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Abstract: The Brazilian territory contains approximately 160 million hectares of pastures, and it
is necessary to develop techniques to automate their management and increase their production.
This technical note has two objectives: First, to estimate the canopy height using unmanned aerial
vehicle (UAV) photogrammetry; second, to propose an equation for the estimation of biomass of
Brazilian savanna (Cerrado) pastures based on UAV canopy height. Four experimental units of
Panicum maximum cv. BRS Tamani were evaluated. Herbage mass sampling, height measurements,
and UAV image collection were simultaneously performed. The UAVs were flown at a height of 50 m,
and images were generated with a mean ground sample distance (GSD) of approximately 1.55 cm.
The forage canopy height estimated by UAVs was calculated as the difference between the digital
surface model (DSM) and the digital terrain model (DTM). The R2 between ruler height and UAV
height was 0.80; between biomass (kg ha−1 GB—green biomass) and ruler height, 0.81; and between
biomass (kg ha−1 GB) and UAV height, 0.74. UAV photogrammetry proved to be a potential technique
to estimate height and biomass in Brazilian Panicum maximum cv. BRS Tamani pastures located in the
endangered Brazilian savanna (Cerrado) biome.

Keywords: Panicum maximum; digital surface model; digital elevation model; crop surface models;
herbage mass; forage canopy height

1. Introduction

The Brazilian territory contains nearly 160 million hectares of pastures which are located mainly in
the North, Southeast, and Center-West regions [1]. One of the main activities developed in the country
is livestock farming. The Brazilian cattle herd consists of approximately 226 million head [2], a large
portion of which is reared on pasture [3], thus warranting efforts to optimize pasture management.
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Therefore, determining biomass availability is an essential step in the adequate planning of pasture
exploitation, since biomass-estimation strategies are aimed at defining the stocking rate of grazing
systems, herbage growth, nutritional value, and defoliation regimes based on grazing activity and
stocking methods [4].

Biomass measuring is described as an evaluation, the objective of which is to quantify the dry
matter present above ground level per unit area [5]. Though thus involves simple techniques that can
be performed in small areas, manual measurements require time and extensive labor. For this reason,
research involving automated and non-destructive measuring approaches is still necessary [6].

Unmanned aerial vehicles (UAVs) are an adapted platform due to the diversity of sensors that
allows them to be set up and flown to collect aerial images with high temporal and spatial resolution.
Advances in precision, cost–benefit values, and the miniaturization of technologies such as computer
processors and the global navigation satellite system (GNSS) has made the UAV a versatile platform,
resulting in a tool capable of performing well in a wide range of applications [7,8], including soybean
yield estimation, plant maturity prediction [9], and wheat plant density estimation [10].

Previous studies have shown the potential of UAVs for estimating the biomass of typical
agricultural crops in Germany [11,12]; evaluating the applicability of images to model the height of
eggplant, tomato, and cabbage plantations in India [13]; detecting weeds within rows in sunflower
and cotton plantations in Spain; the monitoring of pastures [14]; the modeling of canopy height and
biomass [15]; the estimation of biomass in temperate pastures in China [16]; the investigation of the
utility of images acquired using UAVs to predict traces of vegetation in pastures [17]; the classification
of species in mixed pasture in Canada [18]; and the estimation of biomass during the growth of the
plants based on the residual heights of plants of crop surface models (CSM) [19].

Bendig [12] found a higher correlation between biomass and crop height when estimated by
UAVs compared to spectral indices (estimated from the ratio between spectral bands). Moeckel [13]
concluded that the manual measurement of plant height can be replaced by measurements obtained
by UAV photogrammetry. Castro [20] reported that their used algorithm was able to identify each
individual plant in their images, including weeds, and it was also able to accurately estimate plant
height based on a digital surface model (DSM).

The previously mentioned studies were developed on different crops. In view of the scarcity of
scientific data using UAVs to estimate height and biomass in Brazilian pastures, the present study
investigates the use of UAV photogrammetry to estimate the pasture height and biomass of Panicum
maximum cv. Tamani grass in the Brazilian state of Mato Grosso do Sul, Brazil. The adequate
management of pastures enables the optimization of their uses and consequently contributes to
significant environmental preservation, thus reducing pressure over forest remnants. There are several
biomes in the Mato Grosso do Sul state, including Pantanal, which is considered by UNESCO (United
Nations Educational, Scientific and Cultural Organization) to be one of the world heritage sites.

The study area is located in the Upper Paraguay Basin (UPB) that encompasses Pantanal, which is
in the Brazilian savanna (Cerrado), and every environmental change in this area impacts on Pantanal.
The main UPB rivers rise in the Cerrado and go towards the Pantanal. The intensive exploitation of the
Cerrado by livestock and agriculture activities favors the occurrence of erosive processes. The use of
soil conservation techniques and the management of the pastures contribute to the sustainability of
the ecosystem.

2. Material and Methods

An experiment with Panicum maximum cv. BRS Tamani grass was undertaken at Fazenda Escola
at the Federal University of Mato Grosso do Sul (Section 2.1). Herbage mass sampling, height
measurements, and image capturing (using UAVs) were simultaneously performed and are described
in Sections 2.2 and 2.3. After being collected on the field, the images were processed (Section 2.3).
Lastly, regression and correlation analyses were performed to evaluate the results (Section 2.4).
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2.1. Experimental Area

The experiment was conducted in the forage section (Figure 1) at Fazenda Escola, in the municipality
of Terenos—Mato Grosso do Sul (MS), Brazil (latitude 20◦26′34.31”S, longitude 54◦50′27.86”W, altitude
530.7 m) (Figure 1). Before the implementation of the experiment, the samples of soil were collected
from the 0–20 cm layer to determine fertility (Table 1). Dolomitic limestone was applied at the rate of
1.2 t ha−1 (total relative neutralizing power (TRNP) = 80%). Before planting, the area was fertilized
with 100 kg ha−1 of P2O5, 100 kg ha−1 of N (in the form of urea), and 60 kg ha−1 of K2O. The Panicum
maximum cv. BRS Tamani grass was planted in November 2015.
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Figure 1. Localization of Fazenda Escola (study area) and experimental plots.

Table 1. Chemical characteristics of soil samples from the experimental area.

pH (CaCl2) pH (H2O)
P K Ca Mg Ca +Mg Al H + Al CEC MO

g dm−3 V (%)
cmol dm−3

5.31 5.91 0.04 0.20 7.35 1.20 8.55 0.00 5.18 13.93 35.34 62.81

Cultivar BRS Tamani was implemented in four 3 × 12 m2 experimental plots, which were
subdivided into 3 × 3 m subplots, totaling 9 m2 for each harvest age (21, 35, 49 and 63 days).

2.2. Biomass Sampling and Height

All the biomass present in the experimental units was quantified through harvesting at the height
of 10 cm above the ground. Plant height was monitored at the time of harvest (21, 35, 49 and 63 day
harvest intervals) (Table 2). In each experimental unit, measurements were taken at five representative
points at the average height of the curvature of the upper leaves around the ruler, which was graduated
in centimeters. Sampling (n = 66) took place on the same day the UAV was flown.
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Table 2. Days in which field measurements and unmanned aerial vehicle (UAV) flights were carried out.

Harvest Intervals

21 Days 35 Days 49 Days 63 Days

1st cut 30/10/17 13/11/17 29/11/17 12/12/17
2nd cut 17/11/17 17/12/17 15/01/18 09/02/18
3rd cut 12/12/17 22/01/18 05/03/18 -
4th cut 01/01/18 26/02/18 - -
5th cut 22/01/18 02/04/18 - -
6th cut 09/02/18 - - -
7th cut 05/03/18 - - -

2.3. Image Collection and Processing

RGB (Red, Green and Blue) images were collected by a Phantom 4 advanced (ADV) UAV. The UAV
was flown before the biomass harvest and the height measurement. The camera has a 20-megapixel
complementary metal-oxide semiconductor (CMOS), and each battery lasts 30 min at most.

The image processing was performed using Pix4D commercial software. This software can be used
for interior and exterior parameter optimization, point clouds, and orthophotos generation. Several
studies have assessed Pix4D, e.g., for the generation of surface models [21,22] and the estimation of
plant height [23], as well as for the presentation of its basic concepts [24,25]. UAV photogrammetric
software use computer vision methods, such as structure-from-motion (SfM) [26] and multi-view
stereo (MVS) [27].

SfM enables the simultaneous estimation of interior and exterior orientation parameters and the
coordinates of a sparse point cloud using images with overlap [25,28]. The scale invariant feature
transform (SIFT) [29] method and its variants, in general, are used for image correspondence [25].
After that, the sparse point cloud is densified using MVS algorithms.

For the SfM method, five targets of approximately 50 × 50 cm were distributed in the experimental
area. A previous study [30] showed the importance of ground control point (GCP) distribution
for improving planimetry and altimetry accuracies. Therefore, five GCPs were used, as it was a
small flat area. The target coordinates were estimated using a GS15 GNSS real-time kinematic (RTK)
receiver of the LEICA VIVA GNSS GS15 line with a 3D precision of 5 mm. To assess the SfM method,
the leave-one-out method, in which all the points were once considered check-points, was applied [31]
(see Table 3).

The UAV was flown at a height of 50 m upon approval by the Department of Airspace Control
(DECEA), which is responsible for the Brazilian airspace. Images were captured with longitudinal
and lateral overlaps of 80% and 60%, respectively, and with a ground sample distance (GSD) of
approximately 1.55 cm. The analysis of Table 3 shows that an accuracy of around 1 GSD was achieved
in the X and Y coordinates, as well as 2.5 GSD in altimetry (Z).

To estimate pasture biomass and height with the UAV, the digital terrain model (DTM) was
generated using at least 30 points per experimental plot surveyed using RTK (Figure 2) with the
triangular irregular network (TIN) method. The digital surface model (DSM) (Figure 3a) was generated
by applying the SfM and MVS methods in Pix4D software, with points over the pasture. Pasture height
was calculated from the difference between the DSM and the DTM (Figure 3c).

Table 3. The leave-one-out method applied to assess the structure-from-motion (SfM) accuracy.

Check Point (Id) Error X (m) Error Y (m) Error Z (m)

1 −0.0265 −0.0300 −0.0363
2 0.0066 0.0229 0.0312
3 −0.0336 −0.0041 −0.0445
4 0.0151 0.0038 −0.0386
5 0.0192 0.0039 0.0565

Mean −0.0038 −0.0007 −0.0063
Sigma 0.0210 0.0131 0.0402
RMSE 0.0222 0.0172 0.0423
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2.4. Statistical Analysis

In order to estimate accuracy, the normalized root mean square error (NRMSE) was estimated
using the leave-one-out method [31]. In this method, the linear equation parameters were estimated
without one point. After that, the discrepancy at this point was estimated. The NRMSE (%) was
estimated by considering 66 discrepancies (n = 66) in the points left out.

Correlation and regression analyses were performed considering n equal to 66. The average
canopy height per experimental unit, obtained by the UAV, was evaluated in comparison to the average
canopy height, which was obtained from measurements taken using a ruler in the field. The result is
presented in a scatter plot along with a linear regression equation.

To estimate herbage mass, linear regression equations were derived from the canopy height
obtained by the UAV vs. green biomass and evaluated by their coefficient of determination (R2).

3. Results and Discussion

The NRMSE estimated using the leave-one-out method was around 10.99% when considering
the height measured with the ruler and by the UAV (Figure 3). There was a correlation between the
height measured with the ruler and by the UAV (correlation coefficient (CC) = 0.89). The difference
between the heights derived from UAV images and those measured by the ruler was approximately
8 cm, as can be observed in the regression equation shown in Figure 4. As the regrowth age advanced,
this difference decreased. This can be explained by the fact that UAVs capture images from the total
plot area, which may include uncovered soil areas. According to Geipel [32], a DSM may underestimate
height in heterogeneous fields where soil spots are apparent, which might have occurred at the earlier
ages due to a lower height and, consequently, a lower leaf area index.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 13 
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The CC between the height measured with the ruler and the biomass (Figure 5) was 0.90, indicating
that these measurements were correlated. The NRMSE, when considering the height measured with
the ruler and the biomass, was around 7.96%.
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Figure 5. Relationship between biomass and height measured with the ruler.

The NRMSE was around 12.5% when considering the height measured by the UAV and herbage
mass. There was a correlation between the height measured by the UAV and herbage mass (CC = 0.86)
(Figure 6). Each additional centimeter in the height measured by the UAV represented an increase of
approximately 88 kg ha−1 in green biomass for each experimental plot, i.e., herbage mass increased
proportionally to the canopy height when measured by the UAV. This observation corroborates
the reports of Terra Lopes [33] and Casagrande [34], who observed higher herbage allowances at
greater heights.
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According to the regression models, the determination coefficients for the biomass estimated by
the UAV and the ruler were 0.74 and 0.81, respectively. These values are higher than the 0.72 and 0.71
found by Bendig [11], who estimated the biomass of barley using a DTM and a DSM from RGB images
obtained with a UAV. This corroborates the findings of Ehlert [35] and Zhang and Grift [36], who stated
that there is a very close relationship between biomass and height.

Each regrowth day corresponded to a 0.2422 m increase in height when measured by the ruler
and 0.2098 m when calculated by the UAV (Figure 7). A similar regrowth trend was observed by
Maranhão [37] and Ansah [38] that assessed the productive and structural characteristics of different
cultivars submitted to different cutting intervals.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 13 
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Figure 7. Height measured by the ruler and by the UAV at different harvest intervals.

As regrowth age advanced, herbage mass also increased. Biomass increased by 50.93 kg ha−1

GB (green biomass) with every regrowth day when estimated by the ruler and by 43.96 kg GB when
the UAV was used (Figure 8). Increases in biomass were also found by Oliveira [39], Costa [40],
Rodrigues [41], and Geleti and Tolera [42], who evaluated the forage yield in different cultivars and
cutting intervals.

Due to the scarcity of studies regarding the use of UAVs to estimate biomass in Brazilian pastures,
the present study investigated the use of UAV photogrammetry for this purpose in the Brazilian state
of Mato Grosso do Sul, Brazil. In general, the obtained accuracy is consistent with what literature has
obtained for other cultures in different areas of the world. The proposed equation for biomass was
generated for a specific pasture by considering specific soil and conditions. The same soil type is very
common in Brazil, and the same climate conditions occurs in many areas of the country. Consequently,
it is possible to generalize the equation for certain regions in Brazil.



Remote Sens. 2019, 11, 2447 9 of 12

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 13 

 

 
Figure 8. Biomass estimated by the ruler and by the UAV at different harvest intervals. 

Due to the scarcity of studies regarding the use of UAVs to estimate biomass in Brazilian 
pastures, the present study investigated the use of UAV photogrammetry for this purpose in the 
Brazilian state of Mato Grosso do Sul, Brazil. In general, the obtained accuracy is consistent with what 
literature has obtained for other cultures in different areas of the world. The proposed equation for 
biomass was generated for a specific pasture by considering specific soil and conditions. The same 
soil type is very common in Brazil, and the same climate conditions occurs in many areas of the 
country. Consequently, it is possible to generalize the equation for certain regions in Brazil. 

4. Conclusions 

In this study, we examined the use of UAV photogrammetry to estimate biomass based on 
canopy height obtained with a digital elevation model and a digital surface model in Brazilian 
pastures. Firstly, we demonstrated that the applied technique is highly adequate for estimating 
canopy height. 

Canopy height can be modeled with a high precision at different regrowth ages using high-
resolution images obtained with a UAV (R2 = 0.80). The DSMs cover more details than measurements 
taken with a ruler, which gives a lower average canopy height per experimental unit. 

The coefficients of determination (R2 = 0.74) and correlation (0.80) show that the canopy height 
obtained from images taken with a UAV is an adequate indicator for the estimation of herbage mass. 

In order to provide an efficient management of the Brazilian pastures, the assessed technique 
should be performed considering a fixed-wing UAV. Such approaches enable the imaging of larger 
areas when compared to a multirotor UAV, which was used in the present work. 

  

Figure 8. Biomass estimated by the ruler and by the UAV at different harvest intervals.

4. Conclusions

In this study, we examined the use of UAV photogrammetry to estimate biomass based on canopy
height obtained with a digital elevation model and a digital surface model in Brazilian pastures. Firstly,
we demonstrated that the applied technique is highly adequate for estimating canopy height.

Canopy height can be modeled with a high precision at different regrowth ages using high-resolution
images obtained with a UAV (R2 = 0.80). The DSMs cover more details than measurements taken with
a ruler, which gives a lower average canopy height per experimental unit.

The coefficients of determination (R2 = 0.74) and correlation (0.80) show that the canopy height
obtained from images taken with a UAV is an adequate indicator for the estimation of herbage mass.

In order to provide an efficient management of the Brazilian pastures, the assessed technique
should be performed considering a fixed-wing UAV. Such approaches enable the imaging of larger
areas when compared to a multirotor UAV, which was used in the present work.
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