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Abstract— Road extraction from remote sensing images is an
attractive but difficult task. Gray-value distribution and structure
feature information are both crucial for road extraction task.
However, existing methods mainly focus on structure feature
information which contains morphological shape features and
machine learning features, suffering from lots of false posi-
tives which are generated at positions having similar structure
features but different gray-value distribution with roads. To
effectively fuse the two complementary gray-value distribution
and structure feature information, we propose a coarse-to-fine
road extraction algorithm from remote sensing images. First, at
the coarse level, we introduce a local Dirichlet mixture models
(LDMM) which utilizing gray-value distribution information to
pre-segment images into potential roads and backgrounds. Thus,
most backgrounds having different gray-value distribution with
roads can be removed firstly. Compared with original Dirichlet
mixture models, the LDMM is much faster and more accurate.
Next, at the fine level, we introduce a multiscal-high-order deep
learning strategy based on ResNet model which can learn robust
structure context features for final road extraction step. Based
on the results of LDMM, the multiscal-high-order strategy can
further remove false positives which have different structure
features with roads. Compared with a single scanning size
ResNet, our multiscale-high-order strategy can learn higher-
order context information, leading to better performances. We
test our algorithm on Shaoshan dataset. Experiments illustrate
our better performance compared with other six state-of-the-art
methods.
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I. INTRODUCTION

AUTOMATIC road extraction from remote sensing images
has become more and more important since it is an essen-

tial preprocessing step for various applications, such as naviga-
tion, road network planning, road network information update,
etc. Compared with traditional manual road areas labeling,
automatic road extraction from remote sensing images is less
time consuming, more economic and effective [1]. Much
research has focused on automatic road extraction from remote
sensing images [1]–[10]. However, due to the challenges of
noise, shadows, complexity of the background, occlusions
(generated by trees, clouds, and buildings etc.) in raw remote
sensing images, automatic road extraction from remote sensing
images is still a difficult and attractive research topic.

Gray-value distribution and structure feature information are
both crucial for road extraction from remote sensing images
as remote sensing images usually cover large areas with
complex backgrounds. Considering only gray-value distribu-
tion or structure feature information for road extraction may
result to lots of false positives. The gray-value based methods
may generate false positives where have similar gray-value
distribution but different structure features with roads. On the
other hand, the structure-based methods may generate false
positives where have similar structure features but different
gray-value distribution with roads. However, based on our
studies, most existing methods for road extraction from remote
sensing images mainly concerned structure feature information
which contains morphological shape features and machine
learning features. Thus, to effectively fuse two complementary
gray-value distribution and structure feature information, we
propose a coarse-to-fine road extraction algorithm from remote
sensing images.

First, at the coarse level, a finite Dirichlet mixture is
applied to pre-segment images into roads and backgrounds.
A finite Dirichlet mixture model adopts the Dirichlet dis-
tribution as the parent distribution to model image pixel
value probability density for image segmentation. Dirichlet
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mixture model achieved good performances in normal image
segmentation [11] and data clustering [12]. However, when
directly applying Dirichlet mixture model for segmentation
of remote sensing images, it obtains poor performance due
to pixel gray-values’ inhomogeneity within roads (or back-
grounds). Besides, original Dirichlet mixture model has high
computational complexity when processing an image with a
large size. To overcome the above problem, we propose a
local Dirichlet mixture model (LDMM) to pre-segment images
into roads and backgrounds. Compared with original Dirichlet
mixture model, LDMM is much faster and more accurate.
Through LDMM, most backgrounds having different gray-
value distribution with roads are removed.

Second, at the fine level, we propose a multiscale-high-order
deep learning strategy (MTL) to further remove false positives
on the results of LDMM. CNN model has been proved to
be an excellent model for learning structure features, as it
performs superior to other types of methods in many computer
vision research areas. However, one single scanning size of
CNN model is unable to catch high-order context informa-
tion which is important to deal with remote sensing image
processing under complex backgrounds. Thus, we propose
multiscale-high-order deep learning strategy to catch high-
order context information for road extraction from remote
sensing images. In MTL, we use patches with different sizes to
train different CNN classifiers (which are ResNet-50 classifiers
in our method). After that, we merge results extracted from
ResNet-50 classifiers with different scanning sizes to retrain
a high-order ResNet-50 classifier, based on which we can
extract the high-order context feature and obtain the final road
extraction results.

The major contributions of this paper lie on:
(1) This paper proposes a coarse-to-fine strategy, which

considers both pixel gray-values’ distribution and mulitiscale-
high-order features, for road extraction from high-resolution
remote sensing images.

(2) This paper proposes a local Dirichlet mixture model.
compared with original Dirichlet mixture model, the proposed
LDMM is much faster while achieving a higher precision.

(3) This paper proposes a higher-order feature extraction
method based on the multi-scale feature extraction results
of ResNet. The experimental results show that the proposed
higher-order feature extraction method is more robust and can
obtain a better performance compared with state-of-the-art
methods.

II. RELATED WORK

Generally speaking, the road extraction task contains
two subtasks: road area extraction and road centerline
extraction [1], [7]. Road area extraction methods produce
pixel-level labeling of roads [2]–[5], [7], [9], [10], [13], [14],
while skeletons of roads are extracted for road centerline
extraction [1], [6], [8], [15]–[20].

For road centerline extraction, morphological thinning algo-
rithm [21], regression-based method [20], and nonmaximum
suppression-based method [16] have been widely used.

Road area extraction, which is the focuses of this paper, can
be considered as a segmentation or pixels-level classification

problem [7]. During road area extraction, the morphological
and machine learning features are widely used [1], [3], [4],
[22]. Feature extraction and sample selection strategy are also
widely used in other hot research areas [23]–[26].

In the following two sections, we present a detailed review
of existing methods for road extraction from remote sensing
images and remote sensing applications using CNN.

A. Studies on Road Extraction From Remote Sensing Images

Song et al. combined shape index feature and support
vector machine (SVM) to extract road areas. Movaghati et al.
proposed a road extraction method from satellite images using
particle filtering (PF) and extended kalman filtering (EKF)
[27]. The PF is combined with EKF to find best continuation
of the road after an obstacle or junction, which achieved
satisfactory results. Poullis proposed a no threshold frame-
work which called Tensor-Cuts, and applied the framework
for pre-processing of road extraction from satellite images
since the framework is particularly suitable for linear features
extraction [10]. Leninisha et al. presented a semi-automatic
framework based on geometric active deformable model for
road network extraction from high spatial remote sensing
images. Different road junctions shape types were extracted
using water flow technique, and they achieved good results on
test images [28]. Grinias et al. proposed a novel segmentation
algorithm based on Markov random field model. The key point
of their method lies on the class-driven vector data quantiza-
tion and clustering. Finally, the Random Forest was applied to
obtain a good classification rate [29]. Cheng proposed a road
region extraction method by incorporating multiple features
and multiscale fusion, which achieved satisfactory visual per-
formances compared with other methods [16]. Liu et al. pro-
posed a road network extraction framework. In the first stage,
they combined shear transform with directional segmentation
to get the initial road regions [19]. Troya-Galvis et al. pro-
posed an approach which combined two different approaches
for automatic remote sensing image pixel-level interpretation.
They obtained satisfactory results when applied for road
extraction from remote sensing images [30]. Zang et al.
proposed a novel aperiodic directional structure measurement
(ADSM) for road network extraction. Through ADSM, they
well characterized road-like structures which can be used as
the guidance to construct a mask to denote potential road
regions. Experimental results demonstrated their method’s
effectiveness and efficiency [8]. Zang et al. also proposed
a joint enhancing filtering framework to generate a pre-
processed image for the road network extraction in the next
stage [6]. Lv et al. proposed an adaptive multi-feature (which
containing color, local entropy and HSC features) sparsity-
based model for road area extraction, and they achieved good
results in the experiments [13].

B. Remote Sensing Applications Using CNN

In recent years, deep convolutional neural networks (CNN)
have led a series of breakthroughs for computer vision tasks
[31]–[43]. Maggiori et al. used CNN for large-scale remote-
sensing image classification [44]. To address the issue of
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imperfect of training data, they separated the training into
two stages: training with large amounts of possibly inaccurate
reference data; refining with a small amount of accurately
labeled data. They achieved rather good results in the experi-
ments. Zhao et al. proposed an algorithm, called multiscale
CNN, to learn spatial-related deep features for classifying
remotely sensed imageries [45]. They used multiscale CNN
to learn high-level spatial features by using the hierarchical
learning structure and capture contextual information by using
multiscal learning scheme. Alshehhi et al. proposed a single
patch-based CNN for extraction of roads and buildings from
high-resolution remote sensing data [4]. Experiments were
conducted on two challenging datasets to demonstrate the
performance of the proposed network architecture. Cheng et al.
used a cascaded end-to-end CNN for automatic road detection
and centerline extraction, which obtained the state-of-the-art
results in the experiments [1]. Zhang et al. used a semantic
segmentation neural network which combines the strengths
of residual learning and U-Net [46] for road area extraction
from remote sensing images [7]. They achieved better results
compared with other state-of-the-arts approaches. Chen et al.
proposed two frameworks which contained deep fully convolu-
tional networks with shortcut blocks for semantic segmentation
from very-high-resolution remote sensing images [47]. Zhuang
proposed a Dense Relation Network for semantic segmentation
and achieved good performance [48].

III. METHOD

In this section, we first give an introduction about the
framework of our method. Then, a Dirichlet mixture model
is introduced in order to improve the performance of the
Dirichlet mixture model [11]. Third, we introduce the ResNet
that we used for deep learning. Fourth, we propose multiscale-
high-order deep learning strategy.

A. The Framework of Our Method

Our framework consists of two stages: training stage and
extraction stage. Fig.1 and Fig.2 show the training and
extraction frameworks of our method, respectively. Although
Dirichlet mixture model does not need to pre-train, the ResNet
used for final road area extraction needs to train the model
parameters, fitting for our goal.

In the training stage, we first generate positive patches (road
patches) and negative patches (background patches) with sizes
s1 × s1, s2 × s2, s3 × s3, respectively. Then, we use the gen-
erated training patches to train three ResNet-50 models (each
for a scanning size). To make ResNet fitting for our 2-class
segmentation, we reconstruct the final fully connection layers.
Next, we use the proposed LDMM to generate coarse 2-class
segmentations. After that, the trained ResNet models are used
to extraction road areas based on LDMM segmentation results.
To obtain high-order information, extraction results of three
ResNet-50 models are merged to generate training patches for
final high-order ResNet-50 model.

In the extraction stage, we use LDMM to obtain a coarse
road and background segmentation result. On the other side,
we use the trained ResNet models with different scanning sizes

Fig. 1. The training stage of the proposed method.

Fig. 2. Extraction Stage of the proposed method.

to get road extraction results based on LDMM results. Then,
we merge the extraction results of three different scanning size
ResNet models. Finally, with merge results as inputs, we use
the trained multiscale-high-order ResNet model to extract road
areas based on LDMM results.

B. Local Dirichlet Mixture Models

In our framework, we follow the finite mixture of Dirichlet
mixture model proposed in [11] as our basic Dirichlet mixture
model.
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For each pixel �Xi , which is assumed to distribute accord-
ing to a spatially constrained Dirichlet mixture models with
M components, then its probability density function can be
represented by:

p(�Xi | �π, �a) =
M∑

j=1

πi j Dir(�Xi |�a j ), (1)

where �πi = (πi1, . . . , πi M ) denotes the mixing coeffi-
cients, which are positive and sum to one,

∑M
j=1 πi j = 1,

�a = (�a1, . . . , �aM ), and Dir( �Xi |�a j ) is the Dirichlet dis-
tribution of component j with its own positive parameters
�a j = (a j1, . . . a j D):

Dir( �Xi |�a j ) = �(
∑D

l=1 a jl)∏D
l=1 �(a jl)

D∏

l=1

X
a jl−1
il , (2)

where �Xi = (Xi1, . . . , Xi D), D is the dimensionality of �Xi

and
∑D

l=1 Xil = 1, 0 ≤ Xil ≤ 1 for l = 1, . . . , D.
Consider a set of N independent identically distributed

vectors χ = { �X1, . . . , �X N } assumed to be generated from the
mixture distribution in Eq. (1). The likelihood function of the
Dirichlet mixture model is given by:

p(χ | �π, �a) =
N∏

i=1

{
M∑

j=1

πi j Dir( �Xi |�a j )}. (3)

For each vector �Xi introducing a M-dimensional binary
random vector �Zi = {Zi1, . . . , Zi M }, such that Zi j ∈ {0, 1},∑M

j=1 Zi j = 1, and Zi j = 1 if �Xi belong to component j
and 0, otherwise. For the latent variables Z = { �Z1, . . . , �Z N },
the conditional distribution of Z given the mixing coefficients
�π is defined as:

p(Z | �π) = K !
∏M

j=1(Zi j )!
∏M

j=1
π

Zi j
i j . (4)

To impose local spatial smoothness between adjacent pixels
into mixture model, each pixel in an image with the average
value of its neighbors (includes itself) can be described as:

�Zi j =

∑
m∈�i

Z (t−1)
mj

|�i | , (5)

where �i denotes the neighborhood of the ith pixel, |�i | is
the number of pixels in the neighborhood of the ith pixel,
(t-1) indicates the iteration of the previous step. The prior
distribution of �π j follows a Dirichlet distribution as follow:

p(�π j ) = Dir(�π j | ��i ) = �(
∑M

j=1 a2
k
�Zb

i j )

�M
j=1�(a2

k
�Zb

i j )

M
�
j=1

π
a2

k
�Zb

i j −1

i j , (6)

where the Dirichlet parameter ��i = a2
k
�Zb

i j .
Finally, to estimate the model parameters, we follow the

variational inference learning algorithm as developed in [11].
Readers can get the details from reference [11].

After parameter estimation, the finite mixture of Dirichlet
mixture model can be directly applied to road and background
segmentation on remote sensing images. However, remote

Fig. 3. The framework of local Dirichlet mixture model.

sensing images usually cover large areas of ground, and the
Dirichlet mixture model often fails to separate road from
background (or separating background from road), as shown
by the following Fig.7. The reason for this phenomenon is
that the original Dirichlet mixture model needs to estimate
model parameters by road and background pixel gray-value
distributions while road and background pixel gray-values are
strongly overlapped within remote sensing images. Thus, the
essential problem of directly applying the original Dirichlet
mixture model for road extraction from remote sensing image
is using parameters estimated globally.

Note that although road and background pixel gray-values
have many overlaps in a large-size remote sensing image, it
will have much fewer overlaps in a local small patch of remote
sensing image. Thus, we use a local Dirichlet mixture model
instead of the original Dirichlet mixture model. The framework
of local Dirichlet mixture model is shown in Fig. 3. The detail
steps of our local Dirichlet mixture model are described as
follows:

(1) Assume a given remote sensing image Im with a size of
M × N , we divide the Im into K small patches pa with
a size of a × a, a is much smaller than M or N .

(2) For each patch pai , we segment the patch into 2 classes
by Dirichlet mixture model and save the segmentation
result.

(3) Re-built the segmentation result of whole image by
merging segmentation results from all patches.

C. ResNet for Deep Learning

The ResNet is proposed by He et al. [31]. In ResNet,
to overcome the degradation problem of deep networks, the
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TABLE I

THE NETWORK OF RESNET-50 USED IN OUR METHOD

residual learning framwork is introduced. Considering H(x) as
an underlying mapping to be fit by a few stacked layers, with
x denoting the inputs to the first of these layers. The original
approximation mapping function can be H (x) = F(x) + x
when let F(x) := H (x)− x (Here F(x) is the residual item).
In ResNet, residual learning is applied to every few stacked
layers.

Assuming x and y are the input and output vectors of the
layers considered, a building block can then be defined as:

y = F(x, {Wi }) + x . (7)

The function F(x, {Wi }) represents the residual mapping to
be learned. When a block has two layers, the residual mapping
can be F = W2σ(W1x) where σ denotes the output of the
second layer. The operation F + x is performed by a shortcut
connection and element-wise addition.

In our method, we use a ResNet-50 as the CNN network
of our deep learning strategy. Table I shows the network
framework of ResNet-50 used in our method. It can be seen
from table I that ResNet-50 contains 49 convolution layers
and a max pooling layer before the final fully-connection
layers. For these layers, we follow the original settings of
He’s [31]. Note that, there are Relu and pooling layers
following each convolution block, which are not showing in
table I. Furthermore, we follow the original setting about
the short cut connections. To make ResNet suitable for our
situation, we replace the original fully connection layers with
3 fully connection layers, having 1000, 500 and 2 neurons,
respectively.

D. Multiscale-High-Order Deep Learning Strategy

In the training stage, we train three different ResNet classi-
fiers with different scanning sizes (i.e. the input patch sizes of
ResNet).Then, using three classifiers to extract classification

results pixel by pixel. The extraction results of different
scanning size ResNet models are merged by channels to
train a multiscale-higher-order ResNet model for final road
extraction. The merge processing is shown in Fig.2.

In the test stage, the test image is first segmented into
two classes by the proposed LDMM. Then, the test image is
scanned by three ResNet models with different scanning sizes.
Note that, the scanning process is based on the segmentation
result of LDMM. Only the areas which are segmented into
potential positives are scanned. After scanned by three dif-
ferent scanning size ResNet models, the extraction results are
merged. Finally, using the merge results as inputs, the trained
multiscale-high-order ResNet model is applied to extract road
areas based on LDMM result. Fig.4 shows the flowchart of
our proposed multiscale-high-order deep learning.

IV. RESULTS AND DISCUSSION

In this section, we give an introduction about dataset used
in experiments at first. Then, detailed analyses about proposed
LDMM are given. Finally, the experimental results and com-
parisons are presented.

A. Dataset

In our experiments, we verify and analyze the performances
of the proposed method on ShaoShan dataset, which is a
Pleiades optical remote sensing image of part ShaoShan
(in China) with a resolution of 0.5m. The original image is
a large image with size of 11125 × 7918. We divide the
whole large image into 49 pieces, each of which has a size
of 1589 × 1131. Among these images, we select 29 images
as training images. And the remaining 20 images are used
as test images. Fig. 5 shows several example images in our
dataset. The first and second rows are training images and their
corresponding labels, respectively. The third and fourth rows
are test images and their corresponding labels, respectively.
Note that the labels of images are generated by manual works.

B. Local Dirichlet Mixture Model Analyses

The goal of the experiments described in this section is
to evaluate the effectiveness of the proposed local Dirichlet
mixture model. To exhibit the superior of LDMM, we evaluate
the performances of original Dirichlet mixture model [11]
and proposed LDMM from two aspects: processing speed and
correctness.

1) Processing Speed: In theoretical analysis, the compu-
tation complexities of original Dirichlet mixture model and
LDMM are both approximate to O(n2) × k for processing an
image with size n × n, where k represents the iteration num-
bers. The difference between the original Dirichlet mixture
model and LDMM is that the LDMM divides the processing
image into many small patches with size m × m (m is much
smaller than n). Thus, LDMM requires much less time than
the original Dirichlet mixture model does. For example, when
an image with size 1000 × 1000 is given, the computa-
tional complexity of original Dirichlet mixture model will
be O(106) × 150, supposing the number of iterations is 150.
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Fig. 4. The illustration of multiscal-high-order deep learning.

Fig. 5. Several examples of training, test, and corresponding label. Row 1 and 2 are training images and their corresponding labels, respectively. Row 3 and
4 are test images and their corresponding labels, respectively.

Suppose LDMM divides the test image into patches with size
20 × 20, then the computation complexity of LDMM will be
2500 (patch number) × O(102×150), which is lower than the

original Dirichlet mixture model. Fig.6 shows the comparison
of processing time per test image between original Dirichlet
mixture model and the proposed LDMM. The experiments
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Fig. 6. Comparison of Processing Time for each test image between the
original Dirichlet mixture model and the proposed LDMM.

run on a computer with Intel®Core™ i5-4570 CPU and 8GB
memory. In our experiments, we set the size of the divided
patches as 20 × 20. As seen from this figure, the average
cost time for each test image of our LDMM is 315 seconds,
while the original Dirichlet mixture model takes 2612 seconds
(which is about 8 times of LDMM). This proves that the
time complexity of our LDMM is much less than the original
Dirichlet mixture model. A tip of LDMM is that we statistic
the training images to learn the distribution of positives. With
the learned distribution, each pixel is subtracted with positives’
lowest gray value when applying LDMM on test images.

2) Correctness: To further illustrate the superior of LDMM
to the original Dirichlet mixture model, we also compare the
correctness of segmentation in test images in visualization
and quantitation. Fig. 7 shows the visualization comparison
of segmentation results of original Dirichlet mixture model
and LDMM. Rows 1, 2 and 3 are original test images,
segmentation results by original Dirichlet mixture model, and
segmentation results by LDMM, respectively. Obviously, due
to the complexity of pixel value distribution within one class
in remote sensing images, the original Dirichlet mixture model
performs poorly in test images. In contrast, as we use small
region for Dirichlet mixture model segmentation in remote
sensing image, our LDMM performs quite well. The following
road extraction can benefit from LDMM in both processing
time and accuracy.

We also give quantitative comparison between original
Dirichlet mixture model and LDMM on test images. Table II
gives the correctness comparison of original Dirichlet mixture
model and the LDMM on Shaoshan test images. As shown
in table II, the correctness of original Dirichlet mixture model
is rather low while LDMM’s is much better. Note that, most
of the false segmentations are false positives. The correctness
evaluation criterion is given in the following Eq. (8).

C. Comparison and Results

In this section, we illustrate the implementation details of
our approach in experiments, and present the comparisons of
our method with other state-of-the-art methods.

1) Implementation Details of Our Method: We select three
different scanning sizes of ResNet-50 as 20 × 20, 30 × 30 and

Fig. 7. The visual comparison of segmentation results by the original
Dirichlet mixture model and the proposed LDMM. Row 1, 2 and 3 are
original images, segmentation results of original Dirichlet mixture model and
segmentation results of LDMM, respectively.

TABLE II

THE CORRECTNESS COMPARISON OF ORIGINAL DIRICHLET MIXTURE

MODEL AND LDMM ON TEST IMAGES OF SHAOSHAN

40 × 40. For each scanning size of ResNet-50, we generate
200,000 positive patches and 200,000 negative patches to train
ResNet-50 model. During training, we allow to randomly
rotate training patches among 0-180 degrees. We use Keras’s
SGD optimizer with setting parameters “momentum equal”
to 0.9, “decay” equal to le-6 and “lr” equal to 0.001. The
training batch size is set to 64, steps per epoch is set to 3000.
The total training epochs is 10. Note that, the label of a patch
in our implementaion is just same with the label of its center
pixel. For example, if the center pixel of a patch is labeled as
road, then the patch is labeled as road. Otherwise, the patch
is labeled as background.

After training three ResNet-50 with scanning sizes of
20 × 20, 30 × 30 and 40 × 40, we apply the three
models to extract road areas in 29 training images. Next,
we merge the extraction results obtained by three ResNet-50
models. With the merged results, training patches for final
multiscale-high-order ResNet-50 classifier are generated. To
overcome the merge problem caused by different patch sizes,
we up-sample the patches of sizes 20 × 20 and 30 × 30 to size
40 × 40. Note that, we use the ‘nearest’ interpolation method
for up-sample operation. Here, we generate 200,000 positive
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patches and 200,000 negative patches for final multiscale-high-
order ResNet-50 training. During training patches generation,
we also take label information and LDMM result into consid-
eration. The detail training parameters are same as parameters
used in training three different scanning sizes ResNet models.

During extraction stage, we first use LDMM to segment
total 20 test images into 2 classes (potential roads and back-
grounds). Based on the results of LDMM, we use the trained
three ResNet-50 classifiers to scan the test images. Only the
positions where are segmented into potential roads by LDMM
are examined. Then, we can obtain three extraction results
for each test image. For the final extraction step, we use
the trained multiscale-high-order ResNet-50 to re-examine the
test image based on LDMM result using merge results as
inputs. For each scanning position, we merge the 20 × 20
(obtained by scanning size 20 × 20 ResNet-50), 30 × 30
(obtained by scanning size 30 × 30 ResNet-50) and 40 × 40
(obtained by scanning size 40 × 40 ResNet-50) area to
generate the input for final examination of multiscale-high-
order ResNet-50. After the above steps, we can obtain the
final results. Fig. 8 shows several results of our method tested
on Shaoshan dataset. The rows 1-4 are orginal images, labes,
results of LDMM, final results of our method, respectively.
As seen in Fig.8, our method obtains quite satisfactory results
visually. Benefiting from the pre-segmentation by LDMM
using gray-value distribution information, our results generate
few false positives at positions where have similar structure
feature but different gray-value distribution with roads, e.g.
ridges in the farmland.

2) Quantitation Comparison: To quantitatively illustrate the
performance of our method, we compare our method with
three other state-of-the-art methods [6], [7], [31], [46], [49],
[50] on Shaoshan dataset. For [6], as Zang et al. have tested
their method on Shaoshan dataset, we reference their results
directly. For [31], [46], we use the same training images as
used in our method. In original ResNet, to suit for our 2 classes
classification, we revise the final three fully-connection layers
as same as RestNet-50 used in our method. In [46], we set
Unet’s input image size as 256 × 256. Thus, we divide the
original 1589 × 1131 test images into 256 × 256 test images.
After segmented by the trained Unet, we merge the 256 × 256
results to obtain the final 1589 × 1131 results. For [7], [49],
[50], we use the original settings in the experiments except
that the class number is set at 2 as we only have 2 classes.
The codes are obtained from the GitHub.1

Table III shows the comparison results of [6], [31], [46],
[7], [49], [50] and ours on Shaoshan dataset. The evaluation
criteria are as follows:

completeness = T P

T P + F N

correctness = T P

T P + F P
,

quality = T P

T P + F N + F P
(8)

1https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow,
1https://github.com/DuFanXin/deep_residual_unet,
1https://github.com/sacmehta/ESPNet

TABLE III

THE COMPARISON AMONG [6], [46], [31], [7], [49], [50]
AND OUR METHOD ON SHAOSHAN DATASET

TABLE IV

COMPARISON RESULTS OF THREE DIFFERENT SCANNING SIZES

(20 × 20, 30 × 30, 40 × 40) RESNET-50 AND OUR
MULTISCALE-HIGH-ORDER RESNET-50 ON

SHAOSHAN DATASET

where TP, FN and FP denote true positive, false negative
and false positive, respectively. As seen from table III, our
method achieves best results among seven comparing methods
in quality, which proves the good performance of our method.
The completeness of our method is also only slightly lower
than the best result. Although U-net and original ResNet
perform well in many areas, they obtain lower correctness
and quality compared with our method on Shaoshan dataset.
The reason is probably due to the complexity of background
in remote sensing images. Benefiting from the initial seg-
mentation of LDMM, our method can remove parts of back-
ground areas first. Besides, the mutiscale-high-order strategy
further improves the performance of original ResNet. Thus,
our approach obtains better results. Another reason why we
achieve a better performance than original ResNet is the pre-
segmentation by LDMM, which removes most backgrounds
having different gray-value distribution with roads. Residual
Unet, PSPNet and ESPNet obtain higher correctness than our
method. However, they achieve much lower completeness, as
well as lower quality, than our method.

3) Effectiveness of Multiscal-High-Order Strategy: To fur-
ther illustrate the effectiveness of multiscale-high-order, we
compare the performance of our method with and without
multiscale-high-order strategy. Table IV shows the comparison
results of three different scanning sizes (20 × 20, 30 × 30 and
40 × 40) ResNet-50 and our multiscale-high-order ResNet-50
on Shaoshan dataset. Obviously, our proposed mutiscale-high-
order strategy obtains better results than a single scanning size
ResNet-50 model. Compared with three ResNet-50 models
using scanning sizes of 20 × 20, 30 × 30, 40 × 40, we
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Fig. 8. Several test results of our method on Shaoshan dataset. The rows 1-4 are orginal images, labes, results of LDMM, final results of our method,
respectively.

TABLE V

PROCESSING TIME COMPARISON OF DIFFERENT 7 METHODS

FOR EACH 1131 × 1589 TEST IMAGE

improve about 21%, 17%, 11% of correctness, respectively.
The quality is also improved about 20%, 11%, 6%, respec-
tively. In completeness, multiscale-high-order is only slightly
worse than the best result among four strategies.

4) Processing Time Comparison: In the final experiment,
we analyze the computational time cost for different methods.
Table V shows the processing time comparison of different

seven methods for each 1589 × 1131 test image. From
table V, we can see ESPNet runs fastest among seven methods.
Although our method cost 2.1 hours for per 1589 × 1131 test
image, it is an acceptable computational time for obtaining a
better performance. The long processing time of CNN model
methods is due to the complex neural network convolution
operations for each potential positive pixel position. In our
following work, we will focus on improving the computational
efficiency when using deep CNN model for road extraction
from large remote sensing images.

V. CONCLUSION

Road extraction from remote sensing images is still an
attractive and challenging task. Gray value distribution and
structure feature information are both important for robust
road extraction from remote sensing images. In this paper,
we proposed a framework for road extraction from remote
sensing images, which introducing a local Dirichlet mixture
model for pre-segmentation utilizing gray-value distribution
information and a multiscale-high-order deep learning strat-
egy for catching high-order structure context information.
First, we used the proposed local Dirichlet mixture model
to coarsely segment the image into 2 classes (potential road
and background). Benefitting from the local strategy, our
segmentation is much faster and more accurate compared
with original Dirichlet mixture model. Through segmentation
of local Dirichlet mixture model, most backgrounds having
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different gray-value distribution with roads were removed.
Then, we trained three different scanning sizes of ResNet-50
models using deep learning. We merged the results of three
ResNet-50 models to train a high-order ResNet-50 model to
catch structure context information for the final road extrac-
tion. Finally, the trained multiscale-high-order ResNet-50 was
used to extract road areas based on the segmentation results
of local Dirichlet mixture model. Experimental results on
Shaoshan dataset illustrated the satisfactory performance of
our method compared with other six state-of-the-art methods.
We achieved correctness and quality as high as 0.8443 and
0.7159, respectively. And the completeness of our method
was only slightly worse than the best result among compared
methods. The experiments also proved the effectiveness of
multiscale-high-order strategy. Compared with single ResNet
model, our multiscale-high-order strategy can greatly improve
the correctness and quality while got only slightly worse
completeness than the best one. The main shortage of our
method is the processing speed, which we will focus on in
our following work.
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