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A B S T R A C T

Supervoxels provide a more natural and compact representation of three dimensional point clouds, and enable
the operations to be performed on regions rather than on the scattered points. Many state-of-the-art supervoxel
segmentation methods adopt fixed resolution for each supervoxel, and rely on the initialization of seed points. As
a result, they may not preserve well the boundaries of the point cloud with a non-uniform density. In this paper,
we present a simple but effective supervoxel segmentation method for point clouds, which formalizes supervoxel
segmentation as a subset selection problem. We develop an heuristic algorithm that utilizes local information to
efficiently solve the subset selection problem. The proposed method can produce supervoxels with adaptive
resolutions, and dose not rely the selection of seed points. The method is fully tested on three publicly available
point cloud segmentation benchmarks, which cover the major point cloud types. The experimental results show
that compared with the state-of-the-art supervoxel segmentation methods, the supervoxels extracted using our
method preserve the object boundaries and small structures more effectively, which is reflected in a higher
boundary recall and lower under-segmentation error.

1. Introduction

As with superpixels in 2D image processing, the use of supervoxels
greatly reduces the number of points. This is beneficial to applications
that are time consuming with the original 3D points. Moreover, su-
pervoxels provide a more natural and compact representation for 3D
points, which enables operations (such as feature computing) to be
performed on regions rather than on scattered points. For these reasons,
supervoxels have become increasingly popular in many 3D remote
sensing applications, such as object detection (Guan et al., 2016; Wang
et al., 2015), semantic labeling (Luo et al., 2016), and saliency detec-
tion (Yun and Sim, 2016).

Here, we define the supervoxel as a compact point cluster, which is
slightly different from the one in Papon et al. (2013). The general de-
sirable properties of superpixel segmentation are also suitable for su-
pervoxel segmentation. First, supervoxel segmentation should preserve
object boundaries, and each supervoxel should overlap with only one
object. Second, supervoxel segmentation must be efficient, and at least
should not reduce the achievable performance of an application that is
dependent on it. Third, each supervoxel should have a regular shape,

which is convenient for subsequent applications.
Many state-of-the-art supervoxel segmentation methods adopt fixed

resolution for each supervoxel, and rely on initialization of seed points. As
a result, they may not preserve well the boundaries of the point cloud with
a non-uniform density. In this paper, we formalize supervoxel segmenta-
tion as a subset selection problem, and present a simple but effective
method to solve the problem. The major advantage of our method is that it
adopts an adaptive resolution for each supervoxel and can preserve object
boundaries more effectively than existing methods. An example is pre-
sented in Fig. 1, the supervoxels extracted by the proposed method better
adhere to the ground-truth boundaries, even for road curbs with slight
height differences (see the red1 boxes in Fig. 1(c)).

The main contributions of this paper are as follows:
First, we formalize supervoxel segmentation as a subset selection

problem. Our formalization involves an explicit energy function, which
can be optimized directly. Second, in order to minimize the energy
function for subset selection, we propose a simple but effective method
that does not require seed points initialization and does not contain
internal parameters. Finally, the proposed method significantly out-
performs the state-of-the-art supervoxel methods with respect to
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boundary recall and under-segmentation error metrics on three publicly
available point cloud segmentation benchmarks.

2. Related work

Unlike superpixel segmentation, which is already a well studied
topic in image processing (Moore et al., 2008; Veksler et al., 2010; Liu
et al., 2011; Bergh et al., 2013), supervoxel segmentation remains in the
development stage.

In video and 3D image segmentation, a supervoxel is usually defined as
a stack of 2D image regions (Moore et al., 2008; Xu and Corso, 2012; Zhou
et al., 2015). In this case, many superpixel segmentation methods can be
directly extended to compute supervoxels. Moore et al. (2008) presented a
graph-based superpixel segmentation method, where superpixels are
iteratively partitioned from a 2D grid graph by horizontal and vertical
cutting. The authors also extended this method to the computation of
supervoxels on a 3D grid graph, which can be employed for video over-
segmentation. Veksler et al. (2010) presented a framework for both su-
perpixel and supervoxel segmentation. They formulated the superpixel or
supervoxel segmentation problem as an energy minimization problem,
and solved it using graph cut. Weikersdorfer et al. (2012) transferred su-
perpixels to 3D space, by taking into account depth information for RGB-D
image over-segmentation. This method has been further extended to RGB-
D video over-segmentation. Zhou et al. (2015) proposed a multiscale su-
perpixel and supervoxel algorithm using hierarchical edge weighted cen-
troidal Voronoi tessellation. Here, superpixels or supervoxels in higher
levels are clustered from superpixels or supervoxels in lower levels. In
addition to video segmentation, Picciau et al. (2015) develop an adapta-
tion of the SLIC superpixel algorithm (Achanta et al., 2012) for tetrahedral
mesh over-segmentation.

However, the methods above are designed for regular data, where
the primitives are uniformly distributed. More related to the proposed
method is the VCCS algorithm developed in Papon et al. (2013). It first
voxelizes the point cloud using octree, and then extracts the initial
supervoxels by evenly partitioning the 3D space. These initial super-
voxels are then grown using the local k-means clustering method
(Achanta et al., 2012). VCCS is reported to be highly efficient, and
achieves reasonably good results on RGB-D test data. However, the
results of VCCS depends on the setting of voxel resolution. For the point
cloud with non-uniform density (typically acquired by the current laser
devices), more than one object can overlap with the same voxel. In this
case, VCCS may not preserve well the object boundaries.

To make supervoxels conform better to object boundaries, Song et al.
(2014) present a boundary-enhanced supervoxel segmentation (BESS)

method. The method has two stages. In the first stage, it detects the
boundary points by estimating the discontinuity of consecutive points
along the scan line. In the second stage, it constructs a neighborhood graph
that excludes the edges connected by boundary points, and then performs
a clustering process on the graph to segment the point clouds into su-
pervoxels. Although BESS can be used for outdoor scene data with the
non-uniform density, it depends on the assumption that the points are
sequentially ordered in one direction. This assumption greatly reduces the
practicality of BESS method to general point cloud data.

3. Problem formulation

Given a point setP = …p p{ , , }N1 with N points, the partitioning ofP
into K supervoxels S = …S S{ , , }K1 can be regarded as a mapping from
each point to a label of a supervoxel, i.e.,

… → …s p p K: { , , } {1, , },N1 (1)

where s p( ) represents the label of the supervoxel to which the point p
belongs. In addition, the supervoxel Sk is defined as a set of points
whose label is equal to k:

= =S p s p k{ | ( ) }.k (2)

Note that any mapping in the form of Eq. (1) can result in a partition
with no more than K supervoxels. Furthermore, the total number of
different possible partitioning solutions is K

K !

N
(Bergh et al., 2013), which

is an extremely large number. In order to reduce the solution space, we
consider a representative point ∈r Si for each supervoxel S. Assuming
that we have already obtained K representative points …r r{ , , }K1 , the
mapping function s can easily be computed according to the following
equation:

=s p D p r( ) arg min ( , ).
i

i
(3)

where D is a distance metric to measure the dissimilarity between two
points. Therefore, the problem of seeking a partitioning is transformed
into the problem of selecting K representative points from N original
points, which is known as the subset selection problem (Elhamifar
et al., 2016; Tropp, 2008). Then, the solution space is reduced from K

K !

N

to ( )N
K . Note that because ≪ ≪( )K N N

K, K
K !

N
.

The subset selection problem can be encoded as an optimization
problem on unknown binary variables ∈z {0,1}ij . Here, =z 1ij has two
meanings: first that pi is a representative point, and second that pj is a
non-representative point that is represented by pi. Therefore, the defi-
nition of a supervoxel in Eq. (2) can be rewritten as:

(a) Point cloud with the groud-
truth labels

(b) VCCS (c) Proposed

Fig. 1. Comparison results for VCCS (Papon et al., 2013) and the proposed method. As emphasized in red boxes, the proposed method can preserve the boundaries
more effectively.
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= =S p z{ | 1}.i j ij (4)

To ensure that each point pj is represented by exactly one supervoxel,

we set ∑ == z 1i
N

ij1 . Our aim is to determine K representative points to
minimize the sum of the dissimilarity distances between each point and
its representative point, which can be formalized as follows:

∑ ∑

∑= ∀ = ∀ =

= =

=

z D p p

z i j z j C Z K

min ( , )

s. t. {0,1} , , ; 1 , ; ( )

z i

N

j

N

ij i j

ij
i

N

ij

{ } 1 1

1

ij

(5)

Here, the function C (·) is used to count the number of representative
points, and is defined as follows:

∑ ∑=
⎛

⎝
⎜

⎞

⎠
⎟

= =

C Z I z( ) ,
i

N

j

N

ij
1 1 (6)

where I (.) is the indicator function:

= ⎧
⎨⎩

=I x x( ) 0, if 0;
1, Otherwise. (7)

4. Optimization

Since subset selection problem is NP-hard, most methods rely on ap-
proximation strategies. For example, the state-of-the-art method, DS3
(Elhamifar et al., 2016), adopts a convex relaxation of the problem and
achieves fairly good results in terms of solution quality and speed. Al-
though DS3 has a time complexity of O N N K( log( ) ), it is still too slow for
large-scale point cloud data with a large value of K. On the other hand,
some faster approximation strategies, such as local K-means (Achanta
et al., 2012; Papon et al., 2013), rely on the initialization of seed super-
voxel points. In Fig. 2, we consider a point set located on a plane with a
small protrusion. It can be seen that different seed point selections can
result in different partitions. Furthermore, it is difficult to preserve the
small structures unless they are covered by some seed points.

Here, we present an efficient energy descent method that takes
advantage of local information, and does not require the initialization
of seed points. First, we consider the following relaxation of Eq. (5),
which takes the form of an energy function:

∑ ∑

∑

= + −

= ∀ = ∀

= =

=

E Z z D p p λ C Z K

z i j z j

min ( ) ( , ) | ( ) |

s.t. {0,1} , , ; 1 , .

i

N

j

N

ij i j

ij
i

N

ij

1 1

1 (8)

Here, the first term ensures that the selected representative points can
effectively approximate the collection of all points, and the second term
constrains the number of representative points to be close to K. >λ 0 is a
regularization parameter used to set the trade-off between two terms. A
large value of λ results in a smaller deviation of the number of clusters
from K, but may sacrifice the quality of these representative points.

4.1. Fusion based minimization

Inspired by Nguyen and Brown (2015) and Xu et al. (2011), we
adopt an adaptive strategy to automatically evaluate the value of λ.
First, we set λ to a small value λ0, and we solve Eq. (8) to obtain the
initial representative points. Then, in each step we increase the value of
λ and update the representative points by solving Eq. (8) with the new
λ value.

Our insight is that at the beginning, the dissimilarity distance term
is preferentially considered to ensure that the supervoxels do not cross
the boundary. In this way, the boundaries between supervoxels will be
the superset of ground-truth boundaries. With the increase of λ, the
number of representative points will towards to K.

According to the adaptive strategy described above, we need to solve
Eq. (8) several times with different values of λ. Thus, a fast optimizing
algorithm is required. Considering that supervoxel is a local region, we can
use local information to accelerate the optimization algorithm. Moreover,
we expect to build a hierarchy, so that the boundaries obtained in the
previous iteration can be preserved. Here, we present an energy mini-
mization method based on a bottom-up fusion strategy. As illustrated in
Fig. 3, suppose that there are two adjacent supervoxels, Si and Sj, we
denote by ′Dji the total dissimilarity distance from Sj to Si, i.e.,

∑′ =
∈

D D p r( , ),ji
p S

i
j (9)

where ri is the representative point of Si. Then, we consider merging the
supervoxel Sj into the supervoxel Si, the expected energy reduction can be
expressed as:

= + ′ − ′λ D DΔ ( ).jj ji (10)

The first term of Eq. (10) results from the fact that the number of re-
presentative points decreases by one after merging, and the second term
represents the difference in the dissimilarity distance before and after the
merging operation is performed. We only accept the merging operation
when >Δ 0.

To compute ′D in Eq. (10), a time complexity of +O S S(| | | |)i j is
required, which is too high. Here, we assume that the dissimilarity D is
a metric, and thus satisfies the triangle inequality. Therefore, we have
that

⩽ +D p r D p r D r r( , ) ( , ) ( , ),i j j i (11)

and can further deduce that

∑ ∑′ = ⩽ + = ′ +
∈ ∈

D D p r D p r D r r D c D r r( , ) ( ( , ) ( , )) ( , ),ji
p S

i
p S

j j i jj j j i
j j (12)

where cj is the number of points in Sj. With the simultaneous Eqs. (10)
and (12), we have:

⩾ −λ c D r rΔ ( , )j j i (13)

Now, we can determine whether a merging operation can reduce the
energy function E Z( ) as follows:

Fig. 2. For subset selection methods that rely on seed points, different seed
point selections may result in different partitions (see the colored points in the
upper part of the figure). Furthermore, the small structures are difficult to
preserve completely unless they are covered by seed points. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. An example of the merging operation for two adjacent representative
points.
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′ = − >λ c D r rΔ ( , ) 0j j i (14)

which can be computed in O (1) time.
In Eq. (8), we introduce an regularization parameter λ to set the

trade-off between two terms. However, more parameters means more
adjustments and less robustness to the method. Therefore, we try to
eliminate this parameter. First, the initial value of λ can be set to the
median of the lowest dissimilarity distances between each point and its
neighboring points, i.e.,

N P= ∈λ D p pmedian{min ( ( , ))| }p i0 (15)

Thus, according to Eq. (14), the number of representative points will be
reduced by half in the first iteration. Second, we do not need to set the
maximal value of λ, but just terminate the iteration when the number of
representative points decrease to K. Third, in each iteration we double
the value of λ, so that the iteration will converge quickly.

Algorithm 1. Fusion based Minimization

Input: A point set, P ; the neighboring set, N ; the dissimilarity
metric, D; and the expected number of supervoxels, K.

Output: K supervoxels …S S{ , , }K1 representing a partition of P .
1: Initialize λ0 as Eq. (15)
2: N R P← ← ← ←λ λ G c; ; ; 1i0
3: repeat
4: for all R∈ri do
5: forall R∈ ∩r Gj i do
6: if − >λ c D r r( , ) 0j j i then
7: Merge rj into ri

8: ← ∪G G Gi i j

9: ← −R R r{ }j
10: ← +c c 1i i
11: end if
12: end for
13: end for
14: ←λ λ2
15: until R = K| |
16: return …S S{ , , }k1 according to Eq. (4)

More details are described in Algorithm 1. In the input list, the
neighboring set Ni is used to determine the adjacent points of P∈pi .
In practice, Ni can be defined by k-Nearest-Neighbors of pi. Further-
more, the dissimilarity metric D should satisfy the triangle inequality.

The intuition behind the optimization is that it preferentially ag-
gregates the points located in the smooth areas. This encourages the
supervoxels to avoid crossing the boundaries. Other heuristic opera-
tions (such as splitting one supervoxels into two supervoxels) may also
be effective, but we consider only merging operation to maintain
computational complexity.

4.2. Exchange based minimization

After K representative points have been determined by aggrega-
tion, we can continue to optimize the energy function E Z( ) by as-
signing each non-representative point to the representative point
with the lowest dissimilarity distance from it. Specifically, given a
pair of adjacent points pi and pj, if these satisfy <D p r D p r( , ) ( , )i j i i ,
where ri and rj are the representative points of pi and pj, respectively,
then the energy function E Z( ) can be reduced by assigning pi to rj.
We continue to reduce the energy function until no further im-
provement can be achieved.

The example shown in Fig. 4 demonstrates that exchange based
minimization is useful for obtaining better supervoxel boundaries and
more regular shapes. More details are described in Algorithm 2.

Algorithm 2. Exchange based Minimization

1: Initialize a queue, Q, for points, i.e., P←Q
2: while ≠ ∅Q do
3: Remove the front point pi from Q
4: for all N∈pj i do

5: if <D p r D p r( , ) ( , )i j i i then
6: Assign pi to rj

7: if ∉p Qi then
8: Add pi to the back of Q.
9: end if
10: end if
11: end for
12: end while

Note that, the exchange operation here is similar to the re-assignment
step in k-means or k-medoids. And, the energy in Eq. (8) can be further
reduced by applying k-medoids update step. That is, for each supervoxel,
we swap its representative point and non-representative points to reduce
the energy. Fig. 5 shows the improved results by performing full k-me-
doids-style iterations. We noticed that in the first few iterations, the energy
is significantly reduced. And then, it tends to be flat. However, each of the
k-medoids iterations requires O N K( / )2 time complexity (N is the number
of points and K is the number of supervoxels), which is too slow for large-
scale point clouds. Therefore, we only consider the exchange of the su-
pervoxel’s boundary points without considering k-mediods method to
change the representative points.

4.3. Time complexity

In the fusion phase, the number of representative points is decreased
by almost half at each iteration. Thus, the number of iterations can be
estimated as N Klog( / ). In each iteration, the number of merging op-
erations is equal to the cardinality of G, which is no greater than M.

(a) Before exchange (b) After exchange
Fig. 4. Result of exchange based minimization.
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Fig. 5. This plot shows the energy in Eq. (8) for each extra k-medoids-style
iteration. The input point cloud is shown in Fig. 4. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Here, M is the total number of neighbor points inN . Thus, the merging
phase can be performed in O M N K( log( / )). Because the size of G is
decreased after performing a merging operation, this time complexity is
not a tight upper-bound.

In the exchange phase, for each point pi there are at most Ni dif-
ferent adjacent representative points. It is only necessary to compare
the dissimilarity distance O N( )i times. Therefore, the total number of
comparisons is O M( ).

As a result, the proposed algorithm can be performed in a compu-
tational time of O M N K( log( / )). If we adopt the k-nearest neighbors for
each point, then M is equal to kN, and the time complexity can be re-
written as O kN N K( log( / )). Usually, k is a small constant number, so
this time complexity is acceptable in practice.

5. Experiments

The proposed method was coded in C++, and run on one core of an
Intel Core i7-6500U 2.50 GHz CPU, with 8 GB memory, on a Linux
Ubuntu 16.04 operating system.

For comparison, we implemented the VCCS method according to the
public source code in PCL (Rusu and Cousins, 2011).2 Because VCCS is
based on voxels, for a more equitable comparison we modified VCCS so
that it can be performed directly on points. We refer to the modified
version of VCSS, in which voxel based neighborhoods are replaced by k-
Nearest Neighbors, as VCCS_kNN.

5.1. Parameter settings

Only two user-specified parameters are needed for our method: the
expected number of supervoxels, K, and the distance metric, D, used to
evaluate the dissimilarity between two points.

In practice, the value of K can be evaluated by desired resolution of
supervoxels, R. Because the resolution of supervoxels has a more definite
geometric meaning than K. Fig. 6 gives an example of the supervoxel
segmentation results for different R. As emphasized in black boxes, even if
the resolution of structures is smaller than R, the proposed method can
preserve the boundaries. In the later experiments, we will quantitatively
analyze the proposed method for different values of R.

For distance metric, D, we adopt a measure similar to VCCS:

= − +
−

D p q n n
p q

R
( , ) 1 | · | 0.4

‖ ‖
,p q (16)

where np and nq are the normal vectors of p and q, respectively. Because
color information of LiDAR point cloud data is usually not available, we
do not consider the color distance between points. Beside that, Eq. (16)
is the same as the VCCS implementation in Rusu and Cousins (2011).

In addition, the voxel resolution of VCCS method was set to 0.1 m,
and the number of nearest neighbors for VCCS_kNN and the proposed
method was set to 20. These parameters setting for VCCS and
VCCS_kNN have been fine tunned to obtain the best results.

5.2. Evaluation metrics

As previously mentioned, supervoxels should preserve, and not
cross, object boundaries. To quantitatively evaluate these abilities of
supervoxel segmentation methods, we adopt three standard metrics:
boundary recall, under-segmentation error, and Martin error.

5.2.1. Boundary recall (BR)
Boundary recall measures the percentage of ground-truth bound-

aries that are covered by supervoxel boundaries. We adopt the same
definition of BR as given in Liu et al. (2011):

G
G

G S
=

∑ − < ∊∈ ∈
BR S

p q

δ
( )

(min (‖ ‖ ))

| |
,p δ q δ

(17)

where Sδ and Gδ denote supervoxel boundaries and ground-truth
boundaries, respectively, and  is an indicator function to check whe-
ther a ground-truth boundary point is covered by supervoxel bound-
aries. In our implementation, we denote a point p as a boundary point if
there exists a k-nearest neighbor point of p whose label is different from
that of p. The value of ∊ is set to 0.01 m for indoor scene benchmarks,
and 0.03 m for outdoor scene benchmarks.

5.2.2. Under-segmentation error (UE)
Under-segmentation error is another important metric for mea-

suring the amount of leakage of supervoxels across the ground-truth
boundaries (Papon et al., 2013). It is defined as:

G

G

∑ ∑=
⎛

⎝
⎜⎜

⎛

⎝
⎜

⎞

⎠
⎟−

⎞

⎠
⎟⎟= ∩ ≠∅

UE S
N

S N( ) 1 | | ,
i

M

S S
j

1 |j j i (18)

where G G…, , M1 are the regions of ground-truth segmentation, and N is
the total number of labeled points inG . For each segmented regionGi,
we determine the overlapping supervoxel set G∩ ≠ ∅S S{ , }j j i that
coversGi. Then, we count the number of points that leak out the object
boundaries, and normalize this by N. A low UE value indicates that the
supervoxels do not tend to cross the boundaries.

5.2.3. Global consistency error (GCE)
We also adopt an object-level metric, Global Consistency Error

(GCE) (Martin et al., 2001), to simultaneously evaluate both over-seg-
mentation and under-segmentation errors. Martin et al. (2001) define
the error between ground truth annotation Gi and supervoxel Sj as

G

G
G

G

G
G⎜ ⎟=

⧹
× ∩ = ⎛

⎝
−

∩ ⎞
⎠

× ∩P
S

S
S

S
| |

| |
| | 1

| |
| |

| |.ij
i j

i
i j

i j

i
i j

(19)

Similarity, the error between supervoxel Si and ground truth annotation
Gj is defined as

G
G

G
G⎜ ⎟=

⧹
× ∩ = ⎛

⎝
−

∩ ⎞
⎠

× ∩Q
S

S
S

S
S

S
| |

| |
| | 1

| |
| |

| |.ij
i j

i
i j

i j

i
i j

(20)

And the total intersection between ground truth and supervoxels is
computed by

G∑ ∑= ∩n S| |
i

M

j

N

i j
(21)

Then, GCE is defined as

∑ ∑ ∑ ∑=
⎧
⎨
⎩

⎫
⎬
⎭

GCE S
n

P Q( ) 1 min ,
i

M

j

N

ij
i

N

j

M

ij
(22)

The range of GCE is [0,1], where 0 indicates no error and 1 worst seg-
mentation. In most cases, the resolution of supervoxel is smaller than
the resolution of the object. Therefore, GCE mainly penalizes over-
segmentation here.

5.3. Indoor scene performance

For indoor scenes, we adopted NYU Depth Dataset V2 (Silberman
et al., 2012).3 which contains 1449 labeled RGBD images. Here, we
converted the RGBD images into 3D point cloud data. Each RGBD image
of NYU data has a resolution of ×640 480, thus the number of 3D points
for each data is nearly 307,200.

Indoor point clouds usually have lower accuracy which results in
inaccurate normal vectors. Therefore, the BR and UE values of three

2 http://www.pointclouds.org/. 3 http://www.cs.nyu.edu/silberman/datasets/nyu_depth_v2.html.
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Fig. 6. Supervoxel segmentation results for different resolution of supervoxels.
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Fig. 7. Quantitative evaluation of three methods on NYU RGBD benchmark.

(a) Ground-truth (b) VCCS (c) VCCS_KNN (d) Proposed
Fig. 8. Visual comparison of supervoxel segmentation results on NYU RGBD Dataset.
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Fig. 9. Quantitative evaluation of three methods on IQTM benchmark.
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methods are close (see Fig. 7(a and b)). Despite that, the proposed
method achieves a best BR and UE values for all supervoxel resolutions.
The comparison results of GCE (Fig. 7(c)) also show that our method
outperforms VCCS and VCCS_kNN.

The typical results of three methods are shown in Fig. 8. We can
observe that only the proposed method can separate the objects em-
phasized in the black boxes.

5.4. Outdoor scene performance

For outdoor scenes, we selected two benchmarks: IQmulus &
TerraMobilita (IQTM) (Vallet et al., 2015)4 and Semantic3D.5

IQTM benchmark is a mobile laser scanning (MLS) point cloud data
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Fig. 10. Quantitative evaluation of three methods on Semantic3D benchmark.

(a) Ground-truth annotation (b) VCCS (c) VCCS_KNN (d) Proposed

Fig. 11. Visual comparison of supervoxel segmentation results on Semantic3D benchmark.

4 http://data.ign.fr/benchmarks/UrbanAnalysis/index.html.
5 http://www.semantic3d.net/.
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for 3D city analysis. It involves 12million manually labeled points,
which cover a 200-m street in Paris (France). A typical scene of the
IQTM benchmark is presented in Fig. 1. Compared with the indoor
point clouds, MLS data usually has a larger volume, and highly non-
uniform density. As shown in Fig. 9, the proposed method has a sig-
nificant advantages for these point clouds with non-uniform density,
which results in higher boundary recall and lower under-segmentation
error. For GCE metric, the proposed method obtains the best results
when the resolution of supervoxels smaller than 1.8m (Fig. 7(c)).

Semantic3D is a large-scale point cloud classification benchmark. It
contains 15 manually labeled point cloud data, which consists of more
than 1 billion points. In addition, the Semantic3D benchmark is ac-
quired by a static laser scanner, and therefore has a higher point density
than IQTM benchmark. Due to insufficient memory, we down-sampled
Semantic3D data, so that each point cloud data contains only 10million
points.

As shown in Fig. 10, similar to the results on IQTM benchmark, the
proposed method achieves the best BR, UE, and GCE values at all re-
solution setting. Some typical results on Semantic3D benchmark are
shown in Fig. 11. We also extract the boundaries of supervoxels to fa-
cilitate visual inspection. Intuitively, the proposed method achieves the
best perceptually satisfactory segmentation results.

It should be emphasized that in all experiments, the three methods
obtained the same number of supervoxels. The reason why the number
of supervoxels in Fig. 10(d) looks more is that the supervoxels obtained
by the proposed method have an adaptive resolution. In contrast, the
size of supervoxels obtained by VCCS is fixed. An example is shown in
Fig. 12, due to the distance from the laser scanner, the point cloud has a
non-uniform density. Usually, the supervoxels obtained by the proposed
method have smaller resolution in regions with higher point cloud
densities, and larger resolution at sparse area.

Compared to fixed resolution, adaptive resolution has obvious ad-
vantage. First, in dense area, point clouds have a higher accuracy (be-
cause the distance to laser scanner is smaller), and therefore have more

complete details. Supervoxels with smaller resolution better preserve
these details. Second, not many supervoxels are needed in sparse area.
A larger resolution of supervoxels is more reasonable. The proposed
method can automatically obtain supervoxels with adaptive resolution,
and thus obtains the better results.

5.5. Time performance

Time performance of three methods is shown in Figs. 13. The pro-
posed method is slower than VCCS and VCSS_kNN. Since VCCS is per-
formed on voxels, it greatly reduces the size of problem. Compared with
VCCS_kNN, which directly performed on original points, the proposed
method requires at most twice the amount of time. Taking into account
the benefits of sacrificing speed, we believe that this efficiency is rea-
sonable. Moreover, the proposed method has the advantage when
multiple resolutions are considered. In this case, the proposed method
can be run only once to build a multi-resolution hierarchy. In contrast,
VCCS need to run several times under the different resolution.

5.6. Discussion

Because the three methods adopt the same dissimilarity metric in
the experiments, the results are mainly determined by the optimization
methods. VCCS obtains the initial seed points by uniformly partitioning
the 3D space, and adopts a local K-means method to extract the su-
pervoxels on the basis of initial seed points. This has the advantage that
each supervoxel has a similar resolution, but has the disadvantage of
ignoring structures that are smaller than the supervoxel resolution. For
the outdoor point clouds, which typically have non-uniform density,
this disadvantage is more pronounced (see Figs. 9 and 10).

In contrast, the proposed method does not need to initialize seed
points. It extracts the supervoxels by directly minimizing the energy
function, without the need to limit the resolution of the supervoxels.
Thus, the supervoxels extracted by the proposed method have variable
size, which can better preserve small structures. As a result, we obtain a
better boundary recall value and under-segmentation error than VCCS
and VCCS_kNN, especially for point clouds with non-uniform density.

6. Conclusion

In this paper, we have formalized the supervoxel segmentation
problem as a subset selection problem. By utilizing local information for
each point, we have presented a heuristic method for efficiently opti-
mizing this problem. Our method does not require the initialization of
seed points, and has a theoretical time complexity of O M N K( log( / )).
Moreover, our method only relies on user-defined parameters, namely
the dissimilarity metric D and the expected number of supervoxels K. It
does not contain any internal parameters.

Our method was tested on three publicly available point cloud
segmentation benchmarks, and a quantitative analysis was provided.
Compared with the state-of-the-art supervoxel segmentation methods
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Fig. 13. Running time of three methods on NYU, IQTM, and Semantic3D benchmarks, respectively.

laser scanner

Fig. 12. For the point cloud with non-uniform density, supervoxels obtained by
the proposed method have adaptive resolution.
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PCLV, VCCS, and its modified version VCCS_kNN, our method can
preserve object boundaries and small structures more effectively, which
was reflected in higher boundary recall values and lower under-seg-
mentation error.
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