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Abstract—This paper presents a feasible workflow for use of
three-dimensional point clouds acquired by a vehicle-borne mobile
laser scanning (MLS) system for urban tree inventory. Extract-
ing geometrical information, such as crown diameter, diameter at
breast height (DBH), and tree height, from the MLS point clouds
is a challenging task due to huge data volume, occlusions, mixed
density, and irregular distribution of points in complex urban
environments. The proposed workflow consists of three parts: in-
dividual tree cluster extraction, geometric parameter estimation,
and tree species classification. The results show that over 93% of
the roadside trees were correctly detected with an average error of
about 5% in the DBH estimation when compared to field surveys
and 78% of the overall accuracy was achieved for the classification
of tree species.

Index Terms—Mobile laser scanning, point cloud, roadside tree,
tree inventory, tree species classification.

I. INTRODUCTION

IN 2050, around 66% of the world’s population is expected
to live in cities [1]. Rapid urbanization may result in many

urban environmental problems such as poor air quality, dust,
noise, and urban floods [2]. One of the possible solutions to
these issues is the roadside tree, which provides superiorities
including prevention of water loss and soil erosion, reduction of
air pollution and road noise, and adjustment of temperature and
moisture [3]. Meanwhile, roadside trees also cause problems.
For example, falling tree branches may harm pedestrians, pests
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like the emerald ash borer can cause widespread mortality of ash
trees, and allergies may occur in urban areas because of trees’
pollen and seeds [4]. Thus, knowing the geometrical information
and tree species of urban trees is relevant to urban tree protec-
tion, urban planning, environmental impact assessment, biomass
calculation, and tree risks management. Moreover, information
of tree species may help reduce damage by tree crashes because
frangible (i.e., breakable) roadside trees can be planted at places
that are more prone to run-off-road accidents [5].

However, urban tree inventories in many cities are often
incomplete and inaccurate due to budget problems.

Based on a survey conducted in 1980, of the 2861 cities in
the United States, only 511 cities had information on urban tree
inventories [6]. Although most of the urban forest data in the
U.S. can be found on the Internet, it is mostly derived from air
photos and radar images instead of field surveys. In Canada, only
20% of municipalities have management plans for urban forests,
and 25% of municipalities do not have urban tree inventories [7].
In China, many of the cities lack the funding and strategies for
planning and management of urban forests [8].

Field surveys can get most of the information required for
an urban tree inventory, such as species, height, diameter at
the breast height (DBH) measured at 1.3 m above the ground,
crown spread, soil conditions, tree condition, and location
of roadside trees. However, field measurements of the DBH,
tree height, and crown spread are often complicated due to
accessibility problems, variations within each measurement,
and confusions when dealing with different trees in different
environments [9].

Besides, the traditional methods for the urban tree inventory
have met plenty of challenges. Calipers and tapes have been used
in studies to measure the DBH [10]. However, the accuracy of
the caliper method needs to be enhanced by averaging two or
more measurements at different angles [9]. Also, the accuracy of
the tape method can be affected by the tilt of trees. Tree height,
as another important measurement, is often calculated based on
angle and distance measurements. Additionally, it is difficult to
accurately measure the crown spread because the outline of tree
crowns cannot be well defined. Consequently, errors are often
caused by manually defined tree outlines, blocking of sight, and
by estimating the crown spread based on a few measurements
of radius [9]. Other methods such as aerial photointerpretation,
stereo photogrammetry [11], satellite image analysis [12], syn-
thetic aperture radar imaging [13], and Open Tree Map [14]
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Fig. 1. Components of a typical MLS system.

also have their limitations including the limited resolution of
the imagery, affection of weather conditions, and difficulties for
georegistration.

With the fast development of light detection and ranging
technology, tree classification and feature extraction have en-
tered a new era. Airborne laser scanning (ALS) systems, with
their large coverage and top view of forests, have been widely
used for many forestry applications such as canopy mapping,
biomass estimation, and tree species classification [15], [16].
However, the point density of the ALS systems is only about
25 points/m² at 400-m flying height [16]. Terrestrial laser scan-
ning (TLS) can obtain higher point density and can be placed
in high-density forests where vehicles cannot reach. However,
occlusion problems and the difficulties of moving the platform
can lower the efficiency and feasibility of data collection [17].

Compared with the ALS, mobile laser scanning (MLS) data
are used less in urban tree inventory due to some of its limi-
tations: smaller coverage, larger data volume, and higher cost.
However, an MLS has a side view that can directly scan tree
trunks, which cannot be seen in ALS data. Also, the point density
of the MLS used in this study is more than 3000 points/m2 near
trajectory and 300 points/m2 for tree points. Thus, MLS provides
the potential for simultaneous and automated extraction of the
roadside tree information. This can be achieved through road
surveys to help update current roadside tree inventories.

Fig. 1 shows the components of an MLS system. An MLS
system is an integrated platform consisting of four parts: one
mobile platform; one or more laser scanners; a high-precision
positional system; and one or more digital cameras [18].

The mobile platform carries the laser scanners and other
components [18]. The control system is often located in the
front seat where people can adjust the scan mode and observe
data output. The positional information of an MLS platform
and an inertial measurement unit (IMU) is often updated by
the global navigation satellite system (GNSS) [19]. At places
where the GNSS signal is deteriorated by high-rise buildings
and tunnels, the IMU and a distance measuring indicator (DMI)
units can observe the moving distance, acceleration, roll, pitch,
and heading of the vehicle to update the positioning information
[19]. Also, digital cameras are often mounted on the top of
the vehicle to take videos or color images of the surveyed area
simultaneously, while three-dimensional (3-D) point clouds are
collected by the laser scanners.

TABLE I
DATASETS USED IN THIS STUDY

II. STUDY AREA AND DATA

In this study, a total of four datasets were collected and used,
in which the Datasets A acquired by Trimble MX9 is located in
Biberach street, Germany, and B and C are located in the city
of Xiamen, Fujian, China, where the roadside trees are dense
and contain a lot of tropical plants. The crowns of these tropical
plants are smaller and the wide variety of roadside trees in the
datasets can be used to test the classification algorithms. The
Dataset D was collected in the city of Kingston, ON, Canada,
where many conifer trees grow in a variety of heights and sizes
(see Table I).

Two Datasets B–C were collected by a RIEGL VMX-450
system from Xiamen University in Xiamen, and the Dataset
D was provided by Tulloch Engineering, also using a RIEGL
VMX-450 system.

The Dataset C is the simplest one with only two types of
trees planted at wide intervals. However, a great number of
cars, pedestrians, light poles, road signs, and bus stops in the
Dataset C caused occlusions of tree trunks. Trees in the Dataset
B [42] were planted close to each other with high grasses
and shrubs near the tree trunks, making the segmentation of
individual trees challenging. These two datasets were used for
geometrical information extraction. The Dataset C, with seven
different kinds of tree species, was used for both geometrical
information extraction and testing of classification methods. The
Dataset D is characterized by the high point density and large
conifer trees near the road.

III. METHOD

A. Proposed Workflow

During the process of single tree extraction, three different
methods were tested and compared: Euclidean clustering; Ncut;
and region growing segmentation. After the tree clusters were
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Fig. 2. Three steps of our workflow: (1) individual tree clustering, (2) tree
parameter estimation, and (3) tree species classification.

extracted, a two-dimensional (2-D) alpha shape method was
used to obtain cluster outlines. As shown in Fig. 2, the entire
workflow can be divided into four parts: extraction of single
trees; tree parameters estimation; tree species classification; and
validation.

During the process of single tree extraction, four different
methods were tested and compared: Euclidean clustering [26];
Ncut [28]; region growing segmentation [27]; and supervoxel-
based segmentation [29]. After the tree clusters were extracted, a
2-D alpha shape method [41] was used to obtain cluster outlines.
The random sample consensus (RANSAC) fitting method and a
bounding rectangle method were used for calculating the DBH.
Then, the parameters such as tree height, total point number,
point density, and point number for each height percentile, and
standard deviation (SD) of the point height were applied to the
classification method. After using the recursive feature elimi-
nation (RFE) method to select relevant features, two different
classifiers, k-nearest neighbor (k-NN) [32] and random forests
(RF) [33] were applied. In this study, Datasets C and D were
chosen since they have more tree species. Finally, the estimations
of the DBH and tree species classification results were validated.

B. Individual Tree Clustering

Since MLS data cannot accurately capture objects that are far
from the scanning trajectory, the redundant data that are far from
the trajectory were removed. Then, a statistical outlier removal
filter was used to remove outliers (noise points that are not GNSS
or IMU errors and multipath reflections) [20]. Outliers can cause
problems during data processing because these points can lead

Fig. 3. Upward growing for ground removal.

to erroneous changes in surface normal, point coordinates, and
curvatures.

The statistical outlier removal filter computes distances of all
points using k-NN. Then, the global mean distance and standard
deviations of the distances are calculated. Points with a mean
distance to their k-NN that exceeds the interval defined by the
global mean and standard deviation are removed from the data.
The default setting of the threshold is

dmax = da + n ∗ sd (1)

where dmax is the threshold, da is the average distance, sd is the
standard deviation of the average distance, and n is the multiplier.
Different n values were tested and it was set as 10 to make sure
no tree points were removed.

Also, a large proportion of MLS points are ground points, their
removal can improve the processing speed and facilitate later
processes. Ground removal has been well studied by researchers
to facilitate forestry analysis, hydrology analysis, and geological
hazard control [21]. Most of the ground-filtering algorithms
are based on slope, interpolation, morphological filters, and
hybrid methods [22]. However, raster-based methods can lower
the accuracy of derived ground points, and interpolation-based
methods may not work for MLS data due to the large data
volume. Thus, the upward growing method was employed
in this study to enhance the efficiency and accuracy of the
segmentation.

Fig. 3 shows a simple example of the upward growing ap-
proach to ground removal. First, the point clouds were voxelized.
Second, the green voxel in Fig. 3 is selected as a seed voxel, and
the blue voxels are the nine upward voxels searched. The height
difference between the lowest point in the bottom voxel and
the highest point in the top voxel is defined as Hl. The height
difference between the lowest point in the bottom voxel and the
lowest point in the data scene is defined as Hg. Finally, if the Hl

is smaller than the local terrain relief and Hg is smaller than the
global terrain relief, the voxel clusters are classified as ground
points [23].

Many segmentation methods were developed for single tree
extraction. Some methods required the rasterizing of point cloud
data may cause problems such as mixed pixels, interpolation, and
empty pixels, which will reduce the data accuracy. Additionally,
small trees that grow under big trees or grow near big trees are
often neglected in these methods. [24].

Some studies combine multispectral data with ALS data to
identify individual trees after tree tops were found using a crown
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height model [25]. However, registration of different data types
will involve geo-correction processes and may produce errors.

Finally, four different segmentation methods were tested for
extraction of single tree clusters: Euclidean distance clustering
[26]; region growing segmentation [27]; normalized cut [28];
and supervoxel-based segmentation [29].

1) Euclidean Distance Clustering: The method can cluster
points based on the points’ Euclidean distances to its neighbors
according to a user-defined distance threshold. However, set-
ting the threshold for the method is difficult because a small
distance threshold may lose tree points and a large threshold
cannot segment close objects. To define the appropriate distance
threshold, the average distance between adjacent points needs
to be manually observed. The optimal distance threshold was
found by adjusting different values around the average distance.

2) Region Growing Segmentation: First, the curvatures of all
points in the Dataset are calculated using the nearest neighbors
around each point. Points with the lowest curvatures are selected
as seed points. Second, the angle differences between the seed
points and their neighbor points are calculated. When the dif-
ference is smaller than the angle threshold set by the user, the
points are added to the cluster. Third, the neighbor points that
have smaller curvatures than the defined curvature threshold are
added to the seed list, and the original seeds are removed. The
algorithm will restart the search when the seed set is empty.

3) Normalized Cut (Ncut): First, the MLS data were divided
into voxels. Second, the nonempty voxels were selected and the
similarities among each pair of voxels were computed by [26]

wij =
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where pi = (xi, yi, zi) and pj = (xj , yj , zj) are the centroids
of voxels i and j. pXY

i = (xi, yi) and pXY
j j = (xj , yj) are the

coordinates of the centroids on the X–Y plane, and pZi = zi and
pZj = zj are the z coordinates of the centroids. σxy and σZ are
the standard deviations. dXY is the maximum threshold of the
horizontal distance between two voxels. The centroid of voxel i
is defined as follows:

pi =
1

Ni

Ni∑

m=1

pim (3)

where Ni is the total number of points within voxel i and pim is
a point within voxel i.

Third, the method divided the point clouds into groups by
maximizing the similarities in each group and minimizing sim-
ilarities between different groups using the following equation:

Ncut (A,B) =
cut (A,B)

assoc (A, V )
+

cut (A,B)

assoc (B, V )
(4)

where cut(A,B) is the total sum of weights between voxel
groups A and B, and assoc(A, V ) is the sum of the weights
of all edges ending in the voxel group A.

The minimized Ncut(A,B) is derived by solving the general-
ized eigenvalue problem (Shi and Malik, 2000)

(D −W ) y = λDy (5)

where D is a diagonal matrix with D(i, i) =
∑

m wim.
4) Supervoxel-Based Segmentation: A voxel can be trans-

formed into a supervoxel by assigning properties such as the
geometrical center of the voxel, mean laser reflectance intensity
value of constituting 3-D points, and surface normal [28]. After
the supervoxels were extracted, they were projected to the X–Y
plan and a convex hull was used to represent their area. Informa-
tion such as the highest point, lowest point, bounding box, and
the gravity center of the super voxels was also extracted. The
coordinates of the gravity center were calculated by

x =

∑n
i=1 xpi

n

y =

∑n
i=1 ypi
n

(6)

where pi belongs to the supervoxel, and n is the number of points
in the supervoxel.

Supervoxels near the local highest points were considered
trunk voxels. Then, trunk voxels that have the highest point
below a user-defined threshold were removed. This threshold
should be higher than the average bush height of the area. Finally,
the complete tree cluster was derived by growing both upward
and downward [30].

C. Tree Species Classification

First, 100, 95, 85, 70, 55, 40, and 25th percentile in height
were selected to cut the tree clusters into horizontal slices. We
chose the percentage because that 95% and 70% of trees are
mostly crowns, and between 70% and 25% are mainly DBH,
and 0% ∼ 25% includes weeds. For each slice, two parameters
were calculated: the point density and point number.

Second, the RFE method was applied to enhance the classifi-
cation accuracy because some of the features of the tree clusters
may produce noise. The goal of RFE was to select features by
recursively considering smaller and smaller sets of features [31].

Finally, two different classification methods were tested: the
k-NN [32] and the Random forests (RF) [33].

D. Estimation of Tree Parameters

1) Diameter at Breast Height (DBH): Some studies use least
squares adjustment to estimate the DBH using field survey data
and features such as tree height, crown area, crown volume, and
crown height [26]. Some other studies use cylinder model fitting
and cone fitting methods to estimate the DBH [17]. Based on a
former study, the cone fitting method achieved best results when
the tree trunks were used in the fitting; the two methods worked
considerably the same when using trunk slices [34]. In this study,
the cylinder fit method for trunk slices and the circle fit method
for projected points of slices were applied to estimate the DBH.
First, a threshold cut method was used to cut the tree clusters to
extract tree trunks.
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Fig. 4. Plane perpendicular to trunk and circle fit.

In the cylinder fit method, the RANSAC cylinder detection
method was applied to determine the location of the tree center
and estimate the DBH from the trunk slices, the RANSAC
cylinder detection method was applied [35]. While in the cir-
cle fit method, the slice points were first projected onto a
plane perpendicular to the trunk direction and then rotated to
the XY plane for circle fitting. The normal vector of the plane
perpendicular to trunk was estimated by the following formula:

vs = Nor

⎛

⎝
M∑

i=1

M∑

j=1

(vi × vj)·sgn(Zij)

⎞

⎠ (7)

where M is the number of points in the point clouds, vi is the
normal vector of point i. sgn() is the sign function, Zij is the
Z component of vi × vj and Nor(v) represents the normalizing
vector v. Suppose the normal vector of this plane vs is (A,B,C),
then the projected point pi can be rotated to the XY plane by the
left-multiple rotation matrix R.

p′i = Rpi (8)

where the rotation matrix R can be

R =

⎡

⎢
⎢
⎣

A B C

B
B−A

−A
B−A 0

− AC
B−A

BC
B−A B +A

⎤

⎥
⎥
⎦ . (9)

There may be some noise points around the trunk, so the
RANSAC algorithm with the circle model was used to filter
these noise points. After filtering, a circle fitting method is used
on projected points to acquire the location and DBH of tree
trunk. Fig. 4 illustrates the detail of the circle fit method.

Estimation of the DBH for noncircular trunks using this
method can be problematic [40]. Thus, the two methods were
compared with a proposed minimum bounding rectangle method
in this study. This minimum bounding rectangle method uses
the width of the minimum bounding box of each trunk cluster
to estimate the DBH. Fig. 5 shows the results using our method.
It can be seen that our method achieved good performance.

2) Tree Height: There are two approaches to extract tree
height using point clouds. One method uses the height difference
between highest tree points and the height of digital terrain
model (DTM) to represent the height of trees [16]. However,
errors in DTM will influence this estimation. Another method
uses the height difference between the highest tree points and
the lowest tree points to estimate tree heights [17]. To enhance
the efficiency of the algorithm, DTM of the study area was not

Fig. 5. Extracted stems.

generated and the single tree cluster-based height estimation
method was applied.

Studies have revealed that although the point density of the
TLS is very high, the laser beam cannot penetrate tree leaves
and reach tree tops, causing underestimations of tree heights
[17]. Also, the underestimation of tree heights can be caused by
occlusion at lower parts of tree trunks, bushes, and grass.

3) Crown Spread: Crown spread estimation is important for
off-ground biomass estimation. 78% of the biomass variance can
be explained by crown diameter alone and the crown diameter
can enhance the accuracy of the estimation of biomass for 0.24
in R2 and 7 t/ha in root mean square error (RMSE) [36]. The
estimation accuracy of the crown diameter can be affected by
stand density [37]. This difficulty was also found during the
processing of MLS point clouds due to the segmentation problem
of dense vegetation. In this study, a 2-D alpha shape outline
extraction method was used to extract the outline of each tree
clusters [38], [39]. Then, the RANSAC shape detection method
was used to extract the crown diameter for trees with a rounded
crown. Crown spread is derived by the spoke method for trees
with irregular crown shapes. The spoke method calculates the
average distance from outline points to the trunk center to
represent the crown diameter.

IV. RESULTS AND DISCUSSION

A. Tree Extraction

First, buildings and other objects far from the trajectory can
be removed based on the point distance to the scan line.

Outlier points of the datasets were found in the air, below
ground surface, and near object surfaces. The number of nearest
points was set as 30 and the SD multiplier was set as 5 for
the statistical outlier removal filter. The processing speed of the
algorithm was about 30 s for a 100-MB scene and the method
can remove most of the outliers far from objects. However, it
cannot filter clustered outliers so these points need to be removed
manually.

The upward growing ground filtering method has certain limi-
tations when applied in scenes with high ground level differences
because the global relief set by the user may affect the filtering
results. For example, Fig. 6 shows that the higher road points
were not extracted when using a 2-m global relief threshold.
This can be alleviated by dividing the road into smaller scenes
or changing the global relief threshold to a larger value.
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Fig. 6. Ground point removal using a 2-m global relief threshold.

Fig. 7. Ground points removal using a 10-m global relief.

Fig. 8. Results of the Euclidean distance clustering. (a) 0.1-m distance thresh-
old. (b) 0.3-m distance threshold.

Fig. 9. Segmentation results of the region growing using (a) number of
neighbor = 20, and (b) number of neighbor = 10.

Fig. 7 shows the result when the global relief was set as 10 m.
However, this can lower the time efficiency of the algorithm by
around 10 s, and some of the points and small clusters were
filtered as ground points as shown in the right side of Fig. 7.
These error points may affect the generation of DTM. However,
their impact on tree species classification and tree extraction can
be small.

Results of the Euclidean distance method are shown in Fig. 8.
A large threshold will merge the connected trees; a smaller
threshold may separate the connected trees but some trees can
be clustered into different parts.

It can be seen by comparing Figs. 8(b) and 9(a) that some of the
tree trunks were separated from the tree crowns when the search
number of their neighbors was set smaller by region growing. In
the region growing algorithm, the smaller the number of neigh-
bors is, the more accurate the segmentation of its single tree is.
Each color represents the classification of trees coarse clustering,
and each cluster is distinguished by different colors. The number
of neighbor in Fig. 9(a) was set as 20, the segmentation accuracy
rate is only 57.1%, and the green parts are connected because
they are too close. The number of neighbor in Fig. 9(b) was set

Fig. 10. Results of Ncut segmentation obtained: (a) via Euclidean distance
clustering, (b) from downscaled high-density point cloud, (c) tree connected
with a light pole, and (d) two connected trees.

Fig. 11. Results of trees connected with a light pole obtained via supervoxel-
based segmentation.

to 10 and a better segmentation result was obtained. The clusters
are distinguished by different colors, except the left part where
three and four trees are combined.

The MLS data have high point densities that require high
memory space when processed using the Ncut method.

Thus, the original dataset, as shown in Fig. 10(a), was sub-
sampled to the cloud shown in Fig. 10(b). The point number
decreased from 36 901 to 5367 to enable the data to be pro-
cessed using the Ncut method. As can be seen from Fig. 10(c),
the segmentation can separate electricity poles from the trees.
Fig. 10(d) shows that the method can also segment the connected
trees.

Although the clusters with more than one tree can easily be
classified and be segmented using the Ncut method, the loss of
tree points may cause errors in the geometrical measurement of
the tree. A better result could be obtained using the Ncut method
if a more powerful computer would be used.

Fig. 11 shows the results of tree extraction and segmentation
from the Dataset C using the supervoxel-based method. It can
be seen that higher trees are accurately located.

The advantage of the supervoxel-based method is that it can
separate some connected objects as shown in Fig. 10. However,
some smaller trees and closely clustered trees were not detected.
The method also worked poorly for the Dataset B due to tilted
tree trunks and branching. The advantage of the supervoxel-
based method is that it can segment trees connected to light
poles and traffic signs. However, smaller trees were not detected
during the segmentation.

Fig. 12 shows the results of tree extraction from the Dataset
A using the supervoxel-based method.

Fig. 13 shows some errors found in the results of segmentation
(detected trees are shown in red): small trees that were excluded
due to low point number in their clusters, errors caused by light
poles or traffic signs, unconnected tree parts, errors caused by
closely connected trees and bushes, and occlusion caused by
bushes.
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Fig. 12. Results of roadside trees extraction.

Fig. 13. Errors and undetected trees.

Fig. 14. Selected classes. (a) Bischofia polycar. (b) Roystonea regia.
(c) Washingtonia filifera. (d) Sago cycas. (e) Sylvester palm. (f) Triangle palm.
(g) Bushes. (h) Light pole.

To conclude, the results of the Euclidean distance segmen-
tation were adopted for the following methods due to its high
efficiency. The undetected tree rates of the method for Datasets
A, B, and C were 4.7%, 10.7%, and 2.7%, respectively.

The lowest detection rate was obtained from the Dataset B
because some of the trees were planted in two rows causing
occlusion. The segmentation result was more accurate for the
Dataset C, which may indicate that segmentation of trees with
similar sizes and species is easier than segmentation of trees
with different sizes and species.

B. Feature Selection

First, the single tree clusters were manually labeled as differ-
ent classes as shown in Fig. 14.

Second, the clusters were cut into different horizontal slices
based on height percentiles.

At last, Top 14 features with high importance were extracted
based on the RFE method: height, x-width, y-width, SD, density
40–55%, density 55–70%, density 70–85%, density 85–95%,
density 95–100%, point number 0–25%, point number 25–40%,

Fig. 15. Accuracies obtained using different k values.

TABLE II
CONFUSION MATRIX OF k-NN CLASSIFICATION

TABLE III
CONFUSION MATRIX OF RANDOM FOREST CLASSIFICATION

point number 40–55%, point number 85–95%, and point number
95–100%.

C. Classification

As shown in Fig. 15, the method achieved the highest accuracy
when selecting the k values as 2, 3, and 4, respectively.

Table II and Table III show the confusion matrix of the classifi-
cation using the k-NN method and random forest, respectively.
The result shows that around 30% of Roystonea Regia were
classified as Washingtonia Filifera because the two-tree species
share similar geometrical shapes, the light poles can be easily
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TABLE IV
OVERALL ACCURACY AND RMSE FOR DBH ESTIMATION USING

MINIMUM BOUNDING RECTANGLE METHOD

Fig. 16. Linear regression of DBH using all data inputs (cm).

separated from trees, smaller trees such as Bischofia Polycar,
Sylvester palm, triangle palm, and bushes are more difficult to
classify.

D. Estimation of Tree Parameters

Table IV lists the results of the DBH estimation. Due to occlu-
sion in some datasets, 151 of 163 trees surveyed were included in
accuracy assessment. The minimum bounding rectangle method
tends to underestimate the DBH values because the MLS data
used in this study cannot capture more than half of the tree trunks
all the time. The Dataset C received the lowest overall accuracy
(OA) in the tree datasets because the data are noisier than the
other two datasets. The OA of the Dataset C is lower than that
of the Dataset B because the tree trunks in the Dataset C are
not as symmetrical as trunks in the Dataset B. Also, the field
survey data for the Dataset C may be less accurate than that of
the Dataset B for the following three reasons.

1) Some of the trees in the Dataset C have rough bark that
may cause inaccurate perimeter measurements.

2) The ground in the Dataset C is uneven and has very soft
soil on the surface, which may cause inaccurate height
measurements.

3) Some of the trees in the Dataset C start to branch at 1 m
height, which leads to enormous DBH changes around the
trunk slice in the area.

The result of linear regression result of the DBH estimation
is shown in Fig. 16. The R2 is 0.602 and the standard error of
the estimation is 5.0 cm. The linear regression parameters are
shown by

D = 0.734d+ 6.788 (10)

TABLE V
REGRESSION RESULTS USING BOUNDING RECTANGLE METHOD

AND CYLINDER FIT METHOD

Fig. 17. Results of crown diameter estimation.

where d is the derived DBH and D is the regression-adjusted
DBH.

Table V shows the R2 and standard error of estimation for the
three datasets and the result of the cylinder fit for the Dataset C.
For 53 trees in the Dataset C, 9 of the trunk slices failed to fit
the RANSAC cylinder detection method. Ten of the 44 derived
DBH results had a higher error than 2 times RMSE. R2 of the
cylinder fit method is also very small and the standard error is
much higher than that of the bounding rectangle method. The
Dataset C achieved the highest R2 among the three datasets;
however, the standard error of the Dataset A is nearly the same
as the Dataset B.

Fig. 17 shows the result of the crown diameter estimation
of the Dataset B overlaid with the original point clouds. The
proposed method can estimate crown diameter when trees are
connected and deal with missing data. Also, the tree trunks
were successfully located within true trunk boundaries using the
center of the minimum bounding boxes. However, the electrical
poles and road signs caused errors in estimation.

V. CONCLUDING REMARKS

The results of this study show that the MLS can assist urban
roadside tree inventory to achieve higher time efficiency, tree
species classification accuracy, and DBH estimation accuracy,
compared with the ALS. However, there are several unsolved
problems. Since raw MLS data are often very large, the dataset
must be divided into smaller files to be processed. The result of
such processes may lead to objects near the separation line being
divided into parts, which may cause errors in later processes.
The removal of outlier points in the MLS data can be crucial for
ground filters. However, setting a smaller threshold may result in
tree points classified as outliers. Also, clustered outliers can be
difficult to remove using the statistical outlier removal method.
Ground point removal can enhance the segmentation accuracy
and efficiency. However, the removal of the ground point can
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be difficult for the MLS data due to the large data volume. The
voxel-based upward growing algorithm can remove the ground
points with high accuracy and efficiency.

There were four segmentation methods compared in this
study. The Euclidean distance clustering is simple to use but can-
not correctly separate closely connected trees. The Ncut method
obtains the best segmentation result and separates closely con-
nected trees. However, the method needs users to observe the
number of clusters that need to be segmented and requires too
much memory space. The supervoxel-based segmentation can
segment connected trees but it may cause missing points during
the process. To obtain better segmentation results and better
efficiency, the Ncut method can be applied after the Euclidean
distance clustering.

The OA of tree species classification is around 78%, which
is better than using the ALS, but lower than the deep learning
method presented in [19], which was 80%. The waveform trans-
form of horizontal slices attribute in their study seems better
at representing the shape of trees. The classification accuracy
increased after using an RFE feature selection method because
of a large numbers of feature types and the noise in the input data.
Also, the RF classifier achieved better classification accuracy
than the k-NN.

Although the RANSAC cylinder fit method can be more
accurate than the bounding rectangle method, it may not work
for irregular tree trunks. The circle fit method can be used to
represent round crowns, but the 2-D alpha shape method can be
used to estimate tree crowns with different shapes. The overall
accuracy of the DBH estimation using the bounding rectangle
method is around 95%.

The occlusions at the bottom of tree trunks may result in errors
in the height estimation. Thus, future studies may use the ground
height near the trunk to calculate the tree height. The occlusions
at the trunk slices may result in errors in the DBH estimation.
Thus, future studies may cut more than one horizontal slice to
estimate the DBH.

Occlusions can also cause problems for the DBH estima-
tion for conifer trees because the tree trunks are often oc-
cluded by brunches. The extraction of such trunks can be
difficult using only segmentation methods. However, the inten-
sity value may be helpful to separate trunk points from leaf
points. To reduce occlusions, data collection from two directions
or two sides of trees can achieve better data for the DBH
estimation.

The high point density of the MLS data can cause the follow-
ing three problems.

1) The data have to be cut into small pieces that may cut trees
into two parts.

2) Some parts of tree points may be removed when the
threshold cut method is used to remove points that are
far from the trajectory.

3) The processing time for the datasets can be very long.
Uneven point density in the MLS data can also cause problems

for segmentation algorithms based on distances between nearest
points. Thus, the user-defined thresholds may not work for trees
far from the trajectory. Also, trees with a wide crown spread can
be segmented into two parts because the point density varies. For

future studies of the high point density MLS data that have large
trees in the surveyed area, the normalization or subsampling of
the point cloud may be necessary.

Classification accuracy may be improved by a waveform
transform of tree horizontal attributes, adding more features
and samples, or using true color MLS data or multispectral
MLS data. The degree of automation of the proposed method is
damaged by manually setting thresholds for outlier removal and
clustering methods. Some small trees were not detected since
small clusters were discarded during the segmentation process.
Future studies can include classification of small clusters to
extract these small trees.
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