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ABSTRACT 

 

This paper proposes a novel approach for indoor point 

clouds quality evaluation, which works well without 

reference point clouds. In this paper, we mainly 

evaluate indoor point clouds quality in two aspects: the 

smoothness of the walls and the degree of occlusion of 

the walls and the floor. Our approach involves three 

steps. Firstly, with the S3DIS dataset, we use a deep 

learning method to train a detector to label walls and 

floor from indoor scenes. Next, we calculate the normal 

vector of the wall and the normal vector of each point 

on the wall. The degree of smoothness of the wall is 

judged according to the angle between the normal 

vector of the wall and the normal vectors of the points. 

Finally, according to the cause of occlusion (objects on 

the floor or in front of the wall), the occlusion degree of 

the wall and the floor is obtained. The experimental 

results demonstrate that the proposed method is suitable 

for non-reference indoor point cloud quality evaluation. 

 

Index Terms— non-reference quality evaluation, 

occlusion detection, indoor point clouds 

 

1. INTRODUCTION 

 

With the development of 3D data acquisition sensor, 

such as stereo cameras, terrestrial laser scanning (TLS), 

hand-held laser scanning devices, low-cost depth 

cameras and so on, it has become easier and more 

affordable to acquire point clouds. Indoor 3D point 

clouds have essential applications in virtual reality and 

enhancement, path planning, navigation, building 

monitoring, etc. However, due to the complexity of the 

indoor scene and the limited measurement range of the 

point cloud collection device, there are some quality 

problems in the acquired indoor 3D point clouds. Many 

studies have been done in evaluating indoor point 

clouds quality.  

There are mainly two ways to evaluate the quality 

of point clouds: subjective evaluation and objective 

measures [1], which are both still open problems. 

Taking into account the human visual perception of 

color and shape in 3D color models, Zhang et al. [2] 

presented a subjective quality evaluation model that can 

be used to compute the difference between an original 

3D color model and the other processed one. Javaheri et 

al. [3] performed a subjective evaluation of point cloud 

denoising algorithms and tested the commonly used 

point cloud objective quality metrics to understand how 

well they approximate subject evaluations. 

In the evaluation of point clouds quality, the 

objective measurement method should be consistent 

with the result of subjective evaluation. There are two 

main ways to evaluate the quality of the image 

objectively. One is to compare each pixel of the tested 

image with the pixel of the reference image one by one. 

The other is to extract the features of the tested image 

and the reference image, respectively, then compare 

these features one-to-one. This objective measurement 

method is a full reference method. However, in the 

evaluation of point clouds quality, it is difficult to obtain 

the reference point clouds, because of the characteristics 

of the sensor itself and the external environment, which 

make it difficult to objectively evaluate the quality of 

point clouds. 

Huang et al. [4] proposed a method of extracting 

cloud characteristics in 3D patches, and then using the 

trained semi-supervised model to evaluate local point 

cloud quality. Li et al. [5] used different approaches like 

data noise analysis, geometric characteristics analysis, 

and registration error analysis to evaluate the quality of 

indoor point cloud. Alexiou et al. [6] proposed a new 

objective quality metric based on the angular similarity 
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of associated points belonging to a reference and a point 

cloud under evaluation. 

In this paper, a non-reference quality evaluation 

metric for indoor point cloud data is presented. Firstly, 

with the S3DIS dataset [7], we use a deep learning 

network called pointwise convolutional neural 

networks [8] to label walls and floor from indoor scenes. 

Then the indoor point cloud quality is evaluated based 

on the labeled planes. The evaluation indicators of this 

method are mainly reflected in two aspects: one is the 

smoothness of the wall; the other is the occlusion of the 

walls and the floor. Without reference point clouds, the 

experimental result is evaluated based on subjective 

evaluation. 

 

2. METHODOLOGY 

 

The proposed approach contains the following three 

parts as: (1) Labeling the walls and floor by pointwise 

convolutional neural networks [8]; (2) Calculating the 

smoothness of the wall according to the angle between 

the plane normal vector and the normal vector of the 

point on the wall; and (3) Evaluating the degree of 

occlusion of the walls and the floor. 

 

2.1. The walls and floor labeling 

 

In this paper, we mainly evaluate the indoor point 

clouds quality based on the smoothness of the walls and 

the degree of occlusion of the walls and the floor, so we 

first label the walls and the floor. Notice that there 

already exist some neural networks that have performed 

well in labeling indoor scenes [8] [9] [10] [11]. Hua et 

al. [8] presented a convolutional neural network for 

semantic segmentation and object recognition with 3D 

point clouds and showed good accuracy on planar 

structures. In this paper, we use pointwise convolutional 

neural networks [8] to label the walls and floor. 

 

2.2. The smoothness of the wall 

 

Assuming that a wall is smooth enough, the normal 

vector of the point on the wall should be parallel to the 

normal vector of the wall. That is, the angle (θ) between 

the normal vector of the point, and the normal vector of 

the wall plane should be 0° or 180° , sin (θ) = 0. 

Considering the directivity of the vector, we assume 

that the angle ranges from 0° to 90°. From 90° to 0°, the 

smaller the angle is, the smaller the value of sin (θ) is, 

and the smoother the wall is. The angle is closer to 0°; 
the better point cloud data quality is.  

Based on the labeled result, the RANSAC 

algorithm is used to extract the wall and obtain the 

normal vector of the wall, n0⃗⃗⃗⃗ . Next, the method 

proposed by Hoppe et al. [12] as implemented in PCL 

[13] is applied to compute the normal vector of the point 

on the wall, 𝑛𝑘⃗⃗ ⃗⃗ , which is estimated using the K nearest 

neighbors of the point. Equation 1 is applied to get the 

sine of the angle between  n0⃗⃗⃗⃗  and 𝑛𝑘⃗⃗ ⃗⃗ , and equation 2 is 

applied to get the angle. Finally, the smoothness of the 

wall, 𝑆, is computed by the equation 3. In equation 3, N 

is the number of the point on the wall.  

 

         sin < n0⃗⃗⃗⃗ , 𝑛𝑘⃗⃗ ⃗⃗ > = √1 − (
 n0⃗⃗⃗⃗ ∙ 𝑛𝑘⃗⃗ ⃗⃗ 

‖ n0⃗⃗⃗⃗ ‖‖𝑛𝑘⃗⃗ ⃗⃗ ‖
)

2

            (1) 

        < n0⃗⃗⃗⃗ , 𝑛𝑘⃗⃗ ⃗⃗ > = sin
−1(sin < n0⃗⃗⃗⃗ , 𝑛𝑘⃗⃗ ⃗⃗ >)           (2) 

                                     𝑆 =  
1

𝑁
∑ < 𝑛0⃗⃗ ⃗⃗  , 𝑛𝑘⃗⃗ ⃗⃗  >

𝑁

𝑘=1

                    (3) 

 

2.3. Occlusion detection 

 

Planar occlusion is caused by the object which 

locates in front of it, resulting in that the sensor can only 

collect the information of the object, but cannot collect 

the planar information. In other words, the point 

information on the plane is covered by the information 

of the occlusion. If the points of the occlusion are 

projected straightly to the plane, a more complete plane 

can be restored. Based on this feature, the occlusion of 

the plane can be estimated. The method to detect the 

occlusion of indoor scenes involves five steps. Without 

losing the generality, we take the floor plane as an 

example. 

Firstly, based on the labeled result, a RANSAC 

algorithm is used to extract the floor. Then, given a 

minimum boundary rectangle from (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) 
and(𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), the block size 𝑏𝑧  is set and then a 

two-dimensional coordinate system is built. A two-

dimensional coordinate system is defined as: 

           grid[𝑢, 𝑣]: {

0 ≤ 𝑢 ≤ ⌈
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑏𝑧
⌉

0 ≤ 𝑣 ≤ ⌈
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

𝑏𝑧
⌉
               (4)  

Next, equation 5 is applied to divide points (𝑥, 𝑦, 𝑧) on 

the floor into corresponding grids. Let 𝑁1  be the 

number of occupied grids. Similarly, the number of 

occupied grids is obtained in the same way for all the 

points in the indoor scene, including the points of the 

occlusion. Let 𝑁2 be the number of occupied grids for 

8969



all points. Finally, equation 6 is applied to compute the 

degree of the occlusion, ρ. 

              

{
 
 

 
 𝑢 = ⌊

(𝑥 − 𝑥𝑚𝑖𝑛)

𝑏𝑧
⌋

𝑣 = ⌊
(𝑦 − 𝑦𝑚𝑖𝑛)

𝑏𝑧
⌋

                              (5) 

                                  ρ =  
𝑁2 − 𝑁1
𝑁2

                                      (6) 

 

3. RESULTS AND DISCUSSIONS 

 

The experimental data is from S3DIS dataset [7], which 

is collected from six large-scale indoor areas that 

originate from three different buildings of mainly 

educational and office use. In our experiment, we take 

three different indoor scenes as examples. These three 

scenes (a hallway, a conference room, and a lounge) 

with different degrees of occlusion are shown in Fig. 1. 

Since there is no reference data, we evaluate the 

objective measurement results based on subjective 

evaluation. 

 

 
(a) hallway 

     
(b) conference room                    (c) lounge 

Fig. 1. Three illustrations of indoor scenes [7] 

 

Figure 2, 3, and 4 show the planes extracted from 

the three indoor scenes separately. 

 

 
Fig. 2. The extracted planes of the hallway 

 
Fig. 3. The extracted planes of the conference room 

 
Fig. 4. The extracted planes of the lounge 

 

As can be seen from Table 1, with the increase of 

K, the angle between the normal vector of the point on 

the plane and the normal vector of the plane will 

become smaller and smaller. It shows that the smaller K 

value can reflect the local smoothness. It is in line with 

our subjective evaluation. In the subjective evaluation, 

wall 3 is smoother than wall 2 in Fig. 5, which is 

consistent with the objective measurement of Table 1. 
 

Scenes 
Typical 

planes 

Smoothness S (°, degree) 

K=10 K=15 K=20 K=30 

hallway 

Wall 1 2.84 2.75 2.70 2.62 

Wall 2 16.60 7.21 5.72 3.52 

Wall 3 2.18 1.65 1.21 1.15 

Wall 4 2.57 2.36 2.21 1.93 

conference 

room 

Wall 1 3.03 2.15 1.82 1.66 

Wall 2 4.47 3.18 2.86 2.43 

Wall 3 1.86 1.73 1.63 1.47 

Wall 4 5.52 4.78 4.52 4.12 

Wall 5 1.98 1.84 1.75 1.62 

lounge 

Wall 1 2.09 1.93 1.82 1.67 

Wall 2 6.88 6.09 5.77 5.55 

Wall 3 9.84 7.54 6.56 5.99 

Wall 4 6.73 6.50 6.34 6.08 

Table 1: Different K nearest neighbors of the point 

on the plane 

 
Fig. 5. Local information of the walls: a is wall 2 of 

the hallway, b is wall 3 of the hallway 
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In the subjective evaluation, the hallway has the 

least degree of occlusion, and the lounge has the largest 

degree of occlusion in the occlusion of the floor. Table 

2 demonstrates that feature numerically. Fig. 6 shows 

some results of occlusion detection of the floor. 

 

Scenes 
Typical 

planes 

Occlusion percentage 

𝑏𝑧= 0.02  

m 
𝑏𝑧= 0.05  

m 
𝑏𝑧= 0.08 

m 

hallway 

Floor 0.0600 0.0309 0.0271 

Wall 1 0.1001 0.0935 0.0857 

Wall 2 0.1692 0.1862 0.1761 

Wall 3 0.0763 0.0765 0.0801 

Wall 4 0.1537 0.1457 0.1412 

conference 

room 

Floor 0.1203 0.0876 0.0742 

Wall 1 0.1929 0.1813 0.1578 

Wall 2 0.1625 0.1515 0.1462 

Wall 3 0.1897 0.1734 0.1555 

Wall 4 0.2183 0.1855 0.1973 

Wall 5 0.2068 0.1880 0.1714 

lounge 

Floor 0.2946 0.2647 0.2502 

Wall 1 0.1830 0.1593 0.1605 

Wall 2 0.1754 0.1508 0.1244 

Wall 3 0.2083 0.2010 0.2246 

Wall 4 0.1294 0.1386 0.1676 

Table 2: The different block size 𝑏𝑧 for occlusion 

evaluation 

 
Fig. 6. Occlusion detection of the floor, the red areas 

represents the occlusion 

 

4. CONCLUSIONS 

 

In this paper, we evaluate non-reference indoor 

point clouds quality in terms of both smoothness and 

occlusion. Our experiments show that the proposed 

method can be used as a criterion for evaluating indoor 

point clouds quality without reference point clouds. 
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