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Abstract: Compact polarimetric synthetic aperture radar (CP SAR), as a new technique or observation
system, has attracted much attention in recent years. Compared with quad-polarization SAR (QP SAR),
CP SAR provides an observation with a wider swath, while, compared with linear dual-polarization
SAR, retains more polarization information in observations. These characteristics make CP SAR
a useful tool in marine environmental applications. Previous studies showed the potential of CP
SAR images for ship detection. However, false alarms, caused by ocean clutter and the lack of
detailed information about ships, largely hinder traditional methods from feature selection for ship
discrimination. In this paper, a segmentation method designed specifically for ship detection from
CP SAR images is proposed. The pixel-wise detection is based on a fully convolutional network
(i.e., U-Net). In particular, three classes (ship, land, and sea) were considered in the classification
scheme. To extract features, a series of down-samplings with several convolutions were employed.
Then, to generate classifications, deep semantic and shallow high-resolution features were used in
up-sampling. Experiments on several CP SAR images simulated from Gaofen-3 QP SAR images
demonstrate the effectiveness of the proposed method. Compared with Faster RCNN (region-based
convolutional neural network), which is considered a popular and effective deep learning network
for object detection, the newly proposed method, with precision and recall greater than 90% and a F1

score of 0.912, performs better at ship detection. Additionally, findings verify the advantages of the
CP configuration compared with single polarization and linear dual-polarization.

Keywords: compact polarimetric SAR; ship detection; fully convolutional network; semantic
segmentation; Gaofen-3

1. Introduction

Due to the all-day, all-weather capabilities of synthetic aperture radar (SAR) systems, SAR
images play an important role in maritime monitoring. Among different polarimetric SAR modes,
the quad-polarization SAR (QP SAR) mode with four channels (HH, HV, VH, and VV, where H and
V denote horizontal and vertical polarization, respectively) captures the richest information of the
observed area [1]. However, compared with the QP SAR mode, the linear dual-polarization SAR mode,
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with lower system complexity, provides a wider swath width [1]. Likewise, the compact polarimetric
SAR (CP SAR) mode, which has attracted much attention, provides a compromise between swath
width and scattering information [2].

The first CP configuration, pi/4 CP mode, was introduced in [3] which transmits a linear
polarization microwave directed at 45◦ and receives signals in both H and V polarizations. Stacy and
Preiss [4] proposed the dual circular polarization (DCP) configuration, which, compared with the pi/4
CP configuration, has the advantage of rotational invariance. DCP transmits and receives circular
polarizations (RR, RL or LR, LL, where R and L denote right and left circular polarization, respectively).
Different from the DCP configuration, the circular transmit-linear receive (CTLR) CP configuration
transmits circular polarization while receiving two linear polarizations (RH and RV or LH and LV) [5].
The CTLR CP configuration, with a unique self-calibrating property, has an architecture simpler than
that of DCP. In addition, CTLR CP has been adopted in the following: Mini-RF aboard NASA’s Lunar
Reconnaissance Orbiter [6], Mini-SAR on India’s lunar Chandrayaan-1 satellite [7], and Canadian
RADARSAT Constellation Mission [8]. Therefore, further investigations in this study are based mainly
on CTLR CP SAR images.

The potential for ship detection from CP SAR images has been explored, mainly through these
three frameworks: Reconstruction, feature extraction, and distribution statistics.

Reconstruction framework. The first framework, initially proposed in [9], was based on QP
SAR scattering covariance matrix reconstruction algorithms, in which an extrapolation between
co-polarization and cross-polarization channels is designed for reconstruction. Based on an empirical
model introduced for maritime applications [10], Souyris’ method [9] was modified in [11] for
application to complex (urban) areas. Additionally, a helical scattering mechanism was designed for
reconstruction [12]. However, these methods, restricted by assumptions about the scattering mechanism
and the relationships between different channels, result in limited reconstruction accuracy [13].

Feature extraction framework. The second framework is based on the features extracted from
the CP SAR scattering matrices. The degree of polarization was used in [14] to discriminate a ship from
the ocean. The dual-pol relative phase was used in [15] for ship detection. To classify the candidate
targets, three m-χ decomposition parameters were employed in [8]. By combining the decomposition
parameters with a transform, a new feature was formed in [13]. Furthermore, to reduce the effect of
ocean clutter, post-processing was applied in [16] to the extracted features.

Distribution statistics framework. The third framework is to directly use the original CP SAR
data without feature extraction. The likelihood ratio test algorithm under the assumption of Gaussian
statistics was used for ships and ocean scattering components in CP SAR data [17]. Similarly, using
this strategy, ship detection and sea ice discrimination were implemented [18,19]. To detect ships and
oil slicks, an extended Bragg scattering model (X-Bragg) based method was proposed in [20]. Recently,
to characterize the statistics of the notch distance of sea clutter, a notch filter was modified to be suitable
for CP SAR data [21]. After that, the CFAR (constant false alarm rate) threshold of ship detection was
mathematically derived [21].

At the same time, to detect ships using traditional SAR configuration (e.g., single polarization,
dual-polarization, and quad-polarization), mainly two algorithms are being explored.

Object-wise method. It is developed in the pattern recognition community via sliding windows
or region proposals [22]. Before deep learning was applied widely in object detection, ship detection
had depended on predefined features (SIFT and HOG) and traditional classifiers (e.g., SVM and
AdaBoost) [22]. Currently, deep learning-based methods dominate object-wise detection. In particular,
the following show great ability in SAR ship detection: Region-based convolutional neural network
(Faster RCNN) [23], you only look once (YOLO) [22], and single shot multiBox detector (SSD) [24].
Due to the strong ability of deep learning methods to extract and classify deep features, using these
methods yields accurate results in ship detection [22–24].

Pixel-wise target discrimination. Another algorithm category is based on pixel-wise target
discrimination, in which the most popular approach is CFAR. For CFAR, a threshold is set to keep the



Remote Sens. 2019, 11, 2171 3 of 15

false alarm rate constant [25,26]. To reduce the impact of SAR ambiguities and sea clutter in complex
sea conditions, a bilateral CFAR algorithm was proposed in [27]. On the average, a detectability rate of
about 71% (about 1% higher than for standard CFAR) was observed. A pixel-based CFAR detector,
Search for Unidentified Maritime Objects (SUMO), automatically detects ships over a wide range
of image types and environmental conditions [28]. More recently, the generalized-likelihood ratio
test (GLRT) method was proposed in [26] to detect ships in real or near-real time. Mostly, sea–land
segmentation is necessary for the pixel-wise algorithm, which also suffers from false alarms caused by
ocean clutter [23]. Meanwhile, the lack of detailed information about ships in SAR images results in
difficulties for object-wise detection methods [23]. In addition, SAR polarimetry provides significant
information for ship detection. Compared against the co-polarized channels (HH or VV), a substantial
improvement is observed when using the cross-polarized channel (HV) [29]. Generally, since it had
been shown that QP SAR provides the best ship detection performance [30], polarimetric properties of
ships have been employed for ship detection [31,32].

Generation of ship labels through pixel-wise detection methods are considered a semantic
segmentation problem. In recent years, deep learning has dominated the field of semantic segmentation.
For example, a fully convolutional network [33] was used for land cover mapping based on remote
sensing images [34]. An architecture with an encoder–decoder in SegNet (a fully convolutional network
for semantic segmentation) was introduced in [35]. Based on the architecture, U-Net was proposed in
for the segmentation of biomedical images [36]. Currently, U-Net is used in crop mapping with SAR
data [37] and road extraction with optical images [38]. It was proved in [37] that small numbers of
training data could drive U-Net and obtain high accuracy in applications.

For ship detection, U-Net architecture is incorporated with CP SAR in the newly proposed method.
Since, in SAR images (8 m in nominal resolution), in-shore ships can be confused with the infrastructure
of harbors, the focus of this study was on off-shore ship detection. The following three classes were
considered in end-to-end ship detection: Ship, land, and sea. The rest of the paper is organized as
follows: The architecture and method proposed are detailed in Section 2. To compare our method
with traditional object-based detection methods using deep learning, experiments and an analysis of
Faster RCNN (which is considered a robust object detector for different image types and complex
backgrounds [39]) are presented in Section 3. Discussions of different polarization SAR mode images
and two measures for modifying the network, in which issues on validation are also highlighted, are
discussed in Section 4. Section 5 concludes the paper.

2. Materials and Methods

2.1. Architecture of U-Net

Figure 1 shows the architecture of U-Net, which is shaped like the letter “U”. The encoder–decoder
framework is adapted to extract features and predict labels, respectively.

Encoder. The encoder follows the original U-Net proposed in [36]. Especially, for CP SAR
images, the input layer is adapted to have two channels (RH and RV). In U-Net, each “floor” (within
a dotted rectangle) consists of two 3 × 3 convolutions, where each convolution is followed by a
batch normalization (batch-norm) and a rectified linear unit (ReLU) operation. For down-sampling
(designated by red arrows), each “floor” in the encoder is followed by a 2 × 2 max pooling operation
with the stride of two. The maximum in the 2 × 2 area is retained during max pooling. After
down-sampling, the number of feature channels is doubled by convolutions. As shown in Table 1,
there are fourteen layers in the encoder, of which, ten layers are convolutional layers, and four layers
are max pooling layers.
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Figure 1. Architecture of the U-Net (example for 512×512 as the size of input data). Each white box
corresponds to a multi-channel feature map. The number of channels is denoted at the top of the box.
The size of feature maps for each layer is denoted on the left of the box. The gray boxes concatenated
with white boxes are the copies of the feature maps from the encoder.

Table 1. Fully convolutional network (U-Net) architecture set for ship detection.

No Type 1 Input 2 Filters Size/Stride Output 2

1 conv 512 × 512 × 2 64 3 × 3/1 512 × 512 × 64
2 conv 512 × 512 × 64 64 3 × 3/1 512 × 512 × 64
3 max 512 × 512 × 64 2 × 2/2 256 × 256 × 64
4 conv 256 × 256 × 64 128 3 × 3/1 256 × 256 × 128
5 conv 256 × 256 × 128 128 3 × 3/1 256 × 256 × 128
6 max 256 × 256 × 128 2 × 2/2 128 × 128 × 128
7 conv 128 × 128 × 128 256 3 × 3/1 128 × 128 × 256
8 conv 128 × 128 × 256 256 3 × 3/1 128 × 128 × 256
9 max 128 × 128 × 256 2 × 2/2 64 × 64 × 256
10 conv 64 × 64 × 256 512 3 × 3/1 64 × 64 × 512
11 conv 64 × 64 × 512 512 3 × 3/1 64 × 64 × 512
12 max 64 × 64 × 512 2 × 2/2 32 × 32 × 512
13 conv 32 × 32 × 512 1024 3 × 3/1 32 × 32 × 1024
14 conv 32 × 32 × 1024 1024 3 × 3/1 32 × 32 × 1024
15 de_conv 32 × 32 × 1024 512 3 × 3/2 64 × 64 × 512
16 concat 64 × 64 × 512 64 × 64 × 1024
17 conv 64 × 64 × 1024 512 3 × 3/1 64 × 64 × 512
18 conv 64 × 64 × 512 512 3 × 3/1 64 × 64 × 512
19 de_conv 64 × 64 × 512 256 3 × 3/2 128 × 128 × 256
20 concat 128 × 128 × 256 128 × 128 × 512
21 conv 128 × 128 × 512 256 3 × 3/1 128 × 128 × 256
22 conv 128 × 128 × 256 256 3 × 3/1 128 × 128 × 256
23 de_conv 128 × 128 × 256 128 3 × 3/2 256 × 256 × 128
24 concat 256 × 256 × 128 256 × 256 × 256
25 conv 256 × 256 × 256 128 3 × 3/1 256 × 256 × 128
26 conv 256 × 256 × 128 128 3 × 3/1 256 × 256 × 128
27 de_conv 256 × 256 × 128 64 3 × 3/2 512 × 512 × 64
28 concat 512 × 512 × 64 512 × 512 × 128
29 conv 512 × 512 × 128 64 3 × 3/1 512 × 512 × 64
30 conv 512 × 512 × 64 64 3 × 3/1 512 × 512 × 64
31 conv 512 × 512 × 64 3 1 × 1/1 512 × 512 × 3

1 Conv denotes convolutional layer, max denotes the max pooling layer, de_conv is the deconvolutional layer, and
concat is concatenation. 2 The size of the input and output is presented as height ×width × channels.
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Decoder. In the decoder, the first step of each “floor” is up-sampling (blue arrows), which doubles
the height and width of the feature maps. In Table 1, for example, the size of the input feature maps in
the 15th layer is 32 × 32, and the output, after up-sampling (designated as de_conv) is 64 × 64. Then, a
concatenation with the copies (gray arrows) of the feature maps from the encoder is used to combine the
deep semantic and shallow high-resolution features. As seen in Table 1, after concatenation (designated
as concat), the channels of the output feature maps are twice the channels of the input. This operation is
important to retain the original CP SAR information after repeated down-samplings and up-samplings.
At the final layer, a 1 × 1 convolution is used to predict the probabilities of pixels. Padding is necessary
in convolutions to ensure the uniform size of the input and output layers. In Figure 1, within the
red rectangles, are the differences between the proposed method and the original network, including
the number of input layers, padding, and up-sampling through deconvolution. Lastly, a pixel-wise
softmax (a function used to normalize the input into a probability distribution) over the final feature
map is computed. In the proposed method, the computational result, combined with the cross-entropy
loss function, becomes the energy function of the U-Net.

In addition, deconvolution was used for up-sampling in the proposed method and also used in
feature visualization and image generation [37,40]. By using a traditional up-sampling method, details
are lost; therefore, a better choice is to learn rescaling during training. Included are the following two
main steps: (1) Insert zeros between the consecutive inputs according to the resolution requirements
and (2) produce a higher resolution output by convolution.

2.2. Data

Launched, as an ocean surveillance satellite, from the Taiyuan space center on 10 August 2016,
the Chinese Gaofen-3 satellite, equipped with a multi-polarized C-band SAR at meter-level resolution,
can operate in twelve different working modes [41,42]. With a design life of eight years [43], Gaofen-3 has
been in operation officially since January 2017 [42]. The Gaofen-3 SAR image, which meets the accuracy
for ship detection [44,45], is competent in numerous applications, such as in monitoring the global
ocean and land resources [46]. Used in the experiments were eight Gaofen-3 QP SAR images, provided
by the China Centre for Resource Satellite Data and Applications (CRESDA, http://www.cresda.com).
Specific information about the images is given in Table 2. These acquired images (all single-look without
multi-look processing) cover different coastal areas where some large ports are located (Figure 2). As in
the previous study [16], after being calibrated through the PIE software (http://www.piesat.com.cn/),
the CTLR mode CP SAR images were generated by Equation (1) as follows [5]:

→

KCTLR =

[
ERH

ERV

]
=

(
1/
√

2
)[ SHH − SHV j

SHV − SVV j

]
(1)

where, Spq are the elements of the scattering matrix with p transmitting and q receiving polarization;
while H denotes the horizontal polarization; V denotes the vertical polarization, and j denotes the
imaginary unit. ERH and ERV are the elements of CP SAR scattering vectors. Under the assumption
of scattering reciprocity, the cross-polarization components in a QP SAR system are equal, that is,
SVH = SHV [9]. The intensity images of ERH and ERV was employed in experiments for ship detection.

http://www.cresda.com
http://www.piesat.com.cn/
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Table 2. The information about the Gaofen-3 images employed in the experiment.

Image
Number Region Nominal

Resolution (m)
Acquisition

Mode
Acquired Time
(yyyy-mm-dd)

Incidence Angle
(NearRange/FarRange) (degree)

Pixel Spacing
(Rng/Az) # (m)

1 Taizhou Area 8 Ascending 2016-12-26 33.6833/35.6152 2.2484/5.1995
2 Taizhou Area 8 Ascending 2016-12-26 33.6830/35.6150 2.2484/5.1994
3 Taizhou Area 8 Ascending 2016-12-26 33.6828/35.6147 2.2484/5.2000
4 Taizhou Area 8 Ascending 2016-12-26 33.6827/35.6144 2.2484/5.1998
5 Taizhou Area 8 Ascending 2016-12-26 33.6836/35.6156 2.2484/5.1997
6 Shanghai Area 8 Ascending 2016-12-31 28.3065/30.6847 2.2484/4.7303
7 Qingdao Area 8 Ascending 2017-10-12 36.7626/38.1709 2.2484/5.2981
8 Haikou Area 8 Descending 2017-09-27 36.7564/38.1533 2.2484/4.7219

# Rng and Az indicate range and azimuth, respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16 

 

 
Figure 2. Spatial distribution of the data, the dots represent corresponding areas covered by the 
images we used. Respectively, the white dot represents the Qingdao area, the yellow dot denotes the 
Shanghai area, the red dots denote the Taizhou area, and the blue dot denotes the Haikou area. 

Table 2. The information about the Gaofen-3 images employed in the experiment. 

Image 
number Region 

Nominal 
resolution  

(m) 

Acquisition 
mode 

Acquired 
time 

(yyyy-mm
-dd) 

Incidence angle 
(NearRange/ 

FarRange) 
 (degree) 

Pixel 
spacing 

(Rng/Az)# 
(m) 

1 
Taizhou 

Area 8 Ascending 2016-12-26 33.6833/ 35.6152 
2.2484/ 
5.1995 

2 Taizhou 
Area 

8 Ascending 2016-12-26 33.6830/ 35.6150 2.2484/ 
5.1994 

3 Taizhou 
Area 8 Ascending 2016-12-26 33.6828/ 35.6147 2.2484/ 

5.2000 

4 
Taizhou 

Area 8 Ascending 2016-12-26 33.6827/ 35.6144 
2.2484/ 
5.1998 

5 Taizhou 
Area 

8 Ascending 2016-12-26 33.6836/ 35.6156 2.2484/ 
5.1997 

6 Shanghai 
Area 8 Ascending 2016-12-31 28.3065/ 30.6847 2.2484/ 

4.7303 

7 
Qingdao 

Area 8 Ascending 2017-10-12 36.7626/ 38.1709 
2.2484/ 
5.2981 

8 Haikou 
Area 

8 Descending 2017-09-27 36.7564/ 38.1533 2.2484/ 
4.7219 

# Rng and Az indicate range and azimuth, respectively. 

2.3. Training  

Images were manually labeled with image editing software. Figure 3 shows a general process 
for ship labeling, through the magnified image (top right) of a specific area (the rectangle area in the 
left CP SAR image) accompanied with automatic identification system (AIS) information (mid right) 
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2.3. Training

Images were manually labeled with image editing software. Figure 3 shows a general process for
ship labeling, through the magnified image (top right) of a specific area (the rectangle area in the left
CP SAR image) accompanied with automatic identification system (AIS) information (mid right) and
labels (bottom right) correspondingly. Ideally, the length, course, and speed of ships from the AIS data
(with latency) can be used to estimate the ships in corresponding SAR images. However, not all ships
on the ocean carry AIS transponders [8]. AIS data, particularly the data for archived images, acquired
synchronously with satellites is difficult to obtain. Therefore, as in previous studies [13,22–24,47–49],
some images used in this study were labeled with experience and expert knowledge through visual
interpretation. Since ship characteristics (including ship superstructure configuration, orientation of a
ship with respect to radar beam, ship size, material from which the ship is made) affect the observation
(e.g., intensity and geometry) in SAR images and the detectability of ships followed by [8]. Generally,
ships appear as pixels with more brightness in intensity of the CP SAR image, compared against
ocean background. Accordingly, a ship was determined firstly, mainly based on the characteristics
(shape and texture) of the bright pixel cluster in the intensity image. The ship labeling was finally
obtained by manually tracing the boundary between the target and background. However, spatial
resolution of image (i.e., 8 m) might limit the credibility of labeled targets, especially for the small
targets. Accordingly, in this investigation all ships were labeled through a collaborative way, with
assumption that a target confirmed by more than two experts was credible for further investigations.
As shown in Figures 3 and 4, land is yellow, ships are white, and the sea is black.
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Adam optimizer was used to optimize the network [51]. The learning rate was set at 1e–4 with
exponential decay. Batch size was set at 16. As shown in Figure 5, after about 70,000 iterations, the
network converged. For Faster RCNN, against which a comparison was conducted to verify the
correctness and effectiveness of the proposed method, an online open source project was used [52].
In particular, a VGG16 [53] model pre-trained on PASCAL VOC 2007 [54] was used to extract features.
The same dataset labeled with LabelImg [55], a widely used annotation tool, was used to fine-tune
the Faster RCNN network. The minimum enclosing rectangle was marked with the tool to generate
labeled information. As shown in Figure 6, the labeled data used by the proposed method is
semantic information. Accordingly, for the Faster RCNN, the labeled information is the bounding box
information (provided in Extensible Markup Language (XML) data, which is an important input for
Faster RCNN). The learning rate was set initially at 1e–6. Batch size was set at 64. After about 30,000
iterations, the network converged.
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2.4. Validation

As was done in several studies in the field of semantic segmentation, in this study, the
mean intersection-over-union (mIoU) was used for pixel-wise evaluation [33–36], according to the
following equations:

mIoU =

∑N
i IoUi

N
(2)

IoU =
area(predicted)∩ area(label)
area(predicted)∪ area(label)

(3)

where area() denotes the computation of the pixel number. In brackets, “predicted” denotes the pixels
predicted as a ship; “label” denotes the pixels of a ship as ground truth; i denotes the indices of the
class; N denotes the total number of classes. The result is better when the mIoU is closer to one.

For object level analysis, four evaluation indices (probability of false detection (Pf) [23,24],
precision [22], recall [22], and F1 score [23]), formulated as the following four equations, were used in
this study:

Probability o f f alse detection
(
P f

)
=

FP
TP + FP

(4)

Precision =
TP

TP + FP
= 1− P f (5)
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Recall =
TP

TP + FN
(6)

F1 score =
2Precision×Recall
Precision + Recall

(7)

where TP means the number of positive targets detected correctly. FP means the number of negative
targets detected as positive targets. FN means the number of undetected positive targets. Generally, a
connected pixel set (in white) was regarded as one target even if only one pixel was detected. This
means that each target was counted as one during the evaluation. For example, we counted TP as one
when a ship was detected correctly. F1 score is the harmonic average of precision and recall, where an
F1 score attains its best value at one (perfect precision and recall) and worst at zero.

3. Results

The proposed method can detect ships accurately over nearshore and far away from the shore
(Figure 7). However, caused by cross sidelobes, a false alarm is generated. As seen in Table 3, compared
with standard CFAR and Faster RCNN, the proposed method is effective for ship detection. For the
implementation of standard CFAR, the cell averaging CFAR [25] was used, and the size of guard
window was set to 40. As in a previous study [27], K-distribution with a PFA of 1e–6 was used in the
application of CFAR, while land mask information was provided by the land segmentation results
obtained by the proposed method. The comparison was based on object level evaluation indices
(Equations (4)–(7)). Observed in the results for the standard CFAR (Table 3) are the highest Pf and the
lowest F1 scores, with a large number of false alarms. Compared with Faster RCNN, the proposed
method, with increases of 6.54% and 8.28% in precision and recall, respectively, shows improved ability
to detect ships with CP SAR images. As a result, a greater F1 score (approximately 0.91) is obtained
with the proposed method. On average, the proposed method, with fewer false alarms and missed
detections, performs better than standard CFAR and Faster RCNN in ship detection.
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Table 3. Detection performance comparison between different methods (using CP SAR images).

Method TP FP FN Pf (%) Precision (%) Recall (%) F1 Score

Standard CFAR 609 307 74 33.52 66.48 89.17 0.762
Faster RCNN 565 95 124 14.39 85.61 82.00 0.838
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As shown in Figure 8, false alarms with the proposed method and Faster RCNN occur mainly
in harbors. Moreover, false alarms caused by cross sidelobes hinder these two methods in detecting
ships. False alarms are associated mainly with the characters on which each method concentrates.
Accordingly, as shown in Figure 9, there is a difference in the false alarms of detected ships between the
two methods. On one hand, the proposed method is sensitive to backscattering distributions; whereas,
Faster RCNN focuses on shape and texture characteristics [23]. On the other hand, the missed targets
of the proposed method all have weak intensity and small size. Likewise, some undetected targets,
with a low confidence score assigned by Faster RCNN, are very near to brighter targets. Accordingly, it
is difficult for Faster RCNN to detect ships in ship-intensive areas.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16 
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Figure 8 shows the results for a ROI sub-image. False alarms (marked by red rectangles) are
mainly distributed over the harbor area and the area with heavy cross sidelobes. Generally, compared
with the results from Faster RCNN, fewer false alarms, and missed targets were generated by our
proposed method. As mentioned above, lack of detailed information in a SAR image is a challenge
for ship detection by an object-wise detector. Meanwhile, similar to CFAR and GLRT, the proposed
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method concentrates on neighbor information distribution, which, accordingly, shows a lower Pf for
ship detection (see Table 3). However, in-shore ships are usually confused with the infrastructure of
the harbors. In SAR images, even through manual interpretation, it is difficult to discriminate between
in-shore ships and the infrastructure of the harbor.

4. Discussion

4.1. Comparison among Different Polarization Modes

As mentioned in Section 1, compared with the linear dual-polarization configuration, the CP
SAR configuration potentially provides more information. In terms of ship detection ability, three
combination modes of polarization channels (from one QP SAR data) were compared. The comparison
of the detection results in ROI sub-images between different combination modes is shown in Figure 10.
Due to the orientation of ship to radar beams, the ability of the single polarization mode (i.e., using
HH) in ship detection and land segmentation is much lower compared with the other two modes.
Furthermore, using the linear dual-polarization mode resulted in two false alarms and ten missed
targets; whereas, using the CP mode resulted in two false alarms and six missed targets. As shown in
Table 4, in terms of F1 scores, the CP SAR configuration shows the best performance for ship detection.
Due to a relatively small number of suspect targets detected from single polarization mode images, a
lower Pf, and a much lower recall, are observed. According to the experimental results (Table 4 and
Figure 10), compared with the single polarization and linear dual-polarization configurations, the CP
SAR configuration is better at detecting ships.
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Table 4. Comparison between different combination modes of polarization channels in the
proposed method.

Combination Modes Channels Pf (%) Precision (%) Recall (%) F1 score mIoU

Single polarization HH 6.86 93.14 49.87 0.650 0.601
Linear dual-polarization HH+HV 8.22 91.88 81.37 0.863 0.734

Compact polarization RH+RV 7.85 92.15 90.28 0.912 0.817

4.2. Comparison among Different Networks based on U-Net

Mainly two measures are used to test the possibility for improving the performance of the proposed
method. One is to design deeper feature extraction using res-block (residual block of ResNet, which
retains shallow information by a connection from the first to the last layers of a block layer). It has been
proven that the res-block can take equal or higher feature expression ability [56]. Another is to expand
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the receptive field by replacing the traditional convolutional kernel with the dilated convolutional
kernel [57]. The main idea of dilated convolution is to insert “holes” (zeros) between pixels in
convolutional kernels to increase the resolution of intermediate feature maps [57]. The detection
results obtained by three methods are listed in Table 5. Findings show that the U-Net with dilated
convolutional kernel is ineffective at detecting ships in CP SAR images. Minor improvement occurred
in the detection ability of U-Net with res-block. However, it should be considered that, the deeper
the network, the higher the computational complexity and the larger the resource consumption [56].
Accordingly, the proposed method, with ten layers, is more suitable for ship detection.

Table 5. Comparison between different methods based on the U-Net.

Methods Pf (%) Precision (%) Recall (%) F1 Score mIoU

Proposed (10 layers) 7.85 92.15 90.28 0.912 0.817
U-Net+Res-Block (32 layers) 7.63 92.37 91.36 0.919 0.826

U-Net+Dilated Convolutional Kernel 12.11 87.89 89.21 0.885 0.802

4.3. Validation

It has been suggested that a ground truth collection with plentiful samples is required for validation.
In terms of AIS data, which are widely used to validate ship detection, the best choice is that the
acquisition of SAR images and AIS data is synchronous. In most cases, AIS-SAR latency within several
minutes is permissible [58–61]. The time difference allowed between the two observations depends
on the ship density [61]. To project the targets from AIS data (with latency) to corresponding SAR
images, mainly two methods are employed. One is to use dead reckoning to estimate the location of
ships, based on the speed of a ship and course information [60,61]. Another is to use the correlation
of the size of the ships between SAR images and AIS data [58]. Moreover, when it is difficult to
obtain validation data, the only way to obtain labeled targets is based on experience and expert
knowledge [13,22–24,47–49]. Although AIS information was used to verify the labeled dataset over
several sub-areas, it is unfortunate that not all labeled ships in this study were supported by AIS data.
It is a fact that not all ships on the ocean carry AIS transponders [8]. Likewise, especially for archived
earth observations, AIS data simultaneously acquired during the overpass of a satellite is difficult to
obtain. Therefore, as in previous studies [13,22–24,47–49], some images used in this study were labeled
with experience and expert knowledge via collaboration. We assumed that a target confirmed by
more than two experts was credible for further investigations. Nevertheless, to improve the ability of
algorithms to discriminate confusing targets and detect small targets, a high-quality SAR ship dataset
is required.

5. Conclusions

Compared with the quad-polarization SAR imaging mode, CP SAR provides a larger swath
width. Likewise, compared with the linear dual-polarization SAR imaging mode, more information is
available from an observed scene of CP SAR. We proposed a CP SAR ship detection method based
on U-Net. Several CP SAR images, simulated from Gaofen-3 QP SAR images, were employed in the
experiments. Experimental results verify the advantages of the CP configuration compared with single
polarization and linear dual-polarization. Compared against the standard CFAR and Faster RCNN,
our proposed method is more effective in detecting ships and especially more effective in reducing the
impact of ocean clutter and SAR ambiguities. Additionally, in our proposed method, a deeper encoder
contributes somewhat to the improvement in ship detection. Accordingly, worth considering is the
trade-off between accuracy and resource consumption. Experimental results show that, while targets
over harbors are confused with manmade infrastructures, ships with weak signals are likely not to
be detected positively. It is necessary to have a standard dataset, in which accurate labels of small
targets and artificial facilities (including harbor infrastructures and oil rigs) covering different ocean
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backgrounds are contained. Since it will be helpful to train algorithms to learn differences among
confusing targets, further investigation in this area will be considered.
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