ D \{ p } ‖ p − q ‖ , the minimal model dividing resolution δmin 

hould be set at least two times smaller than δD to obtain accu-

ate similarity. 

. Experiments 

We implemented our method in MATLAB and conducted several

xperiments including estimator comparison ( Section 6.1 ), cylin-

er fitting ( Section 6.2 ), character fitting ( Section 6.3 ), and build-

ng fitting ( Section 6.4 ). In all experiments, we set ε = 10 −8 . Unless

tated, we use WMM with λ = 2 , h = 0 , and set δmin to 0.3 times

he resolution of the data. 
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Fig. 4. An illustration of early rejection. Left: Overlap between Curves C 4 (green) and C 5 (blue). Black dots represent the points sampled from C 4 . (a), (b) and (c) show that 

4, 2 and 1 point(s) are sampled, respectively. Right: A square surface to illustrate the coarse-to-fine model dividing. The dividing levels in (d), (e) and (f) are 0, 1 and 2, 

respectively. The black dots represents the points sampled in the current level, and the white dots represents the points sampled in previous levels. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Model sets. (a) Model set M 1 , (b) Model set M 2 , (c) Model set M 3 , and (d) Model set M 4 . Each of these 4 model sets has only one parameter θ ∈ [0, 2]. 

Fig. 6. Data point sets. From left to right: Point sets D 1 , D 2 , D 3 and D 4 . For i = 1 to 4, D i is a point cloud uniformly sampled from Model M 

θ=1 
i 

with 0.02 resolution. D 1 , D 2 , 

D 3 and D 4 consist of 12288, 9216, 6144 and 3072 points, respectively. 
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Table 2 

WMM similarities between the target models and data 

point sets. The diagonal elements represent the similar- 

ities between the ground-truth models and the data. It is 

shown that, for the same data, the similarity between the 

ground-truth model and the data is the largest among all 

similarities. 

Model M 

θ=1 
1 

M 

θ=1 
2 

M 

θ=1 
3 

M 

θ=1 
4 

Data 

D 1 83840.8 62861.7 41920.4 20941.3 

D 2 21987.3 62861.7 41920.4 20941.3 

D 3 8086.26 8322.63 41920.4 20941.3 

D 4 2486.52 2494.83 2642.86 20941.3 
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.1. Estimator comparison 

We compare several estimators with our WMM estimator by

tting 4 procedural models ( Fig. 5 ) to 4 data point sets ( Fig. 6 ).

odel M 

θ
1 

∈ M 1 is a ring-like surface between an outer square and

n inner square. The outer and inner squares share the same cen-

er. The length of the outer and inner squares are 4 and 2 θ , respec-

ively. Models M 

θ
2 

∈ M 2 , M 

θ
3 

∈ M 3 and M 

θ
4 

∈ M 4 are 0.75, 0.5 and

.25 part of M 

θ
1 
, respectively. As shown in Fig. 6 , for i = 1 to 4, the

round-truth model of D i is M 

θ=1 
i 

. In this paper, we refer to the

arget model of a data point set as the model which is partially

imilar to the ground-truth model. Therefore, for each data point

et in Fig. 6 , there is a target model in each model set (as shown

n Fig. 5 ). That is, for i = 1 to 4 and j = 1 to 4, the target model of

 i in M j is M 

θ=1 
j 

. 

The estimators used for comparison include negative Hausdorff

istance (-HD), negative EDM (-EDM), negative voxel difference

-VD), and inlier number (IN). -VD is used in PMF methods

4,6,8,9] , while IN is the foundation of many classical model fitting

ethods such as RANSAC based methods [32–34,37,40] . 

The comparison results of fitting the models ( Fig. 5 ) to the data

oint sets ( Fig. 6 ) are shown in Fig. 7 . In these 16 experiments, we

et h = 5 for WMM and set the resolution for -VD calculation to

.04. Since the target models of the data are models with θ = 1 ,

t is expected that the models with θ = 1 have the largest sim-

larities. As shown in Fig. 7 , our WMM is the only estimator to

chieve this goal for all experiments. -HD is successful for full fit-

ing ( Fig. 7 (a), (f), (k), and (p)), but failed for partial fitting except

ig. 7 (g). IN fails to distinguish the target models from models with

< 1 for all experiments except Fig. 7 (k). The computational time

f these 16 experiments for -HD, -VD, -EDM, IN, and WMM are

4.2, 1.34, 21.8, 0.0949, and 74 s, respectively. Our WMM is faster

han -HD. 

It is worth noting that -HD, -EDM and WMM prefer to sample

oints from model with a smaller resolution to obtain more accu-
 p  
ate similarity. However, -VD produces worse results with a smaller

esolution for a discrete point set. Fine voxelization of a discrete

ata produces more empty voxels. Therefore, an empty model (e.g.

 

θ=2 
1 

) is preferred, as shown by the example in Fig. 8 (a). This indi-

ates that voxelization is unsuitable for fine fitting of point clouds.

It is interesting to find that Fig. 7 (c) is similar to Fig. 7 (d).

ctually, the original similarities before normalization are differ-

nt. As shown in Table 2 , the WMM similarities are comparable

cross different model sets for the same data. It can be seen from

able 2 and Fig. 7 that, a model is most similar to itself than any

ther models using WMM. Finally, we take the experiment of fit-

ing M 

θ
1 

to D 2 as an example to evaluate the effect of weighting

actor h . As shown in Fig. 8 (b), WMM is very stable with respect

o different values of h . 

.2. Cylinder fitting 

In this section, we investigate the effect of our early rejection

trategy by fitting a cylinder model M 5 to data point sets D 5 , D 6 ,

nd D 7 ( Fig. 9 ). D 5 and D 6 contain gross-outliers, while D 7 contains

seudo-outliers. The cylinder model M has 7 parameters (3 for
5 
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Fig. 7. Comparative results achieved by different estimators. From left to right: the results of fitting Models M 

θ
1 
, M 

θ
2 
, M 

θ
3 

and M 

θ
4 

to the data point sets. From top to bottom: 

the results of fitting the models to Data D 1 , D 2 , D 3 and D 4 . The vertical axis s n ( · , · ) denotes the normalized similarity. We uniformly normalize the similarities into a range 

of [0, 1]. The legend for these figures is presented in (a). The diagonal figures represent the results of full fitting. The figures below diagonal, above diagonal represent the 

results of partial fitting on the incomplete data, partial fitting on the data with pseudo-outliers, respectively. 

Fig. 8. Parameter sensitivity. (a) -VD similarities of fitting M 

θ
1 

to D 1 with resolutions 0.2, 0.08, 0.02, 0.01 and 0.005. (b) WMM similarities of fitting M 

θ
1 

to D 2 with weighting 

factor h = 0.5, 2, 4, 8 and 16. 
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location, 1 for radius, 1 for height, and 2 for start and end angles).

Some sample models of M 5 are shown in the top row of Fig. 10 . 

For each data, we use the cuckoo search (CS) [16] and

Metropolis-Hastings (MH) [6] algorithms with or without early re-

jection (ER) to perform cylinder fitting. The evolutions of similar-

ity during fitting are shown in Fig. 11 , where each line represents

the mean similarity values and the patch around each line repre-

sents the standard deviations. The mean values and standard de-

viations are computed from 60 times of fitting. The fitting is per-

formed three hours every time. Some fitted models are shown in

Fig. 10 . Fig. 11 shows that, with our ER strategy, both CS and MH

can be accelerated by about 3 times. As shown in Fig. 11 (a) and

a  
b), the target similarities still remain the largest similarities after

 long evolution time. This indicates that our method is robust to

ross outliers. Fig. 10 (f) shows that our method is also robust to

seudo-outliers. It is also shown that, CS is more efficient to han-

le pseudo-outliers ( Fig. 11 (c)), whereas MH is more efficient to

eal with massive gross-outliers ( Fig. 11 (b)). 

.3. Character fitting 

We also applied our method to perform few-shot recognition

n noisy variants of the MNIST dataset [73,74] , which contain im-

ges of size 28 × 28 for digits 0–9. For convenience, we resized the
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Fig. 9. Data point sets. From left to right: Data D 5 , D 6 , and D 7 . D 5 and D 6 are generated by adding low-level and high-level gross outliers to a noise-free data, respectively. 

The noise-free data contains 2048 points sampled from a cylinder surface with resolution 0.2. D 5 consists of 4096 points, while D 6 consists of 10,240 points. D 7 has 14,778 

points and is generated by downsampling a laser scanning point cloud [72] with a resolution of 0.2. 

Fig. 10. Fitted cylinder models (red), the target models (green), and the data point sets (other colors, Fig. 9 ). Top row: randomly initialized models. Bottom row: final fitted 

models ( Fig. 11 ). From left to right: fitting the cylinder to D 5 , D 6 , and D 7 . Note that, we do not show the target model of the real data D 7 as it is unknown. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 

Parameter ranges of the probabilistic character programs. The ranges of the shapes 

for 1-shot and 5-shot recognition are defined as [ θt − 5 , θt + 5] and [ θt − 2 . 5 , θt + 

2 . 5] , respectively. 

θ rotation affine width location location scale rotation 

(global) (global) 

θmin θt − 90 1/1.5 0 θt − 60 θt − 2 . 5 θ t /1.1 θt − 20 

θmax θt + 90 1.5 6 θt + 60 θt + 2 . 5 1.1 θ t θt + 20 

o  

t  

m  

o  

s  

s  

s  
mages to 65 × 65 and then zero-paded them to 105 × 105. Fig. 12

llustrates the process of 2-shot recognition. We extract a charac-

er model (the second left column in Fig. 12 ) from a given training

mage (the leftmost column in Fig. 12 ) based on the bottom-up

ethod proposed in [4] . The bottom-up method is originally used

o handle images with size 105 × 105. The extracted model consists

f several strokes. Each stroke has 14 parameters (2 for location,

0 for shape, 1 for scale, and 1 for rotation). The model also has

 global parameters (1 for rotation, 2 for affine, 1 for width, and 2

or location). Let the parameters of the model be θt , we define a

ange around θt to define a probabilistic program corresponding to

he training image ( Table 3 ). Some models generated by the prob-

bilistic program are shown in the right columns of Fig. 12 . 

We then perform PMF for each probabilistic program to find the

round-truth model of a test image. That is, the test image is clas-

ified to the class of the training image with the highest fitting

imilarity. Note that, the similarity is computed with the binariza-

ion of images. Table 4 shows the classification results achieved
 t  
n the noisy MNIST data [74] . The noisy data are corrupted by six

ypes of noise with three levels of intensity. We compare our PMF

ethod with the recursive cortical network (RCN) [74] for the tasks

f 1-shot and 5-shot recognition. RCN is the state-of-the-art few-

hot recognition method. For both PMF and RCN, we sequentially

elect the training and testing images from the data to perform

everal runs of recognition. Specifically, in each run, we select n

raining images and 1 test image from each class to perform n -shot
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Fig. 11. Cylinder fitting results. (a), (b) and (c) are the results of fitting the cylinder model M 5 to D 5 , D 6 and D 7 ( Fig. 9 ), respectively. Each line represents average values of 

the similarities, while the patch around each line represents the standard deviation of the similarities. CS-ER, CS, MH-ER, MH, and Target denote CS with ER, CS without ER, 

MH with ER, MH without ER, and the similarity of the target model, respectively. These experiments were conducted on a machine with an Intel Xeon E5-2650 v4 2.20 GHz 

CPU. 

Fig. 12. Generation of character models for Class ‘2’. The leftmost column: training images. The second column: character models extracted from the training images. The 

other columns: models randomly generated by the probabilistic program corresponding to the training images. Top row: the first training. Bottom row: the second training. 

Table 4 

Classification accuracies achieved on the noisy MNIST data. bg-noise denotes background 

noise. RCN-1 denotes RCN with 1 training image. The pool size, perturbation factor for 

RCN-1 and RCN-5 are set to 57, 1.0 and 45, 1.0, respectively. These settings are reported to 

achieve the best performance for RCN-1 and RCN-5 on the noise-free MNIST data [74] . In 

this paper, for the noise-free MNIST data, RCN-1, PMF-1, RCN-5, and PMF-5 achieve accu- 

racies of 0.722, 0.604, 0.9, and 0.83, respectively. 

Noise Type bg-noise border patches grid clutter deletion 

Noise Level 1 

RCN-1 0.628 0.524 0.63 0.298 0.338 0.566 

PMF-1 0.63 0.23 0.608 0.426 0.428 0.588 

RCN-5 0.735 0.82 0.815 0.315 0.495 0.73 

PMF-5 0.825 0.27 0.835 0.57 0.55 0.735 

Noise Level 2 

RCN-1 0.548 0.426 0.64 0.22 0.302 0.498 

PMF-1 0.616 0.142 0.608 0.47 0.408 0.556 

RCN-5 0.695 0.735 0.81 0.3 0.385 0.65 

PMF-5 0.875 0.135 0.805 0.65 0.52 0.78 

Noise Level 3 

RCN-1 0.466 0.344 0.606 0.202 0.282 0.478 

PMF-1 0.43 0.146 0.6 0.312 0.374 0.556 

RCN-5 0.575 0.645 0.795 0.23 0.34 0.575 

PMF-5 0.605 0.135 0.795 0.385 0.535 0.745 
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recognition. The numbers of runs for 1-shot and 5-shot recognition

are 50 and 20, respectively. 

In these character fitting experiments, we set δmin to 0.5 times

the resolution of the data. Specially, for the data corrupted by grid

and clutter, we set λ = 5 . Let n be the number of parameters of a

probabilistic program, we also set the iteration tolerance to 10 0 0 n

and 500 n for 1-shot and 5-shot recognition, respectively. As shown

in Table 4 , our method outperforms RCN on the data corrupted by

grid, clutter, and deletion in all cases. In particular, for the data cor-

rupted by the level-2 grid, our PMF-5 method outperforms RCN-5

by 35% . Our method also outperforms RCN on the data with back-
round noise in most cases. For the data with patches, our method

s only slightly worse than RCN. 

However, for the data with border, the performance of our

ethod decreases drastically. In these cases, our method recog-

izes most images as ‘7’. That is, our method finds a big ‘7’ lo-

ated on the border of the image. To some extent, this is reason-

ble as the border can be seen to contain a character ‘7’. Never-

heless, a potential solution to address this problem is to impose

ome more specific prior on the objective function ( Eq. (1) ), such

s [4] . 
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Fig. 13. Fitted model. (a) An original point cloud consisting of 385,793 points. (b) A point cloud D 11 consisting of 23,266 points. D 11 is generated by downsampling the 

original point cloud (a) with a resolution of 0.2. (c) Final fitted model (after 55,080 iterations) for fitting M 8 to D 11 . 

Fig. 14. Model evolution of fitting M 8 to D 11 . From left to right: fitted models (color) at different iterations: 0, 360, 1240, 9200, and 39360. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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.4. Building fitting 

We also conducted experiments to fit building facades on laser

canning 3-dimensional point clouds. The results of fitting a fa-

ade model M 8 to a 3-dimensional point cloud D 11 ( Fig. 13 (b)) are

hown in Figs. 13 and 14 . M 8 has 18 parameters (1 for rotation,

 for location, 2 for extrusion, and 12 for size). We use the CGA

Computer Generated Architecture) shape grammar [59] to manu-

lly create the probabilistic program to define M 8 . The depth of

he derivation tree [6] of the probabilistic program is 5. That is,

ach model in M 8 has a 5-level hierarchical structure. Fig. 13 (c)

hows the terminal rules of the final model. The colors of the ter-

inal rules represent the third level structure of the final model.

hat is, the terminal rules in the same color are derived from the

ame non-terminal rule at the third level of the derivation tree.

he first, second, third, fourth, and fifth levels of structures are

hown in Fig. 14 from left to right. 

. Conclusions 

In this paper, we investigated the robust PMF problem. We pro-

osed a novel estimator for PMF to handle imperfect data. The op-

imization problem in PMF was formulated as a Bayesian inference

roblem and was addressed by the cuckoo search algorithm. We

lso proposed a novel technique to accelerate the inference pro-

ess. Our PMF method has been tested on complex geometric mod-

ls and imperfect data. Experimental results show that, our esti-

ator is robust to gross-outliers and a wide variety of pseudo-

utliers. It is also shown that, our method can be accelerated by

everal times. 

Our estimator is highly robust but extremely easy for under-

tanding and implementation. It consists of only two natural con-

epts: the length (or area) of the model, and the error from model

o data. It has only one parameter ( λ in Eq. (6) ) for complete data,

nd has only two parameters ( λ and h in Eq. (7) ) for incomplete

ata. Note that, the dividing parameter δmim 

is trivial in terms of

ffectiveness as it should be set as small as possible. 

We believe that our work takes a step towards making PMF

ore useful. However, several issues still remain open. First, all

he point sets involved in the experimental part of this paper are

ither 2-dimensional or 3-dimensional. Although our estimator is

heoretically not limited to low-dimensional point sets, it is time-

onsuming to apply our estimator on high-dimensional point sets.
econd, it is time-consuming to perform PMF if the procedural

odel has a large number of parameters. Advanced techniques are

xpected to address these issues. 
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