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Abstract— Traffic-sign recognition plays an important role in
road transportation systems. This letter presents a novel two-
stage method for detecting and recognizing traffic signs from
mobile Light Detection and Ranging (LiDAR) point clouds and
digital images. First, traffic signs are detected from mobile LiDAR
point cloud data according to their geometrical and spectral
properties, which have been fully studied in our previous work.
Afterward, the traffic-sign patches are obtained by projecting the
detected points onto the registered digital images. To improve the
performance of traffic-sign recognition, we apply a convolutional
capsule network to the traffic-sign patches to classify them into
different types. We have evaluated the proposed framework on
data sets acquired by a RIEGL VMX-450 system. Quantitative
evaluations show that a recognition rate of 0.957 is achieved.
Comparative studies with the convolutional neural network
(CNN) and our previous supervised Gaussian–Bernoulli deep
Boltzmann machine (GB-DBM) classifier also confirm that the
proposed method performs effectively and robustly in recognizing
traffic signs of various types and conditions.

Index Terms— Convolutional capsule network, convolutional
neural network, mobile LiDAR point clouds, traffic signs.

I. INTRODUCTION

TRAFFIC-SIGN recognition is critical for transportation
agencies to manage and monitor the status and usability
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of traffic signs [1], [2]. In addition, intelligent traffic-related
applications, such as autonomous driving, require accurate
localization and recognition of traffic signs for timely and
accurate response in different driving situations. The mobile
laser scanning or mobile LiDAR technology provides a
promising solution to transportation-related surveys [3]–[6].
The current mobile LiDAR system is an integration of multiple
sensors, including laser scanners and digital cameras [7]; there-
fore, point clouds provide accurate geometrical information,
while digital images detail rich spectral information, which
contributes to accurate detection and recognition of traffic
signs.

The existing algorithms apply the geometric and spatial
features of traffic signs, such as shape, position, and reflectance
[8]–[10], or learn these features automatically [11]–[12] to
achieve the traffic-sign detection tasks. Traffic-sign recogni-
tion is commonly achieved by integrating imagery data and
point clouds together. Generally, these algorithms follow a
two-step procedure—traffic-sign detection using LiDAR point
clouds [8], [12], [13] and traffic-sign recognition using digital
images [13]–[16]. In traffic-sign detection, most methods
detect traffic signs from point clouds using the following
geometrical and spatial attributes: topology, intensity, and
geometrical dimension, relations, and shape. For example,
the traffic-sign surfaces have a strong reflectance intensity,
which guides the road users for safe driving. Traffic signs are
limited to certain sizes and shapes (e.g., rectangle, circle, and
triangle). These attributes are used for successfully detecting
traffic signs from point clouds.

After that, the detected traffic-sign points are transformed
into the camera coordinate system to obtain the corresponding
traffic-sign patches. The traffic-sign recognition tasks are
commonly used using machine learning or deep learning
algorithms. Some machine learning methods, such as support
vector machine (SVM) [8] and SVM-based weakly supervised
metric learning (WSMLR) [16], are most commonly used in
the imagery-based traffic-sign recognition tasks in the past
years. However, these machine learning methods require the
manually designed features that are subjective and mainly rely
on the operator’s prior knowledge and experience. In contrast,
the deep learning methods, such as Gaussian–Bernoulli deep
Boltzmann machine (GB-DBM) model [13] and deep neural
networks (DNNs) [14], can automatically abstract high-level
feature representations from voluminous data samples, which
have become attractive in traffic-sign recognition. These deep
learning methods are proven to generate superior experimental
results.
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Fig. 1. Architecture of the convolutional capsule network.

Therefore, a generic framework for directly recognizing
traffic signs from mobile LiDAR data and digital images
can improve the robustness and reliability of the traffic-
sign recognition tasks. The proposed framework is composed
of 1) traffic-sign detection, which functions to extract potential
traffic-sign regions, and 2) traffic-sign recognition, where a
convolutional capsule network classifies the generated traffic-
sign image patches into different types. The traffic-sign detec-
tion method is detailed in our previous work [13]. In this
letter, we focus on traffic-sign recognition and propose a novel
convolutional capsule network to recognize traffic signs of
different categories. The remainder of this letter is organized
as follows: Section II details the two-step traffic-sign detection
and recognition method. Section III reports and discusses the
experimental results of traffic-sign recognition. Section IV
gives the concluding remarks.

II. METHOD

The proposed traffic-sign recognition method adopts a
two-stage processing strategy. In the first stage, the geometrical
features and attributes, provided by mobile LiDAR data, are
first used to extract the traffic-sign interest regions. In the
second stage, the extracted region proposals are projected onto
the registered digital images to obtain their corresponding
image patches, which are further fed into a convolutional
capsule network to classify them into different categories of
traffic signs. In Sections II-A and II-B, we will describe the
traffic-sign detection and recognition framework in detail.

A. Traffic-Sign Detection Based on Geometrical
Features and Attributes

This stage aims to extract the traffic-sign interest regions
from mobile LiDAR data. Traffic signs usually stand out from
their environments due to their special characteristics, such as
shape, intensity, and color. The mobile LiDAR data provide
accurate positional and intensity information of traffic signs;
therefore, to facilitate traffic-sign detection, with the features
and prior knowledge of traffic signs, an analysis is performed
using the following factors: pole height (APH), road width
(ARW), intensity (AI), geometrical structure (AG), and traffic-
sign size (AA). To improve the processing efficiency when
dealing with voluminous mobile LiDAR data, a supervoxel
segmentation strategy is performed on the points. In our
previous work, we achieved a detection accuracy of 86.8%
and an advantageous computing performance (e.g., around
1 h for processing around 1 billion points). The comparative
experiments have demonstrated the overall performance of
our previous traffic-sign detection method. After traffic-sign
detection, the detected traffic-sign points are projected onto the
images to obtain the traffic-sign region proposals. Thus, in this

letter, we adopt our previous traffic-sign detection method and
focus on traffic-sign recognition from the detected traffic-sign
region proposals.

B. Traffic-Sign Recognition Using
Convolutional Capsule Network

To recognize traffic signs from the segmented image
patches, we construct a convolutional capsule network. The
capsule network, first proposed in [17] for classification tasks,
is composed of entity-oriented vectorial capsules, which dif-
fers from the conventional CNNs that use scalar neurons to
encode the probabilities of the existence of specific features.
A capsule can be viewed as a vectorial combination of a set
of neurons [17]. For a capsule, its instantiation parameters
represent a specific entity type and its length represents
the probability of the existence of that entity. The capsule
networks have been demonstrated to be powerful and robust in
various classification tasks. Thus, to obtain promising traffic-
sign recognition performance, we extend the original capsule
network (containing a conventional convolutional layer, a pri-
mary capsule layer, and a fully connected capsule layer) to
construct a multi-layer convolutional capsule network.

Fig. 1 shows the architecture of our proposed multi-layer
convolutional capsule network, which contains a conventional
convolutional layer, a primary capsule layer, N convolutional
capsule layers, a capsule max-pooling layer, and three fully
connected capsule layers. Similar to the operations in a CNN
model, the conventional convolutional layer uses convolution
operations to extract low-level features from the input image
patches. These features are further encoded into high-order
capsules to represent different levels of entities. The con-
ventional convolutional layer adopts the widely used rectified
linear unit (ReLU) as the activation function to nonlinearly
transform the outputs.

The primary capsule layer converts the low-level scalar
feature representations in the convolutional layer into high-
order vectorial capsule representations. This conversion is
based on a conventional convolution operation sliding on the
convolutional layer. Denote N f as the number of feature maps
in the primary capsule layer and Cd as the dimension of a
capsule. A total of N f × Cd different convolution kernels are
performed on the convolutional layer, leading to N f × Cd
feature maps. After convolution operations, the generated
feature maps are organized into N f groups, each of which
contains Cd feature maps, and further form a Cd -dimensional
capsule at each position. As a result, in the primary capsule
layer, the N f capsules at each position are generated to encode
different properties of an entity. Such that, the low-level
scalar feature representations are converted into high-order
vectorial entity representations. The capsules can estimate
the probability of the existence of a specific entity through
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the vector length, as well as depicting the orientation of the
entity through the instantiation parameters. Thus, the vectorial
capsule formulation contributes to detecting a feature and
further to learning and detecting its variants.

The N convolutional capsule layers extract the high-order
capsule features from low-order capsules by performing local
convolution operations on a group of capsules and representing
their features using a new capsule. For the capsules in the
convolutional capsule layers, the total input to a capsule j is
a weighted sum over all predictions from the capsules within
the convolution kernel in the layer below

Cj =
∑

i
ai j · Uj |i (1)

where Cj is the total input to capsule j ; ai j is the coupling
coefficient, indicating the degree of contribution that capsule
i in the layer below activates capsule j ; Uj |i is the prediction
from capsule i to capsule j and it is defined as follows:

Uj |i = Wi j · U i (2)

where U i is the output of capsule i . Wi j is the transfor-
mation matrix on the edge connecting capsules i and j .
Specifically, the coupling coefficients between capsule i and
all its connected capsules in the layer above sum to 1
and are determined by a dynamic routing process [17]. The
dynamic routing process considers both the length of a capsule
(i.e., the probability of the existence of an entity) and its
instantiation parameters (i.e., the orientation of the entity) to
activate another capsule. This is quite different from the clas-
sical CNN models that take into account only the probability.
As a result, the capsule networks are more powerful and robust
to abstract the intrinsic features of the objects. As mentioned
above, the capsule length is used to predict the probability of
the existence of an entity. Thus, for the convolutional capsule
layers, the nonlinear “squashing” function [17] is adopted
as the activation function, by which the capsules with short
vectors result in low probability estimations and capsules with
long vectors result in high probability estimations, whereas
their orientations remain unchanged. The nonlinear squashing
function is defined as follows:

Uj = �Cj�2

1 + �Cj�2 · Cj

�Cj� . (3)

By such a conversion, the capsules with short lengths are
narrowed down to a length close to zero and the capsules
with long lengths are shrunk to a length close to one.

The capsule max-pooling layer uses max-pooling opera-
tions, similar to the pooling operations in the CNN models,
to perform feature down-sampling to reduce the network size.
To this end, we adopt a max-pooling kernel with a size
of Mk × Mk . This kernel is slided on the feature maps of
the last convolutional capsule layer with a stride of Mk .
Within the Mk × Mk kernel in each feature map, only the
capsule with the longest vector is retained and the others
are ignored. In this way, the number of capsules and the
network size are dramatically reduced, and thus the salient and
representative capsules are selected. The selected capsules are
further connected to a fully connected capsule layer to analyze
the global features.

The three fully connected capsule layers consider all the
capsules in the layer below to construct a high-order entity

abstraction from a global perspective. The first fully con-
nected capsule layer is obtained using a set of global capsule
convolution kernels performing on the capsule max-pooling
layer. Similarly, the dynamic routing process between two
fully connected capsule layers is used to cast predictions and
activate the capsules. In addition, the squashing function is
used to normalize the outputs of the capsules to ensure that the
shorter the capsules’ lengths, the lower the probability estima-
tions; whereas the longer the capsules’ lengths, the higher the
probability estimations. The last fully connected capsule layer
is a softmax layer for classification purposes. The softmax
layer is composed of V class-oriented capsules for encoding
different categories of traffic signs and the background. We use
the capsule length in the softmax layer to represent the
probability of a traffic-sign image patch being an instance of
a specific category (forbidden or warning). The category label
of a traffic-sign image patch is defined as follows:

L∗ = arg max
k

�Uk� (4)

where Uk is the output of a capsule in the softmax layer.
The parameters in the convolutional capsule network are

iteratively refined through the error backpropagation process.
To effectively train the convolutional capsule network toward
classification tasks, the margin loss [17] is used as the objec-
tive function to direct the error backpropagation process. For
class k, the margin loss Lk is defined as follows:

Lk = Tk · max
(
0, m+ − �Uk�

)2

+ η(1 − Tk) · max
(
0, �U k� − m−)2 (5)

where Tk = 1 if and only if a training sample belongs to
class k; otherwise, Tk = 0. m+ and m− are, respectively,
the lower bound for the probability of a training sample
being an instance of class k and the upper bound for the
probability of a training sample not belonging to class k. They
are configured as m+ = 0.9 and m− = 0.1. η is a weight
regularization factor, which is set to be 0.5 by default. The
total loss of the convolutional capsule network is defined as the
sum of the losses of all class-oriented capsules on all training
samples.

III. RESULTS AND DISCUSSION

A. Data Set

The test data were collected by a RIEGL VMX-450 system,
which is composed of two RIEGL VQ-450 laser scanners, four
charge-coupled device (CCD) cameras, a set of Applanix POS
LV 520 processing systems containing two global navigation
satellite system (GNSS) antennas, an initial measurement unit
(IMU), and a wheel-mounted distance measurement indica-
tor (DMI). The survey was conducted along Huandao Road
from Xiamen University to the International Conference and
Exhibition Center (ICEC) in Xiamen Island, Xiamen, China.
The surveyed area is a typical tropical urban environment
with high buildings, dense vegetation, and traffic signposts
along the surveyed road. Table I lists two scanned point cloud
data, covering 10- and 11-km-long road sections, respectively.
Fig. 2 provides a close view of the point cloud data of the test
scene.

In traffic-sign detection, the parameters, pole height (APH),
road width (ARW), and traffic-sign size (AA), were set to
be 1.0 m, 12.0 m, and 0.2 m2, respectively. The intensity
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TABLE I

DESCRIPTION OF THE TWO MOBILE LIDAR SAMPLES

Fig. 2. Close view of the test data.

threshold (AI) was estimated from the selected traffic signs
in the surveyed area. The geometrical structure (AG) was
defined as planar. The surveyed road is a coastal landscape
road, with several smooth turns, containing roughly 40 traffic-
sign categories, according to functionality. The two data sets
contain a total of 1268 traffic signs. The traffic-sign detection
method, detailed in [13], extracted 1162 traffic signs, including
1101 correctly detected traffic signs and 61 nontraffic signs.
The detection accuracy is 86.8%. As mentioned in our previ-
ous work, the detection errors were caused by incompletely
scanned traffic signs and strong reflectance from attached
advertising boards.

We downloaded 143 360 standard traffic signs from the
Ministry of Transport, China, as the training data to train
the convolutional capsule network. The detected traffic sign
data sets contain 1101 traffic-sign images and 61 nontraffic
sign objects. We manually labeled the 1162 image patches
(containing 35 types of traffic signs and 1 type of background)
of different image conditions as the reference data to evaluate
the performance of our traffic-sign recognition method. All
the training images and detected traffic-sign images were
resized to a size of M × M pixels. To balance recognition
performance and computational burden, we empirically set the
image size at M = 60 pixels.

B. Data Training

The convolutional capsule network was trained using the
Adam optimizer [18]. Before training, we randomly initialized
all layers of the convolutional capsule network by drawing
parameters from a zero-mean Gaussian distribution with a
standard deviation of 0.01. The exponential decay rates for
controlling the exponential moving averages of the gradient
(the first moment) and the squared gradient (the second
moment) were configured as 0.9 and 0.999, respectively. The
learning rate was set at 0.001. The size of each training
batch was configured to be 32 on each GPU. The network
parameters can be trained by a total number of 2000 epochs

in an end-to-end manner. To improve the efficiency of the
capsule network, N convolutional capsule layers were added
to extract the entity features from the input image. The more
the number of convolutional capsule layers, the higher the
levels of the extracted features. However, with an increase in
the number of convolutional capsule layers, the computational
complexity grows greatly. To tradeoff the feature extraction
performance and the computational efficiency, we set N = 3.
For dynamic routing to determine the coupling coefficients,
we used three routing iterations, which was enough to obtain
promising performance. To encode a proper entity represen-
tation, the dimension of a capsule was designed to be 16 for
all capsule layers. Our framework took 32 h to obtain data
satisfactory training results.

C. Traffic-Sign Recognition

This test set contained 1162 traffic-sign image patches
covering 35 different categories of traffic signs and the back-
ground. At the test stage, the test images were fed into the
convolutional capsule network to recognize traffic signs. For
the output of the softmax layer of the convolutional capsule
network, the capsule with the longest length corresponded to
the category of an image patch. For an image patch labeled as a
traffic sign, the length of the capsule encoded the probability
of the image patch belonging to an instance of that traffic
sign type. The proposed framework was capable of processing
18 traffic-sign patches per second.

To quantitatively evaluate the traffic-sign recognition accu-
racy, we used the recognition rate as the evaluation metric,
which is defined as the proportion of correctly classified
traffic signs. On average, our proposed framework achieved
a traffic-sign recognition rate of 0.957 on the test set. Specif-
ically, the traffic-sign images in the test set were captured
in a wide range of condition variations in illumination, dis-
tance, background, view angle, and so on. Thus, the traffic
signs exhibited with different qualities, distortions, and sizes.
In addition, some traffic signs were pasted with other deco-
rations or occluded by nearby objects. Fig. 3 presents some
traffic sign samples of different special conditions. Fortunately,
benefitting from the convolutional capsule network in char-
acterizing highly salient and representative intrinsic features
of the objects, our proposed framework obtained promising
performance in recognizing such traffic signs.

D. Comparative Study

To further evaluate the performance of our proposed frame-
work in recognizing traffic signs, we conducted comparative
experiments with our previous method, a supervised GB-DBM
classifier [13], and the CNN method [19]. Table II details the
quantitative evaluation results obtained by these three methods
with respect to the recognition rate. The data set includes
1101 traffic-sign images, covering 35 classes.

The training time for the supervised GB-DBM classifier
was about 4.6 h. For the 1101 test samples, by means of
the GB-DBM classifier, 1027 traffic signs of different shapes
and conditions were correctly classified, whereas 74 traffic
signs were misclassified. Quantitatively, a recognition rate
of 93.3% was achieved. The CNN method presented that
1019 traffic signs were correctly detected out of the 1101 traf-
fic sign samples, whereas 82 traffic signs were misclassified.
Quantitatively, a recognition rate of 92.6% was achieved.
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Fig. 3. Traffic-sign image patches.

TABLE II

TRAFFIC-SIGN RECOGNITION PERFORMANCE

OBTAINED USING DIFFERENT METHODS

Comparatively, the supervised GB-DBM classifier obtained
similar classification accuracies to the CNN method. This is
because both the CNN method and our previous method use
high-level feature representations of traffic signs to improve
the capability of handling various traffic-sign distortions,
thereby achieving a good traffic-sign recognition performance.

As reflected in Table II, our proposed framework obtained
a relatively better recognition rate than the other two methods.
The lower performances of the supervised GB-DBM and
CNN methods were mainly caused using the scalar-neuron-
based feature representations. The scalar neurons of these two
methods can only estimate the existing of specific features;
however, the intrinsic properties and their variants cannot
be well-exploited. However, our proposed convolutional cap-
sule network can abstract high-level, salient, and distinctive
entity representations using vectorial capsules. The capsules
are more robust than scalar neurons in characterizing the
intrinsic features of the objects. Through comparative analysis,
we concluded that our proposed framework is feasible and
effective for traffic-sign recognition from mobile LiDAR data
and digital images.

IV. CONCLUSION

This letter has presented a complete processing chain for
traffic-sign detection and recognition. This is a two-stage
processing strategy composed of traffic-sign detection from
mobile LiDAR points and traffic-sign recognition from digital
images by a convolutional capsule network. With regard to
the geometric features and attributes of traffic signs in the
surveyed scene, we detect traffic signs from mobile LiDAR
data. The extracted traffic-sign points are further projected
onto the digital images to obtain traffic-sign patches. The
convolutional capsule network is then used for recognizing
different types of traffic signs. The contributions include the
following: 1) this is the first study to apply capsule networks to
detect traffic signs and 2) a novel deep convolutional capsule

network with capsule convolution and max-pooling operations
for complete and effective traffic-sign recognition.

We have examined our proposed framework on the RIEGL
test sets. Quantitative evaluations showed that our proposed
framework achieved a recognition rate of 0.957. In addition,
comparative studies with two existing methods also confirmed
that the proposed method was feasible and effective in cor-
rectly recognizing traffic signs using capsule networks.
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