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Abstract—In this paper, we propose to use the transmission
time of data blocks as the metric to measure the network
utilization, and study the bandwidth allocation for multi-path
data transmission in virtual data centers. We start with the
case that data transmission requires no minimum bandwidth,
and formulate the bandwidth allocation problem as two convex
optimization problems. In the first problem, the maximum
transmission time of all data blocks is minimized under the
given data block sizes and link capacities, which is named as the
maximum transmission time minimization (MTTM) problem. The
second convex optimization problem minimizes the transmission
time summation of all data blocks, and the problem is named as
the transmission time summation minimization (TTSM) problem.
These two problems are then generalized to the case that
data transmission has minimum bandwidth requirement, and
the corresponding problems are named as general MTTM (G-
MTTM) and general TTSM (G-TTSM) problems. By exploring the
properties of the G-MTTM problem, we design a fast algorithm
for it, named as TTM-based algorithm. Extensive simulation
results demonstrate that the G-MTTM and G-TTSM problems
can be efficiently solved, and to use transmission time of data
blocks as the metric for network utilization measurement and
optimization is practical.

Index Terms—Virtual data center, transmission time minimiza-
tion, bandwidth allocation, convex optimization, linear program-
ming.

I. INTRODUCTION

As a powerful cloud computing platform, the data center has

recently received significant attention. Nowadays, many large

companies, such as Google, Amazon, Microsoft and Facebook,

rely on data centers for a wide range of cloud services,

like computing, storage, Web search, on-line shopping, social

networking, etc. [1] [2].

To efficiently share and multiplex the vast computing power,

storage and network resources of a data center among numer-

ous tenants, there is an emerging trend towards data center vir-

tualization [3]–[10]. Similar to server virtualization, enabling

tenants to use dedicated cores, memories and disk spaces in

the form of virtual machines (VMs), the data center virtu-

alization provides tenants with virtual data centers (VDCs),

which consists of virtual machines, virtual switches and virtual

routers interconnected by virtual links. In short, besides server

virtualization, data center virtualization includes virtualization

of the data center network. With data center virtualization,

each tenant can run its applications in a relatively isolated en-

vironment, which is a promising technique to meet the various

requirements of many network applications, including band-

width guarantees, low performance interference, application-

specific protocols and address spaces implementation, etc. [3],

[11]–[14].

Compared to the relatively mature server virtualization

techniques, data center network virtualization is still in its

infancy, and related proposals in the literature include NetLord,

NetShare, FairCloud, SecondNet, etc. [5]–[9]. These proposals

have pros and cons in terms of deployability, scalability,

robustness, etc. Nevertheless, with current data center network

virtualization techniques, to deploy a VDC network as per

the tenants’ demands in terms of network topologies and

link capacities is now feasible [10]–[13]. As the tenants

are generally charged to use the VDCs, it is important for

them to take full advantage of the allocated resources in the

VDCs, and we study the VDC network utilization in this

paper. In particular, we focus on the bandwidth allocation to

efficiently transfer multiple data blocks distributed in the VDC,

which is an appropriate abstraction for many applications

(e.g., MapReduce, Dryad, CIEL, and Spark) in the data center

involving large amount of data transfer [15]–[20].

The network utilization is generally measured by the used

bandwidth with respect to link capacities, and a good band-

width allocation scheme uses as much bandwidth as possible

[6]–[10]. However, we argue that though the used bandwidth

reflects the network utilization intuitively, it fails to capture

the essence of tenants’ concern on network utilization. To

the tenants, high network utilization generally means low data

transmission time, and this is true when we allocate bandwidth

for only one data block. When allocating bandwidth for

multiple data blocks, to simply maximize the used bandwidth

might be problematic. This is because that the sizes of different

data blocks must be taken into consideration in the bandwidth

allocation, and maximizing the used bandwidth alone might

cause the mismatch between the allocated bandwidth and

the size of the data block, i.e., small-sized data blocks use

more bandwidths than large-sized data blocks, leading to long

transmission time of the large-sized data blocks.

Therefore, we propose to use transmission time of the data

blocks as the metric to measure the network utilization, and

consider two typical objectives of bandwidth allocation in the

real world. The first objective is to minimize the maximum

transmission time of all data blocks, which is generally the

concern of large-scale data collection and distribution. That

is, all data block transmissions are either from one source or



heading to the same destination, the performance of which is

largely affected by the slowest data block transmission [16]–

[18]. The second objective is to minimize the transmission

time summation of all data blocks, under which no or little

correlation exists among different data block transmissions,

therefore, each individual data block is transmitted as fast

as possible with provided network resource. The bandwidth

allocations under these two objectives are studied, and we find

the corresponding optimal bandwidth allocations under given

data block sizes and VDC network.

The rest of the paper proceeds as follows. We start from the

case that data transmission requires no minimum bandwidth,

and formulate the problem of bandwidth allocation as two

optimization problems, denoted as the maximum transmission
time minimization (MTTM) and the transmission time summa-
tion minimization (TTSM) problems, respectively, in Section

II. The MTTM and TTSM problems are then generalized to

the case that data transmission requires minimum bandwidth,

leading to the general MTTM (G-MTTM) and general TTSM

(G-TTSM) problems in Section III. We evaluate the solution

time of the G-MTTM and G-TTSM problems in Section IV,

and Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we formulate the problem of bandwidth

allocation for transmitting multiple data blocks in a VDC as

two convex optimization problems, and transform one of them

to a linear optimization problem by exploring its property.

A. Notations

In this subsection, we introduce the notations to be used in

our problem formulation.

We assume that there are N data blocks to be transmitted

in a given VDC, and the size of data block i, i.e., the ith
data block is denoted as Si. As the multi-path technique is

usually adopted in the data center networks for load balancing

and fault tolerance [3], we take multi-path data transmission

into consideration in our problem formulation, and each data

block is transmitted along M paths, the routes of which are

determined by the underlying multi-path technique. The jth
path used to transmit data block i is denoted as xij , and we

also use xij to denote the bandwidth allocated to the path

for convenience. Suppose that there are K links in the VDC

network, and the capacity of link k, i.e., the kth link is denoted

as Bk, we use ckij as an indicator of whether path xij contains

link k. That is,

ckij =

{
1, if path xij contains link k

0, otherwise

where 1 ≤ k ≤ K.

B. The MTTM and TTSM Problems

We minimize the maximum transmission time of these N
data blocks,

max{ Si∑M
j=1 xij

|1 ≤ i ≤ N}

in Table 1, where constraint (1) means that the bandwidth

summation of all paths containing link k is bounded by the

link capacity, Bk, and name the optimization problem as the

maximum transmission time minimization (MTTM) problem.

TABLE 1
MAXIMUM TRANSMISSION TIME MINIMIZATION (MTTM) PROBLEM

FORMULATION FOR MULTI-PATH DATA TRANSMISSION IN A VIRTUAL

DATA CENTER

Minimize:

max{ Si∑M
j=1 xij

|1 ≤ i ≤ N}

Subject to:

N∑
i=1

M∑
j=1

ckijxij ≤ Bk, 1 ≤ k ≤ K, (1)

ckij =

{
1, if path xij contains link k

0, otherwise

For presentational convenience, we define

U = {xij |1 ≤ i ≤ N, 1 ≤ j ≤ M} (2)

is a feasible solution of the MTTM problem if xij ∈ U
satisfies all constraints in Table 1. The optimal solution and

optimal value of the MTTM problem are denoted as U∗ and

t∗, respectively. That is,

t∗ = max{ Si∑M
j=1 xij

|xij ∈ U∗, 1 ≤ i ≤ N}

By altering the objective function in Table 1 to the summa-

tion of all data block transmission time,

N∑
i=1

Si∑M
j=1 xij

we have the transmission time summation minimization
(TTSM) problem in Table 2.

To show the convexity of the above two optimization

problems, we begin with a convex function 1
x , where x > 0.

As 1
x is convex when x > 0,

1

θx+ (1− θ)y
≤ θ

x
+

1− θ

y

where 0 ≤ θ ≤ 1, and x, y > 0. Let x =
∑n

i=1 xi, y =∑n
i=1 yi, we have

1

θ
∑n

i=1 xi + (1− θ)
∑n

i=1 yi
≤ θ∑n

i=1 xi
+

1− θ∑n
i=1 yi

Furthermore,

θ

n∑
i=1

xi + (1− θ)
n∑

i=1

yi =
n∑

i=1

θxi + (1− θ)yi



TABLE 2
TRANSMISSION TIME SUMMATION MINIMIZATION (TTSM) PROBLEM

FORMULATION FOR MULTI-PATH DATA TRANSMISSION IN A VIRTUAL

DATA CENTER

Minimize:
N∑
i=1

Si∑M
j=1 xij

Subject to:

N∑
i=1

M∑
j=1

ckijxij ≤ Bk, 1 ≤ k ≤ K, (3)

ckij =

{
1, if path xij contains link k

0, otherwise

therefore,

1∑n
i=1 θxi + (1− θ)yi

≤ θ∑n
i=1 xi

+
1− θ∑n
i=1 yi

which proves the convexity of 1∑n
i=1 xi

when
∑n

i=1 xi > 0.

Since ∀i ∈ [1, N ],

Si∑M
j=1 xij

, where

M∑
j=1

xij > 0

is convex, and the maximum (or summation) of multiple

convex functions is still, the object functions of the MTTM

and TTSM problems are convex. Moreover, the constraints of

these two optimization problems are affine, the MTTM and

TTSM problems are thus both convex optimization problems.

There are a variety of algorithms for solving a convex

optimization problem in the literature [24], and we can adopt

any of them for our problems. For presentational convenience,

we uniformly name these algorithms as convex algorithms in

the rest of our paper. Nevertheless, by exploring the properties

of the MTTM problem, we found that the MTTM problem can

be transformed into a linear optimization problem. As will be

demonstrated by the simulation results in Section IV, the linear

optimization problem after transformation can be solved much

faster than the MTTM problem by convex algorithms.

C. The TTM Problem

To transform the MTTM problem into a linear optimization

problem, we construct another optimization problem named

as Transmission Time Minimization (TTM) problem in Table

3, and prove that the optimal solution of the TTM problem is

also optimal for the MTTM problem.

In the TTM problem, the transmission time of all data

blocks are equal, as reflected by constraint (5) in Table 3, and

the object is to minimize this equal transmission time. We

also say U defined by (2) is a feasible solution of the TTM

problem if xij ∈ U satisfy all constraints in Table 3, and the

optimal solution of the TTM problem is denoted as U∗
1 . Since

the object of the TTM problem is equivalent to maximizing∑M
j=1 x1j , which is a linear function, and constraint (5) can

be replaced by the following linear constraint,∑M
j=1 x1j

S1
=

∑M
j=1 xij

Si
, 1 ≤ i ≤ N

the TTM problem can be readily transformed into a linear

optimization problem. Therefore, the MTTM problem can be

transformed into a linear optimization problem as well if the

MTTM and TTM problems share identical optimal solution,

and we have the following lemma.

TABLE 3
TRANSMISSION TIME MINIMIZATION (TTM) PROBLEM FORMULATION

FOR MULTI-PATH DATA TRANSMISSION IN A VIRTUAL DATA CENTER

Minimize:
S1∑M

j=1 x1j

Subject to:

N∑
i=1

M∑
j=1

ckijxij ≤ Bk, 1 ≤ k ≤ K, (4)

ckij =

{
1, if path xij contains link k

0, otherwise

S1∑M
j=1 x1j

=
Si∑M

j=1 xij

, 1 ≤ i ≤ N (5)

Lemma 1: U∗
1 is the optimal solution of the MTTM prob-

lem.

Proof: As the TTM problem in Table 3 includes all the

constraints of the MTTM problem in Table 1, U∗
1 is a feasible

solution of the MTTM problem. Therefore,

t∗ ≤ max{ Si∑M
j=1 xij

|xij ∈ U∗
1 } = t∗1

by constraint (5) in Table 3.

On the other hand, as

t∗ = max{ Si∑M
j=1 xij

|xij ∈ U∗}

and decreasing xij will not violate constraint (4) in Table 3, we

construct a feasible of the TTM problem, say, U , by decreasing

xij ∈ U∗ such that

Si∑M
j=1 xij

= t∗, where xij ∈ U, 1 ≤ i ≤ N

Since t∗1 is the minimum transmission time of data block 1,

t∗1 ≤ S1∑
x1j∈U x1j

Hence, t∗1 = t∗, and the lemma holds.



By Lemma 1, we can obtain the optimal solution of the

MTTM problem by solving the TTM problem. Furthermore,

U∗
1 uses the least bandwidths to minimize the maximum

transmission time, as stated by the following corollary.

Corollary 1: ∑
xij∈U∗1

xij ≤
∑

xij∈U∗
xij

Proof: We prove the corollary by contradiction, and

assume that ∑
xij∈U∗1

xij >
∑

xij∈U∗
xij

By our assumption, there must exist some i′ ∈ [1, N ], such

that ∑
xi′j∈U∗1

xi′j >
∑

xi′j∈U∗
xi′j

Therefore,

t∗1 =
Si′∑

xi′j∈U∗n
xi′j

<
Si′∑

xi′j∈U∗ xi′j
≤ t∗

However, U∗
1 is the optimal solution of the MTTM problem,

and t∗1 = t∗ by Lemma 1. Hence, the assumption is not true,

and the lemma holds.

In this section, we discuss the bandwidth allocation problem

for data transmission without minimum bandwidth require-

ment. Next, we extend our discussion to the case that data

transmission requires minimum communication bandwidth.

III. GENERALIZATION OF THE MTTM AND TTSM

PROBLEMS

In this section, we generalize our proposed MTTM and

TTSM problems to data transmission with minimum band-

width requirement, which is common for data center ap-

plications [11]–[13], and denote these two problems after

generalization as the general MTTM (G-MTTM) and general

TTSM (G-TTSM) problems, respectively.

A. The G-MTTM and G-TTSM Problems

The minimum required bandwidth of data block i is denoted

as bi, and the G-MTTM and G-TTSM problems are formulated

in Table 4 and 5, respectively, where constraint (7) and (9) on

minimum bandwidth requirements are added. As the added

constraints are affine, the G-MTTM and G-TTSM problems

are still convex optimization problems, and can be solved by

convex algorithms.

B. The TTM-n Problem

As discussed in the previous section, the MTTM problem

can be transformed into a linear optimization problem. Like-

wise, we can decompose the G-MTTM problem into several

linear optimization problems by exploring its property, which

leads to faster solution of the problem.

To show the decomposition of the G-MTTM problem, we

construct an optimization problem, denoted as Transmission
Time Minimization-n (TTM-n) problem in Table 6, where the

TABLE 4
GENERAL MAXIMUM TRANSMISSION TIME MINIMIZATION (G-MTTM)
PROBLEM FORMULATION FOR MULTI-PATH DATA TRANSMISSION IN A

VIRTUAL DATA CENTER

Minimize:

max{ Si∑M
j=1 xij

|1 ≤ i ≤ N}

Subject to:

N∑
i=1

M∑
j=1

ckijxij ≤ Bk, 1 ≤ k ≤ K, (6)

ckij =

{
1, if path xij contains link k

0, otherwise

M∑
j=1

xij ≥ bi, 1 ≤ i ≤ N (7)

TABLE 5
GENERAL TRANSMISSION TIME SUMMATION MINIMIZATION (G-TTSM)

PROBLEM FORMULATION FOR MULTI-PATH DATA TRANSMISSION IN A

VIRTUAL DATA CENTER

Minimize:
N∑
i=1

Si∑M
j=1 xij

Subject to:

N∑
i=1

M∑
j=1

ckijxij ≤ Bk, 1 ≤ k ≤ K, (8)

ckij =

{
1, if path xij contains link k

0, otherwise

M∑
j=1

xij ≥ bi, 1 ≤ i ≤ N (9)

first n − 1 data blocks are allocated their minimum required

bandwidths, and the rest data blocks share equal transmission

time, reflected by constraint (11) and (12), respectively. The

object of the TTM-n problem is to minimize the transmission

time of data block n. Similar to the TTM problem, as the

object of the TTM-n problem is equivalent to maximizing∑M
j=1 xnj , which is linear, and constraint (12) can be replaced

by the following linear constraint,∑M
j=1 xnj

Sn
=

∑M
j=1 xij

Si
, n ≤ i ≤ N

the TTM-n problem can be readily transformed into a linear

optimization problem.



TABLE 6
TRANSMISSION TIME MINIMIZATION-n (TTM-n) PROBLEM

FORMULATION FOR MULTI-PATH DATA TRANSMISSION IN A VIRTUAL

DATA CENTER

Minimize:
Sn∑M

j=1 xnj

Subject to:

N∑
i=1

M∑
j=1

ckijxij ≤ Bk, 1 ≤ k ≤ K, (10)

ckij =

{
1, if path xij contains link k

0, otherwise

M∑
j=1

xij = bi, 1 ≤ i < n (11)

Sn∑M
j=1 xnj

=
Si∑M

j=1 xij

, n ≤ i ≤ N (12)

Next, we show the correlation between the optimal solutions

of the G-MTTM and TTM-n problems, based on which we

design an optimal algorithm for the G-MTTM problem, named

as the TTM-based algorithm. As will be demonstrated by our

simulation results in Section IV, the TTM-based algorithm can

solve the G-MTTM problem faster than the convex algorithms.

For presentational convenience, we say that U defined by (2)

is a feasible solution of the G-MTTM (or TTM-n) problem

if xij ∈ U satisfies all constraints in Table 4 (or Table 6).

The optimal solution and value of the G-MTTM (or TTM-n)

problem are denoted as U∗
g and t∗g (or U∗

n and t∗n), respectively.

That is,

t∗g = max{ Si∑M
j=1 xij

|xij ∈ U∗
g , 1 ≤ i ≤ N}

and

t∗n =
Sn∑

xnj∈U∗n
xnj

In the next subsection, we will propose the TTM-based

algorithm and prove its optimality.

C. The TTM-based Algorithm

Before proposing the TTM-based algorithm, we first derive

the following lemmas and theorems, which are used to prove

the optimality of the TTM-based algorithm. Without loss of

generality, we assume

Si−1

bi−1
≤ Si

bi
, for 1 ≤ i ≤ N

where S0

b0
is set as 0, and Si

bi
is regarded as ∞ when bi = 0.

Lemma 2: t∗g ≤ SN

bN
.

Proof: By constraint (7) in Table 4,

M∑
j=1

xij ≥ bi, where xij ∈ U∗
g , 1 ≤ i ≤ N

by which we have

Si∑M
j=1 xij

≤ Si

bi
, where xij ∈ U∗

g , 1 ≤ i ≤ N

therefore,

t∗g ≤ max{Si

bi
|1 ≤ i ≤ N}

In addition,
Si−1

bi−1
≤ Si

bi
, for 1 ≤ i ≤ N

thus,

max{Si

bi
|1 ≤ i ≤ N} =

SN

bN

Lemma 2 gives the upper bound of t∗g , the next lemma tells

the ordering relation between t∗g and t∗n.

Lemma 3: t∗n ≤ t∗g , for 1 ≤ n ≤ N .

Proof: By the definition of t∗g ,

t∗g ≥ Si∑M
j=1 xij

, where xij ∈ U∗
g , 1 ≤ i ≤ N

Since decreasing xij ∈ U∗
g will not violate constraint (6) in

Table 4 or constraint (10) in Table 6, and

M∑
j=1

xij ≥ bi, where xij ∈ U∗
g , 1 ≤ i ≤ N

by constraint (7) in Table 4, we construct a feasible solution

of the TTM-n problem, say, U , by decreasing xij ∈ U∗
g , such

that
M∑
j=1

xij = bi, where xij ∈ U, 1 ≤ i < n

and

t∗g =
Si∑M

j=1 xij

, where xij ∈ U, n ≤ i ≤ N

As t∗n is the minimum transmission time of data block Sn in

the TTM-n problem, and

Sn∑
xnj∈U xnj

= t∗g

the lemma holds.

By the proof of Lemma 3, a feasible solution of the TTM-n
problem can be constructed from the optimal solution of the

G-MTTM problem. In other words, if the TTM-n problem is

infeasible, neither is the G-MTTM problem, as stated by the

following corollary.

Corollary 2: The G-MTTM problem is infeasible if ∃n ∈
[1, N ], such that the TTM-n problem is infeasible.

Also, by Lemma 3, we have the following theorem on U∗
n

and the feasible solution of the G-MTTM problem.



Theorem 1: U∗
n is a feasible solution of the G-MTTM

problem if and only if t∗g ≤ Sn

bn
.

Proof: Sufficiency. We prove the sufficiency by contra-

diction, and assume that U∗
n is infeasible for the G-MTTM

problem when t∗g ≤ Sn

bn
.

Comparing the constraints in Table 4 and 6, constraint (7) in

Table 4 must be violated in U∗
n. In other words, ∃i′ ∈ [n,N ],

such that ∑
xi′j∈U∗n

xi′j < bi′

Hence,

t∗n =
Sn∑

xnj∈U∗n
xnj

=
Si′∑

xi′j∈U∗n
xi′j

>
Si′

bi′

by constraint (12) in Table 6. In addition,

Sn

bn
≤ Si′

bi′
, when n ≤ i′

thus, t∗n > Sn

bn
. Since t∗g ≤ Sn

bn
, we have t∗g < t∗n, which

contradicts Lemma 3. Therefore, the assumption is not true,

and the sufficiency holds.

Necessity. We prove the necessity by contradiction, and

assume that t∗g > Sn

bn
when U∗

n is feasible for the G-MTTM

problem.

As t∗g is the minimum transmission time of all data blocks,

max{ Si∑M
j=1 xij

|xij ∈ U∗
n, 1 ≤ i ≤ N} ≥ t∗g

By constraint (11) and (12) in Table 6,

M∑
j=1

xij = bi, where xij ∈ U∗
n, 1 ≤ i < n

and

t∗n =
Si∑M

j=1 xij

, where xij ∈ U∗
n, n ≤ i ≤ N

therefore,

max{ Si∑M
j=1 xij

|xij ∈ U∗
n, 1 ≤ i ≤ N} =

max{t∗n,
Si

bi
|1 ≤ i < n}

According to our assumption,

t∗g >
Sn

bn
≥ Si

bi
, for 1 ≤ i < n

we have

max{t∗n,
Si

bi
|1 ≤ i < n} = t∗n >

Sn

bn

Hence,

t∗n =
Sn∑

xnj∈U∗n
xnj

>
Sn

bn

by which we have ∑
xnj∈U∗n

xnj < bn

and U∗
n violates constraint (7) in Table 4. Therefore, the

assumption is not true, and the necessity holds.

Theorem 1 tells the condition of U∗
n being feasible for the

G-MTTM problem, and we further give the condition of U∗
n

being optimal for the G-MTTM problem in the next theorem.

Theorem 2: If
Sn−1

bn−1
< t∗g ≤ Sn

bn
, U∗

n is the optimal solution

of the G-MTTM problem.

Proof: By Theorem 1, U∗
n is feasible for the G-MTTM

problem, which means that

max{ Si∑M
j=1 xij

|xij ∈ U∗
n, 1 ≤ i ≤ N} ≥ t∗g

With constraint (11) and (12) in Table 6, we have

max{ Si∑M
j=1 xij

|xij ∈ U∗
n, 1 ≤ i ≤ N} =

max{t∗n,
Si

bi
|1 ≤ i < n}

In addition,

t∗g >
Sn−1

bn−1
≥ Si

bi
, for 1 ≤ i < n

Hence,

max{t∗n,
Si

bi
|1 ≤ i < n} = t∗n ≥ t∗g

Applying Lemma 3, t∗n = t∗g , and U∗
n is the optimal solution

of the G-MTTM problem.

Note that if U∗
n is the optimal solution of the G-MTTM

problem, it uses the least bandwidths, which is proved in the

following corollary.

Corollary 3: If U∗
n is the optimal solution of the G-MTTM

problem, ∑
xij∈U∗n

xij ≤
∑

xij∈U∗g

xij

Proof: We prove the corollary by contradiction, and

assume that ∑
xij∈U∗n

xij >
∑

xij∈U∗g

xij

By our assumption, there must exist some i′ ∈ [1, N ], such

that ∑
xi′j∈U∗n

xi′j >
∑

xi′j∈U∗g

xi′j

As
M∑
j=1

xij = bi, where xij ∈ U∗
n, 1 ≤ i < n

by constraint (11) in Table 6 and

M∑
j=1

xij ≥ bi, where xij ∈ U∗
g , 1 ≤ i ≤ N



by constraint (7) in Table 4, we have n ≤ i′ ≤ N . Therefore,

t∗n =
Si′∑

xi′j∈U∗n
xi′j

<
Si′∑

xi′j∈U∗g
xi′j

≤ t∗g

However, t∗n = t∗g if U∗
n is the optimal solution of the G-

MTTM problem, therefore, the assumption is not true, and

the corollary holds.

The next lemma states the condition of U∗
n being infeasible

for the G-MTTM problem.

Lemma 4: U∗
n is infeasible for the G-MTTM problem if

and only if t∗n > Sn

bn
.

Proof: Sufficiency. t∗n > Sn

bn
means

t∗n =
Sn∑

xnj∈U∗n
xnj

>
Sn

bn

Therefore, ∑
xnj∈U∗n

xnj < bn

violating constraint (7) in Table 4, and U∗
n is infeasible for the

G-MTTM problem.

Necessity. If U∗
n is infeasible for the G-MTTM problem,

constraint (7) in Table 4 must be violated for some i′ ∈ [n,N ].
That is, ∃i′ ∈ [n,N ], such that∑

xi′j∈U∗n

xi′j < bi

As
Sn

bn
≤ Si′

bi′
, when n ≤ i′

we have that

t∗n =
Sn∑

xnj∈U∗n
xnj

=
Si′∑

xi′j∈U∗n
xi′j

>
Si′

bi′
≥ Sn

bn

by constraint (12) in Table 6.

Theorem 1 and Lemma 4 in conjunction prove the following

lemma.

Lemma 5: t∗g > Sn

bn
if and only if t∗n > Sn

bn
.

With the above lemmas and theorems, we propose the TTM-

based algorithm for the G-MTTM problem in Table 7, and

prove its optimality in Lemma 6.

Lemma 6: The TTM-based algorithm in Table 7 is optimal

for the G-MTTM problem.

Proof: As

Si−1

bi−1
≤ Si

bi
, for 1 ≤ i ≤ N

and t∗n ≤ t∗g by Lemma 2, t∗n >
Sn′−1

bn′−1
means that

t∗g >
Sn

bn
, for 1 ≤ n ≤ n′ − 1

By Theorem 1, U∗
n is infeasible for the G-MTTM problem

for 1 ≤ n ≤ n′ − 1, and we cannot find the optimal solution

of the G-MTTM problem by solving the TTM-n problem if

1 ≤ n ≤ n′ − 1.

TABLE 7
HIGH-LEVEL DESCRIPTION OF THE TTM-BASED ALGORITHM FOR THE

G-MTTM PROBLEM

Let n = 1 initially.
while n ≤ N

solve the TTM-n problem;
if the TTM-n problem is infeasible

the G-MTTM problem is infeasible;
break;

else if t∗n ≤ Sn
bn

U∗
n is the optimal solution of the G-MTTM problem;

break;

else if ∃n′ ∈ [n,N ], such that
Sn′−1

bn′−1
< t∗n ≤ Sn′

bn′
n = n′;

else
the G-MTTM problem is infeasible;
break;

end if;
end while;
END

Hence, we can set n = n′, and if t∗n′ ≤ Sn′
bn′

, t∗g ≤ Sn′
bn′

by

Lemma 5, meaning that

Sn′−1

bn′−1
< t∗g ≤ Sn′

bn′

Therefore, U∗
n′ is the optimal solution of the G-MTTM prob-

lem by Theorem 2.

On the other hand, if

∀i ∈ [1, N ], t∗n >
Si

bi

we have

t∗g ≥ t∗n >
SN

bN

according to Lemma 5, which contradicts Lemma 2, and the

G-MTTM problem is infeasible.

As will be seen in the next section, the TTM-based algo-

rithm can solve the G-MTTM problem faster than the convex

algorithms. Next, we analyze the time complexity of the TTM-

based algorithm.

D. Time Complexity Analysis

In this subsection, we analyze the time complexity of the

propose TTM-based algorithm.

As the TTM-based algorithm solves at most N TTM-n
problems, and the TTM-n problem can be linearized, i.e.,

transformed into a linear optimization problem, by replacing

its nonlinear object function and constraint with linear ones,

we start with the discussion on time complexity of solving a

linear optimization problem.

The standard form of the linear optimization problem is

to maximize cT x (c, x ∈ Rn) over all vectors x such that

Ax = b and x ≥ 0. In [22], Khachiyan proved that a

linear optimization problem can be solved in polynomial time

relative to the length of the binary encoding of the input,

denoted as L. In other words, L is the number of bits encoding

A, b and c.

To transform the TTM-n problem to the standard form

of linear optimization problem, we add nonnegative slack



variables vk to constraint (12) in Table 6 to convert the

inequality to equality, i.e.,

N∑
i=1

M∑
j=1

ckijxij + vk = Bk, 1 ≤ k ≤ K

Therefore, in the obtained standard form of the linearized

TTM-n problem, A is an (MN + 1) × (K + N) matrix,

b and c are (K + N)-dimentional and M -dimensional vec-

tors, respectively. Suppose each element in A, b and c is

encoded by fixed length of binary, L should be proportional to

(MN+1)×(K+N)+K+N+M . According to Khachiyan’s

result, the time complexity of solving the TTM-n problem

is thus polynomial relative to MN × (K + N). Since the

TTM-based algorithm in Table 7 solves at most N TTM-n
problems, the time complexity of the TTM-based algorithm

is polynomial relative to MN2 × (K + N). Note that when

n = 1, the TTM-n problem in Table 6 and TTM problem in

Table 3 are identical. As the MTTM and TTM problems share

the same optimal solution, the time complexity of solving the

MTTM problem is polynomial relative to MN × (K+N) by

our analysis.

It is worth pointing out that the above time complexity anal-

ysis is mostly of theoretical interest, the ellipsoid algorithm

Khachiyan used to prove his result is not useful in practice.

Instead, many algorithms can solve the linear optimization

problem very efficiently despite their worse or unclear time

complexities. Hence, we rely on the algorithms embedded in

commercial solvers to solve the TTM-n problem, as will be

seen in the next section.

In this section, we extend our discussion to data transmis-

sion with minimum bandwidth requirement, and generalize

the MTTM and TTSM problems to G-MTTM and G-TTSM

problems, respectively. By analyzing the properties of the G-

MTTM problem, we propose the TTM-based algorithm for it.

In the next section, we evaluate the efficiency of the TTM-

based algorithm by extensive simulations.

E. Simulation Configurations

It is difficult, if not impossible, to capture all the fea-

tures of VDCs deployed in a real data center, which are

closely related to many factors, such as the tenants’ demands,

virtualization technologies, underlying physical data center

architecture, etc. [3], [5]–[10]. Therefore, we adopt certain

extent of simplification to randomly generate the VDCs used

in our simulation, and regard the simulation results after

simplification as preliminary and useful references to predict

the merit of our work in real world. Next, we introduce the

simulation configurations in detail.

We generate 100 VDCs in our simulation, every 10 of

them have equal number of VMs, which increases from 20

to 200 at an incremental step of 20 [6]. In a VDC with N
VMs, we generate N data block transmissions, the sources

and destinations of which are randomly chosen among all VMs

in the VDC. Note that for the purpose of matching the data

transfer pattern in large-scale data collection and distribution,

in the G-MTTM problem, all these N data block transmissions

share the same source (or destination) VM in the VDC. The

upper bound of the data block size is normalized, and the size

of a data block is a uniformly distributed random number in

interval [0, 1].
To reflect the diversity of VDC network topologies, we

randomly interconnect the virtual switches and VMs in the

generated VDCs. Nevertheless, we assume that the VDC

network is of rich interconnectivity, which resembles the

feature of many physical data center networks, and use the data

center architecture in [21] as the reference to determine the

numbers of virtual switches and virtual links with respect to

the number of VMs in the VDC network. In [21], k3/4 servers

are interconnected by a 3-tier fat tree network consisting of

5k2/4 k-port commodity switches, and the number of physical

links is 3k3/4. We adopt the same ratio among the numbers

of VMs, virtual switches and links in generating VDCs in

our simulation. Furthermore, we assume homogenous link

capacities in the VDC, which are set as 1, and the data

transmission paths are the top M shortest paths in terms of

hop distance between the source and destination VMs. To

observe the impact of path multiplicity on simulation results,

we increase M from 1 to 4.

IV. PERFORMANCE EVALUATION

In this section, we compare the efficiencies of our proposed

TTM-based algorithm and convex algorithms in solving G-

MTTM problem, and evaluate the solution time of the G-

TTSM problem in a variety of VDCs with different network

sizes, i.e., the number of VMs, and network topologies.

In our simulation, the required minimum bandwidth of

a data block is a uniformly distributed random number in

interval [0, b], where b is the upper bound of the required

minimum bandwidth with respect to the link capacity, i.e.,

1. Therefore, in a VDC with N VMs, the expectation of

required minimum bandwidth summation of all data blocks

is b · N/2. To estimate the difficulty of the VDC network to

satisfy the minimum bandwidth requirements in the G-MTTM

and G-TTSM problems, we calculate the node degree, i.e.,

the number of connected links, of the common source (or

destination) VM, denoted as d, in the G-MTTM problem, and

the average length of all data transmission paths, denoted as h,

in the G-TTSM problem. Since the link capacity is 1, and there

are 3N links in the VDC by our simulation configuration, we

define

α =

{
b·N/2

d if maximum transmission time is minimized
h·b·N/2

3N if transmission time summation is minimized

When α approaches 1, we consider the minimum bandwidth

requirements hard to meet for the VDC network, which is

verified by our simulation, and the corresponding optimization

problems are often infeasible. To ensure that the optimization

problems involved in our simulation are generally feasible, α
is set as 0, 0.25 and 0.5 to represent zero, light and moderate

bandwidth requirements, respectively.
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Fig. 1. Simulation results under zero minimum bandwidth requirement. (a) Average solution time of the G-MTTM problem by SDPT3 solver. (b) Average
solution time of the G-MTTM problem by SeDuMi solver. (c) Extra percentage of bandwidth used by the convex algorithms. (d) Average solution time of
the G-TTSM problem.
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Fig. 2. Simulation results under light minimum bandwidth requirement. (a) Average solution time of the G-MTTM problem by SDPT3 solver. (b) Average
solution time of the G-MTTM problem by SeDuMi solver. (c) Extra percentage of bandwidth used by the convex algorithms. (d) Average solution time of
the G-TTSM problem.
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Fig. 3. Simulation results under moderate minimum bandwidth requirement. (a) Average solution time of the G-MTTM problem by SDPT3 solver. (b)
Average solution time of the G-MTTM problem by SeDuMi solver. (c) Extra percentage of bandwidth used by the convex algorithms. (d) Average solution
time of the G-TTSM problem.

Given the value of α, we randomly generate 100 sets

of required minimum bandwidths for all data blocks in a

VDC, and solve the corresponding G-MTTM and G-TTSM

problems. Note that when α = 0, the G-MTTM and G-

TTSM problems become the MTTM and TTSM problems,

respectively.

As mentioned in the previous section, there are a variety

of convex algorithms in the literature, and no one is better

than the others on all problems. In our simulation, we use the

convex algorithms embedded in two popular solvers to solve

the G-MTTM and G-TTTM problems. These two solvers are

included in CVX, a package for specifying and solving convex

optimization problems are used in our simulation [23] [24]. For

the purpose of fair comparison, we solve the linearized TTM-n
problem in the TTM-based algorithm by the same solvers.

By the above simulation configurations, we need to solve

1,000 pairs of G-MTTM and G-TTSM problems under given

VDC network size, path multiplicity and the value of α. We

record the average solution time of the G-MTTM and G-TTSM

problems by different algorithms to evaluate the efficiencies of

these algorithms. Besides, the optimal solution by the TTM-

based algorithm uses the minimum bandwidth to minimize

the maximum transmission time by Corollary 3, to compare

the bandwidths used by the TTM-based algorithm and convex

algorithms, we calculate extra percentage of bandwidth used

by the convex algorithms with respect to that of the TTM-

based algorithm for each G-MTTM problem, the percentage

is then averaged for all these 1,000 G-MTTM problems.

A. Analysis on Simulation Results

In this subsection, we analyze the simulation results, which

are illustrated in Fig. 1, 2 and 3. Note that as our simulation

results show that the G-MTTM and G-TTSM problems are sel-

dom feasible when M = 1 under light and moderate minimum

bandwidth requirements, which is due to the lack of flexibility

to allocate bandwidth among multiple data transmission paths,

we plot the curves starting from M = 2 in Fig. 2 and 3.

From these figures, we can see that the average solution time

of the G-MTTM and G-TTSM problems by the convex algo-

rithms increases almost linearly with respect to the network



size, and never exceeds 5 seconds in our simulation, which

shows that the convex algorithms can solve the G-MTTM

and G-TTSM problems efficiently. In addition, the TTM-based

algorithm solves the G-MTTM problem much faster than the

convex algorithm algorithms in our simulation, which is in

accordance with our expectation.

We also observe that as the VDC size grows, the convex

algorithms use more and more bandwidth than the TTM-

based algorithm to minimize the maximum transmission time.

This is because that the shared link with the heaviest com-

petition for bandwidth by multiple data transmission paths

is the bottleneck for maximum transmission time reduction,

and more data transmissions are issued in larger VDCs in

our simulation, which intensifies the competition. Therefore,

the convex algorithms exploring bandwidth margins on the

links left by the TTM-based algorithm cannot lead to better

solution, which demonstrates the economy of the TTM-based

algorithm in utilizing the network resources. As M increases,

the bandwidth used by the convex algorithms to minimize the

maximum transmission time is closer to that by the TTM-

based algorithm. The reason is that higher path multiplicity

provides greater bandwidth allocation flexibility to relieve the

competition for the bandwidth on shared links by different

data transmission paths, leading to less bandwidth margins on

the links in the optimal solution by the TTM-based algorithm.

In summary, our simulation results demonstrate that the G-

MTTM and G-TTSM problems can be efficiently solved by the

convex algorithms, and our proposed TTM-based algorithm

outperforms the convex algorithms in terms of both solution

time and used bandwidth in solving the G-MTTM problem.

V. CONCLUSION

In this paper, we propose to use transmission time of data

blocks as the metric to measure the network utilization, and

study the bandwidth allocation for multi-path data transmis-

sion in VDCs. We start with the case that data transmission

requires no minimum bandwidth, and formulate the bandwidth

allocation problem as the MTTM and TTSM problems, which

are generalized to the G-MTTM and G-TTSM problems,

respectively, by introducing minimum bandwidth requirement.

We show the convexity of these optimization problems, and

design the TTM-based algorithm for the G-TTSM problem

by exploring the properties of its optimal solution. Extensive

simulation results show that the G-MTTM and G-TTSM

problems can be efficiently solved by convex algorithms, and

our proposed TTM-based algorithm outperforms the convex

algorithms in solving the G-MTTM problem, demonstrating

that to measure and optimize the network utilization by

transmission time of data blocks is practical.
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