
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Mapping and Semantic Modeling of Underground
Parking Lots Using a Backpack LiDAR System

Zheng Gong, Jonathan Li , Senior Member, IEEE, Zhipeng Luo, Chenglu Wen , Senior Member, IEEE,

Cheng Wang , Senior Member, IEEE, and John Zelek, Member, IEEE

Abstract— Presented in this paper is a novel method for the
mapping and semantic modeling of an underground parking
lot using 3D point clouds collected by a low-cost Backpack
Laser Scanning (BLS) or LiDAR system. Our method consists
of two parts: a Simultaneous Localization and Mapping (SLAM)
algorithm based on Sparse Point Clouds (SPC) and a semantic
modeling algorithm based on a modified PointNet model. The
main contributions of this paper are as follows: (1) a probability
frontend framework for the alignment of point clouds using the
local point cloud surface variance as the weight of registration,
which modifies registration failure caused by the lack of features
in sparse point clouds, (2) a robust submap-based strategy for
loop closure detection and back-end optimization under sparse
point clouds, and (3) a modified PointNet model for classifying the
point clouds of underground parking lots into four categories:
ceiling, floor, wall, others. Experimental results show that our
SPC-SLAM algorithm achieves centimeter-level accuracy (0.09%
trajectory error rate) after closed loop processing in a Global
Navigation Satellite System (GNSS)-denied underground parking
lot, and precision of 84.8% in semantic segmentation.

Index Terms— Backpack LiDAR, point cloud, SLAM, under-
ground parking lots, semantic modeling.

I. INTRODUCTION

PRECISE geolocation of individuals and vehicles has
revolutionized commercial logistics and personal travel.

Such applications have in common that they are predominantly
carried out in open line-of-sight environments that can access
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Global Navigation Satellite System (GNSS) signals [1]. How-
ever, GNSS may be blocked in urban canyons and indoor
or underground facilities. With increasing urbanization and
rapid development of autonomous driving technology, it is
essential to be able to determine locations accurately in these
GNSS-denied environments. How to rapidly and accurately
locate individuals and vehicles in a huge GNSS-denied under-
ground parking lot is one of the most challenging research
topics. In particular, accurate navigation of the rapidly devel-
oping autonomous cars in an underground parking lot relies,
not only on multiple sensors mounted on the cars, but also
on a High-Definition map (HD map) that includes semantic
information of the underground parking lot [2], [3].

However, in challenging environments such as indoor,
underground, or urban scenarios, the performance of GNSS
receivers is jeopardized. One of the current solutions to this
problem is to use the LiDAR-based Simultaneous Localization
and Mapping (SLAM) algorithm [4], which provides for
accurate mapping in some complex environments where GNSS
signals become unavailable.

SLAM. SLAM technology was first developed for robotics.
Feature-based SLAM uses corners, shapes or contrasts to cal-
culate the position of the sensor. However, this approach falls
short in areas, such as tunnels or caves that lack characteristics
and objects to locate. By minimizing the difference from
frame to frame, measurement-based SLAM uses all points
acquired by LiDAR and determines the best position of the
sensor. The advantage of this approach is the ability to scan
any type of environment. In addition, it is easier to merge
this approach with other approaches, such as integrating the
Inertial Measurement Unit (IMU) and ground control points
to achieve higher accuracy in areas unsuited to SLAM. The
main advantage of SLAM for 3D mapping applications is
that scanning can be undertaken while in motion with no
GNSS signal access. This provides rapid and accurate 3D
data acquisition in complex environments, and is particularly
effective for indoor mapping where it is impossible to use
current GNSS-based mobile mapping solutions. SLAM may
very well be the Holy Grail that has eluded indoor mapping
applications.

Laser scanning systems. Laser scanning systems have expe-
rienced a major evolution in the past decades. After the initial
breakthrough of Airborne Laser Scanning (ALS) systems
[5], [6], other types of laser scanning systems, most notably
Terrestrial Laser Scanning (TLS) [7] and Mobile Laser
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Scanning (MLS) [7] systems emerged. While these three
main types of laser scanning systems serve a large number
of applications, none can be optimized for fast and flexi-
ble scanning in challenging locations. Filling this void are
backpack LiDAR systems, which are now evolving towards
providing for compact, agile and flexible solutions to map
complex environments, in particular, those difficult urban,
indoor, and underground environments where GNSS signals
are inaccessible [8], [9]. Typically, a backpack LiDAR system
comprises a ranging and imaging unit consisting of laser scan-
ner(s) and/or digital cameras, a positioning and navigation unit
for georeferencing and a time referencing unit. Accordingly,
backpack LiDAR is defined as a technology for capturing point
cloud and image data using ranging and imaging sensors that
are attached to a moving person [10].

Semantic Segmentation. As a fundamental and challenging
task in 3D point cloud understanding, semantic segmentation
aims to label every point in a 3D scene. However, because
of the properties of point clouds, in practice, semantic seg-
mentation faces many challenges. For example, the points are
from a space with a distance metric, meaning that there is rich
local structure information among the points, which makes the
relationship between points implicit and difficult to be mined.
Besides, the sparseness of point clouds renders most of the
methods inefficient.

In this paper, point clouds collected by a backpack lasers
scanning (PLS) system with two Velodyne VLP-16 laser scan-
ners [11] (see Fig. 1) were used to map a GNSS-denied under-
ground parking lot. A front-to-back framework was presented
for indoor localization and mapping. The modified PointNet
model [12] was applied to semantic segmentation of the BLS
point clouds to obtain four types of objects including ground,
wall, ceiling, and others. These four categories of semantic
information can be used to support navigation and automated
parking of a car in such a GNSS-denied underground parking
lot.

The main contributions of our work are as follows:
First, for the geometric characteristics of the indoor structure

or underground parking lots, a probabilistic registration algo-
rithm was developed to register the automatically calibrated
BLS point clouds from the two VLP-16 laser scanners to
improve localization and modeling accuracy. Furthermore,
a back-end loop closure detection and optimization algo-
rithm was developed based on the geometric-rigidity-constant
assumption between sub-maps to improve the robustness and
accuracy of the loop closure detection for raw sparse BLS
point clouds.

Second, to guide the training of PointNet, we modified
PointNet [12] with a prior module that preserves the previous
global structural information of the 3D shape. Through this
operation, we determined the coarse shape of an object by
its global shape and obtained the object, itself, using certain
detailed characteristics. It must be pointed out that, because
the prior module is an individual module, the prior module
can be inserted into other frameworks.

The rest of the paper is structured as follows: Section II
reviews the related work. Section III describes the architec-
ture of our backpack LiDAR system and its calibration, and

Fig. 1. Pipeline of semantic modeling of underground parking lots:
SPC-SLAM algorithm for generating HD maps, PSIF model for semantic
segmentation and modeling.

then details the 3D SLAM method and semantic modeling
approach. Section IV presents and discusses the experimental
results. Section V concludes the paper.

II. RELATED WORK

The first backpack LiDAR prototype was developed
in 2010 at the Video and Image Processing Lab, Univer-
sity of California, Berkeley. Their backpack was equipped
with five Laser Range Finders (LRFs), one IMU, and two
fish-eye cameras [13]. The “Akhka backpack LiDAR system
developed in 2013 at the Centre of Excellence in Laser
Scanning Research with the National Land Survey of Finland
was equipped with a FARO Photon-120 laser scanner and
integrated with a GNSS-IMU navigation system and a data
recording laptop computer [14]. Researchers at the University
of Wurzburg, Germany, presented a backpack LiDAR sys-
tem, featuring with a SICK LMS 100 laser scanner and a
high-end Riegl VZ-400 3D laser scanner [15], which used a
6-DOF-SLAM algorithm to build 3D maps. Researchers at the
Swedish University of Agricultural Sciences developed and
applied a backpack equipped with a VLP-16, a positioning
system, and a computer for system control and logging data
for forest inventory [16]. This backpack relies on a commercial
stereo vision solution for locations in GNSS-denied environ-
ments. Glennie et al. [17], using GPS/GNSS and IMU for
accurate pose estimation, developed a LiDAR system equipped
with Velodyne HDL-32. Also, for 3D mapping, Wen et al.
[18] used a LiDAR backpack with a 2D laser scanner, which,
using an extended Kalman filter (EKF)-based method, fused
data from three 2D laser scanners and an inertial sensor for
6-DOF pose tracking. Filgueira et al. [19] Lagüela et al. [20]
used a LiDAR backpack equipped with a 3D laser scanner,
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Fig. 2. Block diagram of our localization method: (1) point cloud acquisition and system calibration using an online algorithm, (2) input of calibrated data
into our front-end module, (3) generation of a 6-DOF pose and detection of loop-closure and global optimization of the trajectory using a submap-based
back-end optimizer, and (3) generation of a global uniform point cloud map.

Fig. 3. Flowchart of our semantic modeling algorithm: (1) estimating walking trajectory and reconstructing a 3D map, (2) splitting the 3D map into
64x64 blocks, (3) inputting blocks into PointNet for training and semantic segmentation, and (4) merging the output into a semantic map.

which, using an ICP-based [21] method, fused data from an
inertial sensor for 3D mapping.

In terms of SLAM approach, Bailey et al. [22] pro-
posed an EKF-based SLAM. Zhang and Singh [23] devel-
oped a feature-based front-end odometry approach, which
is a state-of-the-art LiDAR-based mapping algorithm in the
KITTI benchmark [24]. In recent years, with the advent
of high-performance 3D sensors [25], [26], advanced algo-
rithms and applications have been proposed for different
sensors, including RGBD-SLAM [27], LiDAR-based SLAM
[28]–[30], etc. For the application of parking lots, [31]
proposed an approach to autonomous automotive navigation
in large-scale parking garages with potentially multiple lev-
els. Han et al. [32] proposed a parameterized map-building
approach, which enables the high-precision navigation and
memory efficient map representation of an underground park-
ing scene. However, these works did not perform preci-
sion analysis and semantic information extraction for smart
parking.

In terms of the semantic segmentation of 3D point cloud
data, Munoz et al. [33] used a functional gradient algorithm
to learn Associative Markov Network (AMNs) models [34] for
3D point cloud semantic segmentation. Traditionally, the hand-
crafted descriptors are designed to obtain features. Then, those
features are fed to classifiers, e.g. Support Vector Machines
(SVMs), to label each point. Typical methods include Spin
Image [35], SHOT [36] and RoPS [37]. Although acceptable
results are achieved in traditional works, the descriptiveness
in existing methods is still far from satisfactory. The main
issue lies in insufficiently describing 3D data using statistical
information. Each of these methods catches only a portion

of the geometric characteristics. However, a 3D shape is
comprised of complex topological structures and visible vari-
ational geometry. Recently, with the development of Deep
Neural Network (DNN), various DNN-based methods, such
as VoxelNet [38], OC-Net [39], MV-CNN [40], and PointNet
[12], have been employed to deal with this problem. For some
datasets, the above DNN-based methods have shown progres-
sive improvement in descriptiveness. However, some important
priori knowledge, such as significant global structural informa-
tion, is rarely considered in these methods. Furthermore, due
to the property of back propagation in DNN, the challenge
remains to process the 3D point clouds efficiently. Hence,
to improve the efficiency and accuracy of DL-based methods,
we pursued the possibility of adding the prior information
hidden in the 3D point clouds.

III. METHOD

A. Sensor Calibration

A block diagram of the hardware of our device is dis-
played in Fig. 2. The LiDAR backpack contains two 16-beam
3D laser scanners (Fig. 4(a)). Each laser scanner consists
of 16 individual laser detector pairs over a 30◦(−15◦to +
15◦) field of view (Fig. 4(b)). One laser scanner is placed
horizontally to acquire the point cloud, PLaser A; The other
laser scanner is mounted at 45◦ below the horizontal one to
acquire the point cloud, PLaer B . This layout, ensuring full
coverage of the 3D space, provides a stable data source for
robust pose estimation and greater map detail. Multi-sensor
systems require data calibration; whereas, traditional manual
calibration, which is time-consuming and has low accuracy
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Fig. 4. (a) Coordinates of laser scanners A and B. (b) Coordinates of a data
point. (c) LiDAR data before calibration. (d) LiDAR data after calibration.

and stability, basically relies on specially-designed targets.
Therefore, we used target-free automatic calibration technol-
ogy [41], which, to achieve automatic calibration, relies on
an isomorphism constraint model of the environment. Based
on the assumption that data and LaserA’s trajectories T n

A are
synchronized, we transformed the point cloud of laser scanner
B (Pn

B ) to its location at time, n, in the submap, M , using
T n

A and Tguess . Here, Tguess is the initial value of calibration
matrix estimated by a coarse manual measurement. Then,
we used the nearest neighbor search algorithm (Expressed
in Eq. (1) by function N N) to find the nearest neighbor
point, Pn

A , on the sub map. Finally, we used the environmental
consistency constraint to deduce Eq. (1) and obtain T n

cali .

Pn
A = N N(M, T n

A , Pn
B , Tguess),

Tcali = arg min
Tcali

∑
i=0

‖Pn
B ∗ Tcali − Pn

A‖ (1)

Then, we used Eq. (2) to merge the scanners to acquire
the global point cloud PGlobal , where Tcali is a transform
matrix calculated between the two laser scanners by Eq. (1).
Fig. 4(c), 4(d) shows the data before/after automatic calibra-
tion.

Pglobal = PLaser A + Tcali ∗ PLaser B (2)

B. 6-DOF Pose Estimation

Once the calibrated point clouds are obtained from the
dual laser scanners, they are combined into a 6-DOF pose
estimation algorithm for system pose tracking and the incre-
mental building of submaps (Fig. 2(2)). Zhang and Singh [23]
used selected feature points to determine a transformation
matrix between point cloud frames. When the geometric
features are deficient, the stability of the algorithm is eas-
ily affected. Inspired by the Generalized-ICP (g-ICP) [42]
algorithm, to achieve a more accurate and robust estimation,
we introduced a probability framework (Eq. (4)) to the point
cloud alignment by using the local point cloud surface variance
as the weight of registration, which modifies the registration
failure caused by the lack of features in the sparse point clouds.
Then we used this alignment twice to calculate a 6-DOF
pose, that is, frame to frame alignment step and frame to
submap alignment step, based on this probability framework
and oc-tree based approximate nearest neighbors search. The

detailed description of the algorithm is as follows:
f 0
i = Ti−1 · fi (3)

�Ti = arg min
�Ti

n∑
j=1

d j
(�Ti )

T
(C

f 0
i

j +�Ti C
f 0
i−1

j �TT
i )
−1d(�Ti )

j

(4)[
f 0
i

Ti
′
]
= �Ti ·

[
f 0
i

Ti−1

]
(5)

Step 1, Frame-to-Frame Alignment. In this frame-to-frame
alignment (Eq. (3), Eq. (4), and Eq. (5) below), we use the data
of the two adjacent frames, fi , fi−1, from the two calibrated
laser scanners to align the point clouds and use the resultant
transform matrix, Ti

′, as a rough estimate of odometry. First,
the current frame, fi , is aligned with the global coordinate
system, f 0

i , within the previous global transform matrix Ti−1.
Here d j is the distance between two transformed frames.

Second, g-ICP, a robust algorithm for sparse point cloud
data registration is used to pair align f 0

i with the previous
frame, f 0

i−1, and obtain the transform matrix, �Ti , to align
the current frame, f 0

i , with the global coordinate system and

update the temp global transform matrix, Ti
′. C

f 0
i

j and C
f 0
i−1

j
are covariance matrices associated with the measured point
clouds, fi and fi−1, according to the probabilistic model of the
g-ICP. Here, to calculate the variance of every point, we use
the nearest thirty points as the local neighborhood.

�Ti
′ = arg min

�Ti
′

n∑
j=1

d j
(�T′i )T (C

f 0
i

j +�T′i Cs
j�T′Ti )−1d

(�T′i )
j

(6)[
f 0
i

Ti

]
= �Ti

′ ·
[

f 0
i

Ti
′
]

(7)

f 0
i−1 = f 0

i ,M ′i = M ′i−1 + f 0
i ,

where i ∈ 0 − m (8)

Step 2, Frame-to-Map Alignment. To reduce cumulative
error and more accurately estimate attitude, we use the
re-match strategy (Step 2). As shown in Eqs. (6), (7) and (8),
on the basis of Step 1, we use the FLANN Search Algo-
rithm [43] to retrieve the nearest neighbor, s, of f 0

i in submap,
M ′n . M ′n is defined in Eq. (8), and m is the size of the submap.

Second, we re-use g-ICP to pair align f 0
i with the nearest

neighbor, s, and obtain the transform matrix, �Ti
′, to fine

tune the current frame, f 0
i , to the global coordinate system

and update the final global transform matrix, Ti . C
f 0
i

j and Cs
j

are covariance matrices associated with the measured point
clouds, fi , and the nearest point cloud in submap, s, according
to the probabilistic model of the g-ICP. The flow diagram of
the front-end algorithm is described by Algorithm 1.

C. Loop Closure Detection and Global Optimization

Because of algorithmic error and data noise, the registration
error of 3D mapping accumulates when the system traverses
a long distance, which causes the global map to be
staggered on the loop at point of closure (Fig. 7(a)).
To minimize the cumulative error and generate a globally
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Algorithm 1 (Ti ,M ′i )=PoseEstimation( fn): Caculate
Global Transform Ti and M ′i from n Dual LiDAR Cali-
breated Frame fn

Input: LiDAR data frame fi

Output: Ti : [T1, T2, . . . , Tn], submap : Mi

for i = 0; i ≤ n; i �= s do
// STEP.1: Frame to Frame match ;
f 0
i = Ti−1 · fi ;
�Ti = Generali zed IC P( f 0

i , f 0
i−1);

f 0
i = applyTrans f orm( f 0

i ,�Ti );
// STEP.2: Frame to Map match ;
if i == 0 then

Push(Submap, f 0
i ) ;

else
fneighbor = AN N(Supmap, f 0

i )
�Ti

′ = Generali zed IC P( f 0
i , fneighbor );

f 0
i = ApplyTrans f orm( f 0

i ,�Ti
′);

Ti = Ti
′ · Globali−1;

M ′i = M ′i−1 + f 0
i ;

f 0
i−1 = f 0

i ;
M ′i−1 = M ′i ;

return (Tn,M ′n);

Fig. 5. Structure of pose graph.

consistent map, fusing local submaps into a single
geometrically consistent 3D global map must be considered.
How to create a closed loop path and submap is described
in Fig. 5. Once submaps are created and the loop
closure is detected, using the submap-based back-end
optimization algorithm based on g2o [44], the submaps
are combined into a single geometrically consistent
3D map.

As seen in Eq. (9), V represents the six vector parameters
[(φi , θi , ψi ), (xi , yi , zi )] of the graph vertex. Eq. (10) defines
the general optimization equation for Posegraph [44], where
zi, j represents the mesured value between i, j , and � rep-
resents the error weight matrix; e(Vi , Vj , zi, j ) is an error
function that calculates the similarity between (Vi , Vj ) and
Zi, j . According to Kummerle et al. [44], the error function
is defined as Eq. (11), where the function t2v represents the
transformation of the pose matrix into a vector.

Vi = [Ri , Ti ] = [(φi , θi , ψi )
T , (xi , yi , zi )

T ]T
(9)

Algorithm 2 (Flag, Hicp)=LoopClosureDetecter(Tn, δ, e):
Detect the Loop Closure from Tn Using the Control
Parameters δ, e, and calculate submap’s transform Hicp.

Input: Tn, δ, e (Here δ = 0.5, e = 0.02)
Output: Hicp, Flag
Flag=0;
for i = 0; i ≤ n; i �= s do

while FindClosePostation(Ti, δ) == true do
re f er T ra j.Push(Ti)

if re f er Tra j.si ze > 0 and alignTra j.si ze > 0 then
M A

sub ← Build Map(ref er Tra j ) ;
M B

sub ← Build Map(alignTra j ) ;
for i ← 0 to M A

sub.Si ze do
(M N

sub ← K N N (M A
sub,M B

sub) ;

(Hicp, erricp) ← Align (M N
sub,M A

sub) if erricp < e
then

Flag=1;

return (Flag, Hicp);

F(V ) =
∑
〈i, j 〉∈C

e(Vi , Vj , zi, j )
T�i, j e(Vi , Vj , zi, j ),

V ∗ = arg min F(V ) (10)

e(Vi , Vj , zi, j ) = t2v(Z−1
i, j , (V

−1
i , Vj )) (11)

In multi-beam laser scanner SLAM applications, because
of the sparsity of sensor data, it is difficult to ensure the
correctness and robustness of loop closure detection in single
frame data. To solve this problem, we propose a closed loop
detection based on local sub map and pose graph construc-
tion. Submaps and their corresponding trajectories are rigid
constraints. Based on this assumption, we match submaps
on a point of loop closure and obtain a transform matrix
as a new measurement, which provides a new constraint for
global optimization (See Fig. 5). The main idea to avoid
closed loop calculation errors caused by single sparse point
clouds encompasses the rigid transformation properties of the
trajectory: �TSub0,Sub1 = �TVi ,Vi−t . The specific steps are as
follows:

First, the sub map, M ′n , and the corresponding trajectory,
Tn , are obtained from the 6-DOF pose estimation. Then,
the distance between poses is used as the starting condition
for loop closure detection. In other words, once the distance
between a current and a past pose is detected as being less than
the set threshold, δ, the closest point sets, Tc, are extracted and
closed loop detection (Algorithm 2) is begun.

Second, the score of the submap registration is used as the
basis for successive loop closure detection. The derivation of
this process is giving by Eq. (12). Once the closed loop is
detected, these two sub-maps, M A

sub, M B
sub , are aligned, and the

new transform, Hicp, is added and combined with the current
posture, Vj , as the new measurement, V ′j . The new edge, zi, j ,
is caculated with loop closure point, Vi , and added it to the
pose graph. Finally, using Eq. (12), the global consistency
trajectory is calculated and used to reconstruct a high accuracy
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Fig. 6. Flowchart of semantic modeling algorithm (1) prior information
extraction module, (2) global information mining module, and (3) feature
fusion module.

global map.

zi,i+1 = V−1
i · Vi+1,

zi, j = �TVi ,Vj = V−1
i · Vj

′, while

Vj
′ = Hicp · Vj ⇒ zi, j = V−1

i · Hicp · Vj (12)

D. Semantic Modeling for Underground Parking Lots

Considering its excellent results with indoor scene segmen-
tation, we adopt the PointNet scheme as our basic module (See
Fig. 6). PointNet takes the indoor 3D point clouds as input, and
labels every point. However, likes other DNN-based method,
PointNet seldom takes the prior information into account.
Therefore, considering there is much prior geometric structure
information in an underground garage, to guide the training
of PointNet, we proposed an extra prior module, Priori Prior
Structure Information Filter (PSIF), which preserves the prior
global shape information of 3D shapes.

By utilizing the PSIF module and the basic PointNet
module, we propose our model, Prior-based PointNet Model
(PPM). As shown in Fig. 6, PPM consists of three key
parts: prior information extraction module, global information
mining module, and feature fusion module. The prior module
provides the rich prior 3D shape information. So it can be
considered as a guide to speed up the training. Furthermore,
the prior module can provide more supplementary information
to improve the performance of the model. Besides, the struc-
ture of the global feature extraction module is based on the
PointNet, which has been proved powerful in describing the
global 3D shape. Additionally, feature fusion module merges
the global feature and prior feature to obtain the final fusion
feature by operating an element-wise multiply.

The preliminary inference of geometric structure plays an
important role in the processing of 3D point cloud data. For
example, rough geometry structure can depict the outline of a
3D shape, thus preliminarily confirming the classification of

the 3D object. Because a 3D point cloud is comprised of a set
of points, its geometric structure consists of the relationship
between points. Therefore, the shape of a 3D point cloud
depends on the connection between points. The relationship
between points and some of the results obtained are reported
in [45], [46]. The most typical result is the dimension feature,
that is, the relationship between the properties of the point set
and the geometry of the 3D point cloud.

Dimensionality features. For a given point set P =
{p1, p2, . . . , pn}, where n denotes the number of points,
a Principal Components Analysis (PCA) is performed on the
point set P to obtain three eigenvalues (λ1, λ2, λ3), such as
λ1 ≥ λ2 ≥ λ3 ≥ 0, and three eigenvectors (−→v1 ,

−→v2 ,
−→v3 ). Then

the standard deviation σi along an eigenvector i is denoted as
follows:

∀i ∈ [1, 3], σi =
√
λi (13)

The 3D shape of the point clouds is then represented by an
oriented ellipsoid. Three geometrical features are introduced
in order to describe the linear (a1D), planar (a2D) or scatter
(a3D) behaviors [45] as follows:

a1D = σ1 − σ2

σ1
, a2D = σ2 − σ3

σ1
, a3D = σ3

σ1
(14)

According to the relationship between the distribution of
points and the three eigenvalues [45], if σ1 ≥ σ2 and σ3, a1D

is therefore larger than a2D and a3D, and a linear structure is
represented by point set P . If σ1 � σ2 ≥ σ3, a2D is the largest
one, and a planar structure is represented by point set P .
Finally, σ1 � σ2 � σ3 means that a3D is larger than a1D

and a2D , and a scatter structure is represented by the point
set P .

Apart from the above dimensionality features, we also
introduce the omnivariance feature O, which is also derived
from the standard deviation as follows:

O =
∏

i∈[1,3]
σi (15)

The omni-variance feature, O, proportional to the ellipsoid
volume, allows for characterizing the shape of the neigh-
borhood, and, in particular, enhancing whether one or two
eigenvalues are prominent.

Priori Module: Priori Structure Information Filter (PSIF).
For a given point set P = {p1, p2, . . . , pn}, combined with
the above three dimensionality features and the omnivariance
feature, we define the priori module as a filter, which is
actually a priori structure probability score vector S p ={

S p
1 , S p

2 , . . . , S p
m
}
, where m is is the number of categories,

and S p
i is the priori structure probability score of categories i .

The assumption is that, for 3D point clouds belonging to
the same class, the distribution of probability scores follows a
normal distribution. This assumption is in line with the actual
situation. Then, the vector, S p is computed by a transformation
F , as follows:

F(a1D, a2D, a3D, O) = S p = {
S p

1 , S p
2 , . . . , S p

m
}
, (16)
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Fig. 7. Comparison of mapping results obtained using (a) LOAM algorithm,
(b) our SPC-SLAM algorithm before optimization, and (c) our SPC-SLAM
algorithm after optimization.

where

S p
i = 1+ f D

i (xi )+ f O
i (O)

= 1+
ex p(− (xi−μD

i )
2

2(δD
i )

2 )

δD
i

√
2π

+
ex p(− (O−μO

i )
2

2(δO
i )

2 )

δO
i

√
2π

(17)

where xi ∈ (a1D, a2D, a3D), and μD
i , μ

O
i , δ

D , δO are para-
meters that to be estimated. It must be pointed out that xi is
determined by the priori knowledge of the i th category. For
example, because the structure of a wall is represented by a
planner structure, x = a2D.

After obtaining the priori structure probability score vector
Sp , we explicitly insert it into the results, SPoint Net , generated
by PointNet. In this paper, we apply element-wise multiplica-
tion to Sp and SPoint Net , to obtain the following final score
vector, S f inal :

S f inal = SPoint Net · Sp (18)

IV. EXPERIMENTAL RESULTS

To quantitatively evaluate the accuracy and correctness of
the proposed method on indoor mapping, two measurements,
including (1) point cloud quality evaluation, (2) trajectory
error analysis, were given. While for semantic segmention,
we using (3) accuracy and (4) Intersection-Over-Union (IoU)

Fig. 8. Comparison of trajectory results obtained using (a) LOAM algorithm,
(b) our SPC-SLAM algorithm before optimization, and (c) our SPC-SLAM
algorithm after optimization.

TABLE I

DATA SET ACQUIRED BY OUR BACKPACK AND ITS PROPERTIES

for evaluation. We will deatils the definition of each evaluation
method and the experimental results below.

A. Experimental Setup

In the first experiment, our backpack was used to collect
the point clouds of an indoor corridor inside a multi-storey
building and over three underground parking lot scenes. The
properties of all data set are shown in Table I. For the sake
of the backend closed-loop requirement, we walked in the
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Fig. 9. Comparison of mapping results in data ParkingLot#1 obtained using (a) LOAM algorithm and (b) our SPC-SLAM algorithm after optimization.
(c) and (d) are other two data (ParkingLot#2, ParkingLot#3) generated by our method (yellow line: walking trajectory).

Fig. 10. Point cloud quality evaluation and comparison: mapping results
obtained using (a) LOAM algorithm, (b) our SPC-SLAM algorithm before
optimization, (c) our SPC-SLAM algorithm after optimization, and (d) ground
truth data.

‘8’ pattern, which constituted three closed loop points. The
indoor environment consisted of three layers of corridors,
with each corridor about 40 m long and 3 m wide. The
total distance in corridor (including the loop) was about
200 m. Fig. 7 shows maps built from this representative
indoor environment: a long, narrow corridor and a large lobby.
Figs. 9(b)–9(d) shows the point cloud map details and the
trajectory (yellow curve) generated by SPC-SLAM. The data
were collected by a synchronous trigger and pre-calibrated
with our automated-calibration algorithm.

B. Quality Evaluation for 3D Point Cloud

In this experiments, we used sparse 3D point clouds,
to compare our method with LOAM [23], the state-of-the-art
3D mapping algorithm. LOAM is a feature-based mapping
algorithm that provides high-precision front-end odometry.

To evaluate the trajectory accuracy and mapping quality of
our method, another point cloud data set was collected in the
same environments by a Riegl VZ-1000 as a ground truth map.
The VZ-1000 remained stationary at a few different places in
the indoor environment. To provide millimeter level accuracy
for each survey point, several high-density static scans were
manually stitched together and automatically refined by Riegl
software.

For segmentation algorithms verification, the setting of
hyperparameters for PointNet is similar to that in [12]. More
specially, we used dropout with keep ratio 0.7 on the last fully
connected layer. The decay rate for batch normalization starts
at 0.5 and is gradually increased to 0.99. In addition, we used
Adam Optimizer with initial learning rate 0.001, momentum
0.9 and batch size 32. The learning rate is divided by 2 every
20 epochs. Besides, we trained our model with TensorFlow
and a NVIDIA Tesla P100 GPU.

In the first evaluation experiment, we manually selected n
control points, Q = [q1, q2, ...qn] from the mapping results
of our algorithm and manually selected corresponding survey
points, P = [p1, p2, ...pn], from the high-density map of
the VZ-1000. Fig. 10(a)–10(d) illustrates this process from
the results of different approaches. After manually matching
corresponding point sets, the distances between a point set and
a corresponding point in the second point set were considered
trajectory errors, et , as follows:

et (pi , qi ) =
∑n

i=0, j=0,i< j ||pi − p j ||2∑n
i=0, j=0,i< j ||qi − q j ||2 (19)

As shown in Table II, two groups of mapping errors, calcu-
lated by control points for LOAM or our method, are indicated
by errcp1and errcp2 , respectively. The mapping errors for
our method are smaller than those for LOAM, especially
for indoor multi-storey structures (F L O O R4 − F L O O R6),
where the lowest mapping error rate (0.09%) is achieved
for F L O O R5. This result is reasonable because, in indoor
environments, the feature-based method, with symmetrical or
weak features, is less exact than our g-ICP global matching
method. In Table II, we also give the processing frame rate
(frame per sec., FPS) of each algorithm. It can be seen that the
time efficiency of our algorithm in the front-end result is close
to that of LOAM. In the data with closed-loop points, we did
not use multi-thread for closed-loop detection and optimized,
so the time efficiency is reduced.
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TABLE II

MAPPING ERROR AND TIME EFFICIENCY ANALYSIS OF LOAM AND OUR METHOD

C. Trajectory Error Analysis

It is difficult to obtain accurate trajectory ground truth in a
narrow environment (e.g, a multi-storey building). Therefore,
by using the distance between point cloud frames to analyze
trajectory error, we introduce the concept: Interframe Error
Curve (IEC).

The error analysis, using the rigid transform property of a
point cloud, reflects the relative trajectory error by calculating
the point cloud error and calculating the variance according
to the data fluctuation, thereby assessing the robustness of the
final algorithm and completing our experimental veri cation.
The main idea of IEC is as follows: First, we must acquire
the trajectory, Ti (i ∈ (0 ∼ n − 1)), for analysis. Each point
cloud frame, fi , is registered to the corresponding position by
Ti , as follows:

fi
′ = Ti ∗ fi , i ∈ (0 ∼ n − 1) (20)

Then, we caculate interframe error e f ′ , as follows:

e f ′( fi
′, fi+1

′) =
m∑

j=0

||p j − s j ||2

where p j ∈ fi
′, q j ∈ fi+1

′, s j = N N(q j , p j ) (21)

In Eq.(21), p j , q j are points in point cloud frames fi
′, fi+1

′.
To reduce the matching error caused by outliers, we use the
nearest neighbor algorithm, N N function, to extract adjacent
points, s j , of corresponding points, p j , as matching points.
Fig. 11(a)–11(d)shows the interframe error curves for LOAM
and SPC-SLAM across parts of scan pairs. As shown in the
four scenes, the errors for SPC-SLAM are significantly lower
than those for LOAM, which indicates a more robust trajectory
estimation for SPC-SLAM and proves the accuracy of our
algorithm.

For loop closure detection, we used data F L O O R4−6 and
ParkingLot#1−#3 to compare the precision-recall (P-R) curve
of our algorithm and M2DP [47] (Fig. 12(a)–12(d)). As can be
seen from the figure, compared with the underground parking
lot data, the closed-loop detection of indoor data is unstable
when the recall decreases. However, due to the use of sub-map,
our algorithm performs better than the algorithm that uses
the sparse original point cloud M2DP feature for closed-loop
detection. If we use M2DP in combination with our algorithm
(red curve), we can further improve the performance.

Fig. 11. Trajectory error analysis in four scenes.

TABLE III

ESTIMATED RESULTS OF PARAMETERS IN PRIORI MODULE

In the next experiment, we took PointNet [12] as our basic
framework for segmentation and performed the experiment
using our underground parking lot dataset. The dataset con-
tains 3D scans from VLP-16 in three scenes including an area
of 52, 0000 m2.

D. Semantic Modeling Evaluation

In this subsection, we evaluate the performance of the
proposed priori module PSIF on scene segmentation in an
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Fig. 12. Recall-precision curves on F L O O R4−6 and ParkingLot#1 − #3 datasets.

Fig. 13. Comparison of semantic segmentation results: (a)-(d) original point clouds, (e)-(h) segmentation results obtained using PointNet, and (i)-(l)
segmentation results obtained using our method (black: ceiling, yellow: wall, green: floor, red: others).

underground parking lot. The dataset, containing 3D scans
from VLP-16 in two areas that include 198 blocks, was
acquired by the SLAM method introduced in the section
above. Each point in the scan is annotated with one of the
semantic labels from four categories: ceiling, floor, wall and
clutter.

As in PointNet, we also predict per point class in the point
cloud scene. In our experiments, each point is represented
by a 3-dim vector XYZ. We used accuracy and IoU as the
evaluation criteria and compared our method with the basic
module, PointNet. The accuracy and IoU calculated on points
and defined as Eqs. (22), (23). Where TP, FN represent
the numbers of true positives, false negatives, respectively.
Table III lists the parameters used in our modified PointNet
(i.e., PointNet with the priori module, or PPM).

Accuracy = T P

T P + F N
(22)

IoU = Detection Result
⋂

GroundTruth

Detection Result
⋃

GroundTruth
(23)

TABLE IV

COMPARED RESULTS OF SEMANTIC SEGMENTATION IN 6 SCENES (ACCU-
RACY (%)) AND 4 CATEGORIES (IOU(%))

Table IV shows the results of semantic segmentation in six
scenes, in which our modified PointNet (PPM) significantly
outperforms the PointNet. In particular, the accuracy of our
method is about 5% higher than that of PointNet for Scene 2
and Scene 5. In addition, our method also outperforms the
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Fig. 14. Comparison of (a) training accuracy curves and (b) loss values
generated by PPM and PointNet, respectively.

PointNet++ [48] and DGCNN [49] in Scene 1, 2, and 5. On
average, the accuracy of our method is 3% higher than that of
other three methods. These results show the significant effec-
tiveness of the proposed priori module, PSIF. Prior modules
provide important structural information, making segmentation
effective. Shown in Table IV are the results of IoU for every
category. Our PPM method achieves better performance than
the basic model in every category. Especially, the IoU of the
third category (wall) generated by PPM is about 9% higher
than that generated by the basic model. These results also
show the effectiveness of PSIF.

Our method also achieves better performance than Point-
Net++ and DGCNN by a large margin in the third category.
These Curves of training accuracy, validation accuracy and
loss values demonstrate that our modified PointNet improves
the training efficiency of the PointNet. As shown in Fig. 14,
our method achieves better training accuracy than PointNet.
Besides, the validation curve of our method follows the
training curve closely, which means that there is a small
over-fitting. In addition, the curves of training and validation
generated by our method also perform better than that of
PointNet. Fig. 13 shows the qualitative segmentation results.

V. CONCLUSION

We introduced a self-developed backpack LiDAR system,
and described both SPC-SLAM and priori-based semantic
modeling algorithms in detail. SPC-SLAM uses online cal-
ibration and registration of dual laser scanners for sparse
data in the front-end. According to the characteristics of
sparse point clouds, we proposed a submap-based method for
robust back-end optimization. Based on this mapping result,
to guide the training of PointNet for high quality semantic
modeling, we designed a prior module that preserves the prior
global shape information of the 3D shape. The SLAM algo-
rithm effectively solves the high-precision mapping problem
of indoor, or underground parking lots based on the sparse
point cloud data of LiDAR in GNSS-denied environment.
Post-processing adopts a priori semantic segmentation algo-
rithm, which optimizes the problem of missing data in the
semantic segment and improves the integrity of the semantic
map.

Experimental results show the following: (1) Mapping that
is precise to within a centimeter by using our LiDAR backpack
and SPC-SLAM, (2) PSIF provides basic, but important, priori

structural information. Our segmentation experiments show
that PSIF obtains not only better results, but also improves
the training efficiency of PointNet. Semantic modeling, hav-
ing precision greater than 84.8%, provides an effective way
to construct semantic models in GNSS-Denied underground
parking lot environments.
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