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ARTICLE INFO ABSTRACT

Keywords: Although satellite-based approaches have been developed and adopted for estimating the concentration of fine

PMzs particulate matter (PM, 5) with promising accuracy, few studies have considered mass concentration and particle

Particle radius radius simultaneously, even though particle size is significant for human health impacts. We developed a sa-

Aerosol opical depth tellite-based PM s retrieval method using optical-mass relationships via aerosol microphysical characteristics.

1\(;]1]?[?;5 Satellite data from the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, combined with
parameters from meteorological reanalysis, were processed to calculate particle radii and retrieve PM; s mass
concentrations over China in 2017. Our study is the first to identify the spatial pattern of mean PM, s radius over
China, which was validated against observations from AERONET (RMSE = 0.11 um). Mean particle size over
eastern China is smaller than in the west, depicting a clear bifurcation across the country, especially in sum-
mertime. This finding is attributed to variations in topography, meteorology, land use and population density,
which affects the properties of emitted aerosols as well as their fate and transport. A statistically significant
correlation (R = 0.82) was observed between estimated and measured annual PM, 5, with RMSE = 9.25 ug/m>,
MAE = 6.98 pg/m®, MBE = —1.98 ug/m® and RPE = 17.69% (N = 1270). The spatiotemporal distributions of
resulting PM, s are consistent with previous findings, indicating the effectiveness and applicability of our
method. Our approach quantifies PM,s mass concentrations without introducing regionally-specific fitting
parameters, which can be efficiently applied across various spatial and temporal domains.

1. Introduction

Suspended particulate matter with aerodynamic diameter less than
2.5 um (PM, 5) poses a serious threat to public health through increased
risks to mortality, cardiovascular, and respiratory illnesses, among
others (de Hartog et al., 2009; Sacks et al., 2011; Pope et al., 2018;). It
is the single greatest global environmental health risk factor identified
in the Global Burden of Disease (Cohen et al., 2017). China has ex-
perienced severe PMss pollution with its recent economic and in-
dustrial development. Since 2013, the Chinese government has released
air pollutant concentrations to the public. More than 1400 stations
provide hourly PM, 5 concentrations, which makes PM, 5 retrieval and
validation feasible (Lin et al., 2015). However, a fixed-site monitoring
network restricts the spatial resolution and coverage of pollutant
measurements for the benefit of high accuracy and temporal resolution.
In order to obtain the spatial coverage required for full country-level
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exposure estimates, satellite remote sensing techniques are increasingly
indispensable in studies of PM, 5.

Aerosol optical depth (AOD) observed by satellites is closely asso-
ciated with PM, ; and often employed to retrieve mass concentrations
(You et al., 2015). There are two main methods employed for satellite-
based PM,s retrieval: data-driven methods and process-driven
methods, each with advantages and limitations. Data-driven models
developed including statistical or artificial intelligence methods have
been applied to derive quantitative AOD-PM, s relationships. Examples
include general linear regression models (Kumar et al., 2007; Liu et al.,
2005), mixed effects models (Hu et al., 2014; Lee et al., 2011), gen-
eralized additive models (Liu et al., 2012; Liu et al., 2009), land use
regression models (Di et al., 2016; Yang et al., 2017), geographical
weighted regression models (Li et al., 2017; Luo et al., 2017; Yao et al.,
2019; You et al.,, 2016) and artificial neural networks (Gupta and
Christopher, 2009; Zhao et al., 2016; Ma et al., 2019). In addition to
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AOD, meteorological parameters, such as planetary boundary layer
height (PBLH), relative humidity (RH) and wind speed, (Guo et al.,
2017a; Li et al., 2015; Zhang et al., 2015a), land use data (Chen et al.,
2016; Yang et al., 2017) and socioeconomic data (Hao and Liu 2016;
Lin et al., 2013) have been found to be associated with PMs 5, and were
employed as input parameters of various data-driven models (Han
et al., 2016; Luo et al., 2017). Such data-driven models have performed
very well in representing the variation of ground-level PMy s con-
centrations in a specific spatial and temporal domain. However, while
their predictive power is high, they do not rely explicitly on scientific
relationships, which limits their interpretability. Process-driven nu-
merical simulation models, such as chemical-transport models (CTMs),
offer an alternative to obtain mass concentrations that simulate phy-
sical and chemical relationships, which afford both predictive and ex-
planatory power (Steyn and Galmarini 2008). CTMs have been shown
to simulate aerosol behavior with relatively high spatial (horizontal and
vertical) and temporal resolution (Di et al., 2016; Tang et al., 2015; van
Donkelaar et al., 2015). However, the accuracy of simulation results
relies on emissions, atmospheric conditions (including meteorology and
chemical composition), and simulated chemical and transport me-
chanisms.

An alternative to data-driven and numerical simulation models has
been developed to achieve reasonable predictive power and add some
explanatory power without the computational expense of a full nu-
merical simulation. With this aim, several methods have been devel-
oped focusing on converting optical properties to mass (herein called
“optical-mass conversion”). Lin et al. (2015) proposed an indicator
describing the synthetic influence of hygroscopic growth instead of
using a fixed humidity effect to estimate PM; s concentration. Zhang
and Li (2015) defined a “particle columnar volume-to-extinction ratio
(VE)” to establish a PM, g retrieval algorithm with satellite-derived
parameters. Their studies contributed to the understanding of optical-
mass physical relationships, but still relied on model fitting or statistical
assumptions in the retrieval, such as the empirical relationship between
fine mode fraction (FMF) and VE;, and fitted parameters for aerosol
integrated effect quantification. Additionally, inherent particle prop-
erties, such as particle radius, have not been estimated previously.
Recent studies suggest that most of the health impacts of PMy5 are
caused by particles with a radius less than 2.5 um, such as PM; (Chen
et al., 2017; Ostro et al., 2015; Samoli et al., 2016; Stafoggia et al.,
2017). Therefore, understanding size distribution of particles at finer
scales is essential for mass concentration retrieval, which then can be
applied to better understand the health impacts of PM; 5.

This study presents a PM5 5 retrieval method with a theoretical basis
using satellite observations, meteorological information and ground-
level PM; 5 measurements, which can simultaneously estimate particle
radius. Mainland China is applied as the case study to quantitatively
assess the performance of the proposed algorithm. The particle radius
and PMs 5 concentrations are estimated and validated with station
measurements. The advantages and uncertainty of our retrieval method
are also discussed.

2. Data collection
2.1. Ground measurements

Hourly average PMs 5 observations in 2017 were obtained from the
“China National Environmental Monitoring Center (CNEMC) (http://
www.cnemec.cn/)”. Monitoring stations are mainly situated in south-
eastern China, reflecting the population distribution. All measurements
were calibrated and processed with quality control according to
“China’s National Ambient Air Quality Standards (GB3095-2012)” and
“Environmental Protection Standards (HJ618-2011)” (China 2012).
PM, 5 concentration was measured by Thermo Fisher 1405 using the
“Filter Dynamic Measurements System” and “Tapered Element Oscil-
lating Microbalance”. Daily PM; 5 concentrations were calculated from
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hourly measurements during 10:00-14:00 local time.

The Aerosol Robotic Network (AERONET) Version 3 Level 2.0 AOD
from 2013 to 2016 were downloaded from http://aeronet.gsfe.nasa.
gov/ to calibrate MODIS AOD products in 2017 in order to increase the
available calibration samples. AERONET AOD at 0.55um were inter-
polated by AOD at 0.44 um, 0.67 um and 0.87 um, respectively. Many
studies (He and Huang 2018; Yang and Hu 2018) used Angstrom’s
empirical expression, which is related to the Junge distribution (Junge
1955), to interpolate AOD at 550 nm. However, King and Byrne (1976)
indicated that particle size distributions do not follow the Junge dis-
tribution and the radii do not extend from zero to infinity. Therefore,
we employed the 2nd-order polynomial equation (Eck et al., 1999):

In 7, =ap+ aln A2+ a)(ln 1) @)

where 7, is AOD at the wavelength of 4. a,, &, and a, are the coefficients,
which can be fitted by the measurements.

The AERONET data within + 30min of satellite overpass time (Terra
UTC 2:00-3:00; Aqua UTC 5:00-6:00) were selected and averaged to
match the pixel values of MODIS products.

2.2. Satellite data

2.2.1. MODIS

Currently, MODIS onboard the Terra and Aqua satellites provide
three retrieval algorithms for aerosol properties over land globally: the
“Dark Target (DT)” algorithm, the “Deep Blue (DB)” algorithm and the
“Multi-Angle Implementation of Atmospheric Correction (MAIAC)” al-
gorithm (Ceca et al., 2018; Hsu et al., 2013; Li et al., 2014; Lyapustin
et al., 2018). With a resolution of 1 km, the MAIAC AOD is informative
for local-scale studies. However, considering the geophysical coverage
in this study, 3 km DT and 10 km DB AOD Collection 6.1 products from
both Terra and Aqua were adopted for PMj 5 retrieval.

Because of the large uncertainty of MODIS FMF products (Levy
et al., 2007), fine mode fraction (FMF) retrieved by the LUT-SDA al-
gorithm was adopted for fine mode AOD. The LUT-SDA algorithm is
described and evaluated in previous studies (Yan et al., 2019; Yan et al.,
2017a). The intermediate parameter, Angstrom exponent (AE), was
calculated with MODIS AOD at 470 nm and 660 nm.

2.2.2. Data preprocessing

Before modelling, AOD products in 2017 were calibrated and gap-
filled as depicted in the Supplemntary Material (Part 1). Five pre-
processing steps were performed for AOD calibration and daily cov-
erage improvement, following (He and Huang 2018; Ma et al., 2016).
First, the relationships between MODIS AOD retrievals and AERONET
AOD measurements from 2013 to 2016 were established. This time-
frame was employed to establish the accuracy of MODIS AOD data due
to the limited number of collocated MODIS-AERONET observations in
2017. The relationships are shown in Fig. S2, with the correlation
coefficients higher than 0.91. Since this relationship shows strong
seasonality (Remer et al., 2013), four linear regressions were built for
each season and adopted for MODIS AOD calibration in 2017. MODIS
AOD includes 3 km DT and 10 km DB products from the Terra and Aqua
(Table S1). Next, the MODIS 10 km DB AOD were resampled into 3 km
using the cubic convolution resampling algorithm. Then, a linear re-
gression analysis between Terra and Aqua DT (DB) was performed and
the regression coefficients obtained were employed to calculate the
missing pixels in Terra DT (DB) if there are values in Aqua DT (DB), and
vice versa. Furthermore, the variances per satellite per algorithm per
season were calculated and used for combining AOD data with an in-
verse variance weighting (IVW) approach:

AOD = AODAqug/VGrAquas + AODTcrra/tvarl‘a'rrab
l/VH"Aqua_‘, + lllva"'.('crra_‘

(2)
where AOD is the satellite-combined DT/DB AOD with IVW; AOD,g,
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and AODyy,,, are the DT/DB AOD values in Aqua and Terra after cali-
bration and gap filling, respectively; Var,g,,, and Varg,.,, are the var-
iances of Aqua and Terra AOD in season s, respectively. Finally, sa-
tellite-combined DB AOD images were used to fill the missing pixels of
satellite-combined DT images. The validation and coverage improve-
ment results are shown in Figs. S3 and S4.

2.3. Meteorological data

Surface meteorological data, including RH, PBLH and visibility
(VIS) data, were obtained from the NCEP/NCAR reanalysis dataset. The
“NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and
Forecast Grids (https://rda.ucar.edu/datasets/ds083.3/)” were down-
loaded for RH and PBLH, and the “NCEP ADP Global Surface
Observational Weather Data (http://rda.ucar.edu/datasets/ds461.0/)”
were utilized for VIS, which include more than 1500 stations over
China received via the Global Telecommunication System. The NCEP
dataset includes 6-hourly analysis products and the products at 12:00
were selected and used in this study.

2.4. Data integration

Both the satellite and the meteorological data were unified with
respect to coordinate systems, data format, and image size. Daily VIS
were interpolated using the inverse distance weighted (IDW) inter-
polation approach. Following the geophysical coverage of study area
and spatial resolution of MODIS AOD, all meteorological data were
masked by the extent of China before resampling to 3 km using the
cubic convolution interpolation algorithm.

3. Methodology
3.1. Ground-level PM3 5 retrieval

The purpose of our work is to retrieve ground-level dry PM; 5 mass
concentration with an optical-mass conversion algorithm. Several cor-
rections and calculations were thus performed to convert satellite co-
lumnar observations into ground-level mass concentrations. The fra-
mework of this study is shown in Fig. 1.

AOD, which refers to the aerosol extinction (absorption and

Calibration l

/ AOD /L‘ Calibration —{ Gap-filling [
LR
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scattering) in the total vertical column of atmosphere, must be cor-
rected into the extinction near the ground under dry conditions.
According to previous studies (Hansen and Travis, 1974; Schuster et al.,
2006), atmospheric aerosols present a bimodal distribution and the
accumulation mode aerosol is superior for use in PMyg retrieval.
Therefore, the FMF was adopted for fine mode AOD calculation:

AOD; = AOD * FMF (3)

where AODy is the fine mode AOD.

According to Koelemeijer et al. (2006), both AOD and PM show
negative correlations with precipitation (i.e. humidity), but the effect is
stronger on AOD. Hence, it is necessary to remove the effect of humidity
and boundary layer height on the PM retrieval. Fine ‘meteo-scaled’
optical depth, AOD; is defined as:

AOD¢

AOD} = ——— 1
PBLH * f(RH) (4)

where f(RH) is the hygroscopic growth function, a function of relative
humidity. The formulas of this function are based on three previous
studies to diminish the effects of spatial heterogeneity (Supplementary
Material) (Liu et al., 2008; Chen et al., 2014; Zhang et al., 2015b).
According to the physical definition of aerosol optical depth:

. o dN
AOD} = -/0. chtzrrz—d]nrd Inr (5)

where 9
dlnr

is the lognormal particle size distribution, which is described
by Eq. (7); Qex is the extinction efficiency through the area distribution,
which is defined by Eq. (8).

The lognormal particle size distribution was used for accumulation

mode aerosols (Hansen and Travis, 1974):

dN 1 1 [ (In r—In ;1,)2]
_ ol -

e I ex
dinr 27 r In o, 2 In*g,

(6)

where r, is the lognormal geometric particle radius andg, is the geo-
metric standard deviation. g, was set at 2um, which refers to the general
range (1.75-2.25) measured for different types of fine particles
(Hofmann and Rosen 1983; Hobbs et al., 1991; Reid et al., 2003; Steele
et al., 2006). Since the aerosol extinction properties are proportional to
r%, 1y is not the optimal parameter to represent the distribution.
Therefore, the effective radius r, (a weighted average of particle size

dse qumy
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Fig. 1. The framework of PM, 5 retrieval with optical-mass conversion algorithm.
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distribution) is defined and deduced according to the rule of lognormal
distribution (Hansen and Travis, 1974).

LG 5 Ino
0 dinr g
= rex

o 5 2‘md In r

(7
Similarly, extinction efficiency is defined as
Qe = & Fex = Ko
Jreita mp TTeRE W) N

where %,y is the extinction coefficient, which is inversely proportional
to VIS. x.x can be calculated based on the empirical relationship
Kext = 3.912/VIS (Koschmieder 1925).

Based on these definitions, fine particulate mass concentration
under dry conditions at ground level can be derived as:

ﬂpf'jd In ©)

where PM; refers to the fine particulate matter, p is the particle mass
density, which is assumed to be 1.5 g/cm3 (Clarisse et al., 2010; Li
et al., 2016).

Substituting these expressions into the above equations yields,

PM; = d In r

AOD} = PM; # —= Q“’“ = PM; x - e .
I 47p (1, )exp(9/2 In* g,) (10)
Therefore,
M. = _AOD * EMF  47p(1y)'exp(9/2 In’a,)
"~ PBLH # {(RH) 3(3.912/VIS) (11)

In Eq. (11), AOD, FMF, PBLH, f(RH) and VIS are obtained from
satellite and re-analysis data; p and g, are the constants, and 1, is cal-
culated using ground-based PM; 5 measurements. Additionally, we as-
sumed that PM; derived by AODy¢ is equal to PMsys. However, the
truncation diameter of AODy is smaller than that of PMs s, which could
introduce errors into the retrieval (O'Neill 2003). Hence, a correction
factor 0.86 was applied to minimize this bias (Li et al., 2016).

3.2. Particle aerodynamic diameter calculation

We relate Eqs. (5) and (9) to ground-level r, in Eq. (10), deriving
both PMs s mass concentration and ground-level 1. simultaneously,
primarily from satellite-retrieved AOD and meteorological parameters.
Ground-level particle radius is purposefully preserved rather than
eliminated so that it may also be retrieved, yielding additional insight
relevant to understanding exposure to fine and ultrafine particulate
matter. Ground-based measurements used in the estimation of r, were
not used to validate retrieved PM, 5 mass concentrations, with details as
follows.

The particle size of PMy5 was expressed in terms of aerodynamic
diameter, d,., as per the definition of PM;s. To do this, first, all mat-
ched samples for each day were randomly divided into five equal size
subgroups. A single subgroup was adopted as the validation sample set
and the remaining four were employed to calculate particle radius (r,)
using Eq. (11). This process was iterated five times, with each of the five
subgroups used exactly once for validation. The station-based daily
mean particle radius was interpolated using the IDW method with 3 km
spatial resolution. We masked the pixels where the corresponding AOD
values were not available to reduce bias. The daily particle radius was
then averaged to obtain the seasonal spatial distribution. Finally, the
seasonal average geometric particle radius was used to find the
equivalent aerodynamic diameter. To relate the aerodynamic diameters
(dge) to the geometric diameter (dy), the volume equivalent diameters
d, is introduced. Assuming that aerosols in the atmosphere are spherical
particles, d, = d, and d, = 2r,. Therefore, according previous studies
(Raabe 1976; Hand and Kreidenweis 2002):
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dge = d(o/p* )U3 d (P/p )lﬁ

where p* is the standardizing density equal to 1 g/cm®.

21, (p/p*)'? (12)

3.3. Method correction and validation

There are more than 1500 VIS stations over China, which is com-
parable with the number of PM, 5 sites. The PM, 5 concentrations es-
timated by interpolated VIS are difficult to validate if the VIS stations
are close to the PM mass monitoring sites. Therefore, the daily VIS data
from the stations near the PM5 s monitoring stations were removed to
show the extendibility of the proposed method. A leave-one-out cross
validation was conducted to assess accuracy. The spatial distributions
of the VIS and PM, 5 stations are shown in Supplementary material Fig.
S7.

Satellite-observed AOD values can be biased or missing due to high
surface reflectance or cloud and high aerosol loading, resulting in PM; 5
underestimation (Guo et al., 2017b; Gupta et al., 2016). A correction
factor C; calculated using Eq. (13) were adopted to correct these errors:

PM; 5 0p5_i

Cf =
PM; s et i

(13)
where PM,s gps ; and PMys .y ; are the average observed and estimated
PM, s mass concentration at pixel i. The factors were extrapolated to all
pixels over the study are using IDW algorithm. The final PMy 5 esti-
mation at annual and seasonal scale is calculated by correction factors
and uncorrected estimated values.

Five metrics, including Pearson coefficient (R), root-mean-square
error (RMSE), mean absolute error (MAE), mean bias error (MBE) and
relative percentage error (RPE), were used to assess the retrieval bias.

RMSE = \lN (ea{ — obs;)? (14)
1 N
MAE = Nt Zle lest; — obs;l 1s)
1 N
MBE = N Zi:l (est; — obs;) (16)
1 N est; — obs;
RPE = — [——
N Z':l obs; (17)

where obs; angl est; are the observed and estimated value of sample i,
respectively. obs and est are the average observed and estimated value.
N is the number of validation samples.

4. Results
4.1. Estimation of particle size

Fig. 2 depicts the mean aerodynamic particle diameter of PM, s,
calculated using Eq. (12). The mean particle size is larger in the
northwest than in the southeast, especially in summer (Fig. 2b). The
division coincides with the Heihe-Tengchong line, which is an ima-
ginary line dividing the territory of China into western and eastern
parts (Hu, 1935). The results indicate that people living in eastern
China (with 43% of the area and 94% of the population in 2015) are
exposed to PM with smaller diameters. Although the proportion of
smaller particles in summer is higher than that in the other three sea-
sons, the area with the largest particle size (the Taklamakan Desert)
also occurred in summer. The AE in the Taklamakan Desert presents
larger values in spring and summer compared with that in the other two
seasons (Wang et al., 2013). Our results show a similar pattern since AE
is inversely associated with particle size. The seasonal variations are
also noted by previous studies (Chubarova et al., 2016; Tian et al.,
2015). The statistical characteristics of the retrieved particle size are
shown in Table 1 and the frequency statistics are provided in Fig. S8.
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Fig. 2. Spatiotemporal distribution of aerodynamic diameters over China.
Table 1

Statistical characteristic of aerosol aerodynamic diameters (um).

Season Minimum Maximum Mean Standard deviation N

Spring 0.23 3.23 0.69 0.15 1,204,153
Summer  0.19 6.87 0.69 0.23 1,230,878
Autumn 0.18 4.37 0.64 0.10 1,275,501
Winter 0.20 3.60 0.65 0.11 1,042,324
Annual 0.21 2.86 0.67 0.11 1,289,860

Spring: DOY 60 ~ 149; Summer: DOY 150 ~ 241; Autumn: DOY 242 ~ 332;
Winter: DOY 1 ~ 59; 333 ~ 365; DOY: Day of Year.

0'8 T L T T T T T »
y=0.505x+0.161 P

071 R=0.632* 1 1
RMSE=0.110 AT

0.6 - MBE = 0.001 i ® T

N=87

el
n
T

8

Retrieved r, (um)
® @
w B
T T

AERONET STATION

02 i s".'. * Beijing .
a Beijing-CAMS
o1k 22 5 QOMS_CAS i
e ®  XiangHe
4 Linear regression
< 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
AERONET r, (nm)

Fig. 3. Validation of satellite-retrieved and AERONET measurement-retrieved
radius in 2017.

The retrieved r, was also compared with measured values. Effective
radius at four AERONET stations (Version 3 Level 2.0) in China were
downloaded and calculated for validation. Although there are only 87
retrieved-measured r, samples in total due to the availability of collo-
cated Level 2.0 data, this is a good start for large-scale particle size
estimation over land, with RMSE of 0.11 um, which enables diverse
particle size to be distinguished (Fig. 3). The relationship is statistically
significant at the 0.05 significance level. However, it should be noted
that the 1, obtained from AERONET is in the total atmospheric column,
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while the radius retrieved in our study is at ground level (Prats et al.,
2011). The small, positive value of MBE in Fig. 3 shows that the ground-
level radius is larger than the columnar value, which is consistent with
the evidence that the aerosol radius decreases slightly with altitude
(Baars et al., 2012).

4.2. Temporal variation of retrieved PM5 5

The monthly variation of measured and estimated PMjys con-
centrations across China is shown in Fig. 4a. As shown, heavily polluted
periods are more likely to occur between Jan-Feb and Nov-Dec when
heating systems are operating in Northern China. The PM,s con-
centration differences among stations in Mar-Sep (spring and summer)
are lower than those in other months. These results are consistent with
the seasonal distribution of PM, 5 (Fig. S9). Summertime has the lowest
PM, 5, with seasonal means of 27.38 ug/mg, while winter is the most
polluted season with mean concentrations equal to 58.60ug/m® in
2017. The highest RMSE also occurred in winter, followed by autumn,
spring and summer (Fig. 4b). The monthly variation of RPE is stable,
with an average of 31.32%. Additionally, the performance of the pro-
posed method is also evaluated at the seasonal scale (Table 2). The
highest correlation coefficient is 0.91 in winter, with RMSE of 20.02 pug/
m® and RPE of 27.54%.

Based on the spatial pattern of annual PM5 5 concentrations, five
regions, including Beijing-Tianjin-Hebei Metropolitan region (BTH),
Yangtze River Delta (YRD), Pearl River Delta (PRD), Sichuan Basin (SB)
and Taklamakan Desert (TD), were selected to present regional monthly
variation (Fig. 5). The overall variations among these five areas are
similar with that across China and the highest PM; 5 values were ob-
served in the BTH region.

4.3. Spatial distribution of retrieved PM> 5

The annual mean of satellite-retrieved PM5 5 concentrations over
China was estimated to be 46.88 ug/m>. The spatial pattern of the re-
trieved PM, 5 appears to be consistent with that of ground measure-
ments and other studies (van Donkelaar et al., 2010). The BTH region
experienced high PM; 5 exposures in 2017, with concentrations higher
than 55 pg/m>. Among the four hotspots highlighted in Fig. 6, the BTH
region had the highest annual mean concentrations, followed by the SB,
the YRD and the PRD region. Except for the above four regions, high
PMS, 5 levels were also observed in the Taklamakan Desert.

The evaluation of uncorrected estimates is shown in Fig. S10 and
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Summer 0.72 9.42 22.91% 1245 DB could cause uncertainty due to spatial heterogeneity. Meanwhile,
Autumn 0.83 14.83 26.68% 1242 sparsely distributed monitoring sites and reduced satellite coverage
Winter 0.91 20.02 27.54% 1193
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Fig. 5. Monthly variation of retrieved and measured PM, 5 concentrations in
the BTH, YRD, PRD, SB and TD region.

Fig. S11, which illustrates the underestimation of PMjs mass con-
centration. The possible reason is that high aerosol loading might be
misclassified into cloud, leading to missing values in satellite images
under severe air pollution. Therefore, PM; 5 estimates were improved
with correction factors and evaluated using ground measurements. The
promising accuracy for annual (R = 0.82, RMSE = 9.25ug/m?,
MAE = 6.98 ug/m>, MBE = —1.98 ug/m> RPE = 17.69%, N = 1270)
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affected the PM; 5 retrieval by reducing the accuracy of the retrieved
particle radius.

5. Discussion

An optical-mass conversion algorithm was established to quantify
PM, 5 concentrations using satellite-observed data. The particle dia-
meters and PMas concentrations were estimated and validated over
China. Our aerosol diameter results show that the mean particle size in
eastern China was smaller than in other regions, which might be at-
tributed to differences in topography, meteorology, land use, and po-
pulation density, affecting the properties of emitted aerosols as well as
their fate and transport. According to previous studies (Huang and Luo
2008; Qian and Liu 2018; Wang et al., 2004), due to land use and to-
pography in China, aerosol loading to the east of the Heihe-Tengchong
line is high, which is likely attributed to human activity. Values in the
west are relatively low, which might be influenced by natural sources
(such as sand and dust). These findings are consistent with our size
results. This observed pattern does show some seasonality, though 90%
of pixels have diameters less than 1 um throughout all seasons. Across
the domain, particle sizes were generally larger in the spring and
summer, and smaller in the autumn and winter. This seasonality may be
attributed to variations in the sources, fate, and transport of fine par-
ticulate matter (Zhang et al., 2013).

A similar spatial pattern was also observed in mass concentration.
The heavy pollution in the BTH region is likely attributable to un-
favorable topography, regional transport and anthropogenic activities
associated with urbanization and industrialization (such as fossil fuel
consumption) (He and Huang 2018; Zheng et al., 2015). The pollution
in the SB region was likely due to relatively low elevations and stagnant
air circulation (You et al., 2016) and the polluted air in the TD region
was mainly attributed to dust and sand (Ma et al., 2014). In the PRD,
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Fig. 7. Validation of PM, 5 retrievals over China at annual and seasonal scales.

PM, 5 concentrations were predominantly rated “lightly polluted” or
“good”, though some coastal regions showed “excellent” levels, which
could indicate an underestimation in coastal areas, where surface re-
flectance can be more challenging to characterize (Anderson et al.,
2013). Temporally, the highest PM; 5 concentrations occurred in winter
while summer had the lowest concentrations. Heating-related emissions
and adverse weather are two possible reasons for higher pollution in
winter (He and Huang, 2018; Ma et al., 2014). The PMy 5 retrievals
were validated at 1270 stations in China in more than 350 available
days, with acceptable correlation between annual-mean retrieved and
measured PMjs concentrations. These results provide evidence to
support the reliability of this conversion algorithm for retrieving
ground PMj 5 concentrations with an explicit mechanism.

Compared with other retrieval methods (Lin et al., 2015; Zhang and
Li, 2015), the AOD-PM5 5 relationship in our study builds upon aerosol
microphysical characteristics without introducing regional fitting
parameters, making it easier to apply across spatial and temporal do-
mains. However, the performance of this method is affected by two

9%

main sources: input data and retrieval assumptions. Spatial hetero-
geneity affects the processes of data retrieval, gap-filling and inter-
polation, which could lead to random and systematic errors. Although
MODIS AOD is one of the most widely used and well-validated products
for PM, 5 retrieval, biases remain because of the retrieval algorithm and
cloud contamination. High aerosol loading might be misclassified into
cloud, leading to missing values during periods of severe haze. Mean-
while, the input data might be also biased due to algorithm errors,
interpolation errors and systematic errors. For example, the separation
of MODIS retrieval algorithms over land and ocean may lead to in-
accuracy over pixels containing land and ocean (Anderson et al., 2013).
Consistent with the satellite transit time, the retrieved PM, 5 in this
study corresponds to values between 10:00am and 14:00 pm instead of
a daily average. This potential bias should be addressed prior to use as a
daily average, for example, in health studies.

In addition to the uncertainty caused by input data, the retrieval
method in our studies could also introduce errors. Although particle
radius could be determined with the model, high precision was difficult
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to achieve with the limited ground-based measurements. Compared to
the observed data acquired from AERONET, the relative error of par-
ticle radius in this study is approximately 7%; however, this needs to be
further tested, especially in the regions where verification sites are
limited. It is more problematic to adopt an empirical constant as the
radius due to the spatiotemporal variance of aerosols. Therefore, future
work should seek to address this using the micro-properties of aerosols
from a mechanistic prospective at large scale. Furthermore, assump-
tions used in our study could also introduce bias. Previous studies have
indicated that particle density and distribution vary in the columnar
atmosphere (Liu et al., 2015; Yan et al., 2017b). The assumptions of
constant values for ¢ and g, and uniform vertical distribution can lead
to an error of 18% and 16.6%, respectively (Li et al., 2016; Zhang and
Li, 2015). The total uncertainty of related to assumptions in our optical-
mass conversion algorithm is approximately 29%. Additionally, there
are several other factors regarded to be causally associated with PM, 5
concentration and the mechanism of how these parameters impact
observations was not fully understood, which offers a fertile field for
study.

6. Conclusion

A satellite-based optical-mass conversion algorithm was established
in this study to quantify PM, s mass concentrations based on aerosol
microphysical characteristics, which can simultaneously estimate par-
ticle size. The estimated particle radius was quantified against the
available ground-based columnar measurements, with
RMSE = 0.11 ym. The validation result shows that the ground-level
radius is slightly larger than the corresponding columnar value on
average, which is consistent with the findings that aerosol radius de-
creases slightly with altitude. The spatial distribution shows that par-
ticle diameters in eastern China are smaller than those in other regions,
which might be due to differences in features such as topography,
meteorology, land use and population density in China. Additionally,
the estimated PM5 5 concentrations were corrected and validated using
ground measurements at annual and seasonal scales, with
RMSE = 9.25ug/m®,  MAE = 6.98ug/m®,  MBE = —1.98 ug/m?,
RPE = 17.69% (N = 1270). The spatiotemporal distribution of sa-
tellite-retrieved PM, 5 agrees with the in-situ data and findings from
previous studies. Highly polluted periods are more likely to occur be-
tween Jan-Feb and Nov-Dec, while summertime has the lowest PM, g
concentrations. Spatially, the BTH regions experienced a higher PM; 5
pollution compared with other major metropolitan areas. This approach
builds on previous optical-mass studies by avoiding regional fitting and
retrieving particle size. It can thus potentially fill an important gap in
estimating exposure to ultrafine particles (which are thought to be more
toxic, but lack of large-scale, high-resolution measurements). Further
work is needed to increase the accuracy of this method, which would
benefit from the improvement of sensors and algorithms.

Acknowledgements
The authors would like to thank NASA MODIS, AERONET and
UCAR for their publicly available data. The first author acknowledges

the China Scholarship Council for their support via a doctoral scho-
larship (No. 201706400072).

Declaration of Competing Interest

The authors declare no conflict of interest.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.isprsjprs.2019.10.010.

ISPRS Journal of Photogrammetry and Remote Sensing 158 (2019) 90-98

References

Anderson, J.C., Wang, J., Zeng, J., Leptoukh, G., Petrenko, M., Ichoku, C., Hu, C., 2013.
Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal
regions: bias characteristics and uncertainty sources. Tell. B: Chem. Phys. Meteorol.
65 (1), 20805.

Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Heese, B., Miiller, D., Artaxo, P.,
Paixao, M., Pauliquevis, T., Souza, R., 2012. Aerosol profiling with lidar in the
Amazon Basin during the wet and dry season. J. Geophys. Res.: Atmos. 117, D21.

Ceca, L.S.D., Ferreyra, M.F.G., Lyapustin, A., Chudnovsky, A., Otero, L., Carreras, H.,
Barnaba, F., 2018. Satellite-based view of the aerosol spatial and temporal variability
in the Cordoba region (Argentina) using over ten years of high-resolution data. ISPRS
J. of Photo. Rem. Sen. 145, 250-267.

Chen, G., Li, S., Zhang, Y., Zhang, W., Li, D., Wei, X., He, Y., Bell, M.L., Williams, G.,
Marks, G.B., 2017. Effects of ambient PM 1 air pollution on daily emergency hospital
visits in China: an epidemiological study. Lancet Planet. Health 1 (6), e221-e229.

Chen, J., Zhao, C.S., Ma, N., Yan, P., 2014. Aerosol hygroscopicity parameter derived
from the light scattering enhancement factor measurements in the North China Plain.
Atmos. Chem. Phys. 14 (15), 8105-8118.

Chen, L., Liu, C., Zou, R., Yang, M., Zhang, Z., 2016. Experimental examination of ef-
fectiveness of vegetation as bio-filter of particulate matters in the urban environment.
Environ. Pollut. 208, 198-208.

China, M.E.P., 2012. Ambient Air Quality Standards. GB 3095-2012. China
Environmental Science Press, Beijing.

Chubarova, N., Poliukhov, A., Gorlova, 1., 2016. Long-term variability of aerosol optical
thickness in Eastern Europe over 2001-2014 according to the measurements at the
Moscow MSU MO AERONET site with additional cloud and NO 2 correction. Atmos.
Meas. Tech. 9 (2), 313.

Clarisse, L., Hurtmans, D., Prata, A.J., Karagulian, F., Clerbaux, C., De Maziére, M.,
Coheur, P.-F., 2010. Retrieving radius, concentration, optical depth, and mass of
different types of aerosols from high-resolution infrared nadir spectra. Appl. Opt. 49
(19), 3713-3722.

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan,
K., Brunekreef, B., Dandona, L., Dandona, R., 2017. Estimates and 25-year trends of
the global burden of disease attributable to ambient air pollution: an analysis of data
from the global burden of diseases study 2015. Lancet 389 (10082), 1907-1918.

de Hartog, J.J., Lanki, T., Timonen, K.I.., Hoek, G., Janssen, N.A., Ibald-Mulli, A., Peters,
A., Heinrich, J., Tarkiainen, T.H., van Grieken, R., 2009. Associations between PM2.
5 and heart rate variability are modified by particle composition and beta-blocker use
in patients with coronary heart disease. Environ. Health Perspect. 117 (1), 105.

Di, Q., Koutrakis, P., Schwartz, J., 2016. A hybrid prediction model for PM2. 5 mass and
components using a chemical transport model and land use regression. Atmos.
Environ. 131, 390-399.

Eck, T.F., Holben, B.N., Reid, J.S., Dubovik, O., Smirnov, A., O'Neill, N.T., Slutsker, 1.,
Kinne, S., 1999. Wavelength dependence of the optical depth of biomass burning,
urban, and desert dust aerosols. J. Geophys. Res.: Atmos. 104 (D24), 31333-31349.

Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M., He, J., Yan, Y., Wang, F., Min, M., Zhai,
P., 2017a. Impact of diurnal variability and meteorological factors on the PM2.5 -
AOD relationship: implications for PM2.5 remote sensing. Environ. Pollut. 221,
94-104.

Guo, Y., Tang, Q., Gong, D.-Y., Zhang, Z., 2017b. Estimating ground-level PM 2.5 con-
centrations in Beijing using a satellite-based geographically and temporally weighted
regression model. Rem. Sens. Environ. 198, 140-149.

Gupta, P., Christopher, S.A., 2009. Particulate matter air quality assessment using in-
tegrated surface, satellite, and meteorological preducts: 2. A neural network ap-
proach. J. Geophys. Res.: Atmos. 114, D20.

Gupta, P., Levy, R.C., Mattoo, S., Remer, L.A., Munchak, L.A., 2016. A surface reflectance
scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target
retrieval algorithm. Atmos. Meas. Tech. 9 (7), 3293-3308.

Han, L., Zhou, W., Li, W., 2016. Fine particulate (PM2.5) dynamics during rapid urba-
nization in Beijing, 1973-2013. Sci. Report 6, 23604.

Hand, J.L., Kreidenweis, S.M., 2002. A new method for retrieving particle refractive index
and effective density from aerosol size distribution data. Aerosol Sci. Technol. 36
(10), 1012-1026.

Hansen, J.E., Travis, L.D., 1974. Light scattering in planetary atmospheres. Space Sci.
Rev. 16 (4), 527-610.

Hao, Y., Liu, Y.-M., 2016. The influential factors of urban PM2. 5 concentrations in China:
a spatial econometric analysis. J. Cleaner Prod. 112, 1443-1453.

He, Q., Huang, B., 2018. Satellite-based mapping of daily high-resolution ground PM 2.5
in China via space-time regression modeling. Remote Sens. Environ. 206, 72-83.

Hobbs, P.V., Radke, L.F., Lyons, J.H., Ferek, R.J., Coffman, D.J., Casadevall, T.J., 1991.
Airborne measurements of particle and gas emissions from the 1990 volcanic erup-
tions of mount redoubt. J. Geophys. Res.: Atmos. 96 (D10), 18735-18752.

Hofmann, D., Rosen, J.M., 1983. Sulfuric acid droplet formation and growth in the
stratosphere after the 1982 eruption of El Chichon. Science 222 (4621), 325-327.

Hsu, N., Jeong, M.J., Bettenhausen, C., Sayer, A., Hansell, R., Seftor, C., Huang, J., Tsay,
S.C., 2013. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J.
Geophys. Res.: Atmos. 118 (16), 9296-9315.

Hu, H.Y., 1935. The Distribution of Population in China, With Statistics and Maps. Acta
Geographica Sinica 2 (2), 33-74.

Hu, X., Waller, L.A., Lyapustin, A., Wang, Y., Al-Hamdan, M.Z., Crosson, W.L., Estes Jr,
M.G., Estes, S.M., Quattrochi, D.A., Puttaswamy, S.J., 2014. Estimating ground-level
PM2. 5 concentrations in the Southeastern United States using MAIAC AOD retrievals
and a two-stage model. Remote Sens. Environ. 140, 220-232.

Huang, Y., Luo, X., 2008. Geography in China. Reshaping Economic Geography East Asia
196.

Junge, C., 1955. The size distribution and aging of natural aerosols as determined from
electrical and optical data on the atmosphere. J. Meteorol. 12 (1), 13-25.

King, M.D., Byrne, D.M., 1976. A method for inferring total ozone content from the
spectral variation of total optical depth obtained with a solar radiometer. J. Atmos.



M. Liu, et al.

Sei. 33 (11), 2242-2251.

Koelemeijer, R.B.A., Homan, C.D., Matthijsen, J., 2006. Comparison of spatial and tem-
poral variations of aerosol optical thickness and particulate matter over Europe.
Atmos. Environ. 40 (27), 5304-5315.

Koschmieder, H., 1925. Theorie der horizontalen Sichtweite. Physik der freien
Atmosphdre 12, 171.

Kumar, N., Chu, A., Foster, A., 2007. An empirical relationship between PM2. 5 and
aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 41 (21), 4492-4503.

Lee, H., Liu, Y., Coull, B., Schwartz, J., Koutrakis, P., 2011. A novel calibration approach
of MODIS AOD data to predict PM2. 5 concentrations. Atmos. Chem. Phys. 11 (15),
7991.

Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., Kaufman, Y.J., 2007. Second-genera-
tion operational algorithm: Retrieval of aerosol properties over land from inversion of
Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophy.
Res.: Atmos. 112 (D13), 211.

Li, X., Zhang, C., Li, W., Liu, K., 2017. Evaluating the Use of DMSP/OLS Nighttime Light
Imagery in Predicting PM2.5 Concentrations in the Northeastern United States.
Remote Sensing 9 (6), 620.

Li, Y., Chen, Q., Zhao, H., Wang, L., Tao, R., 2015. Variations in PM10, PM2. 5 and PM1. 0
in an urban area of the Sichuan Basin and their relation to meteorological factors.
Atmosphere 6 (1), 150-163.

Li, Z., Zhang, Y., Shao, J., Li, B., Hong, J., Liu, D., Li, D., Wei, P., Li, W., Li, L., 2016.
Remote sensing of atmospheric particulate mass of dry PM2. 5 near the ground:
Method validation using ground-based measurements. Remote Sens. Environ. 173,
50-68.

Lin, C., Li, Y., Yuan, Z., Lau, AK.H,, Li, C., Fung, J.C.H., 2015. Using satellite remote
sensing data to estimate the high-resolution distribution of ground-level PM2.5.
Remote Sens. Environ. 156, 117-128.

Lin, G., Fu, J., Jiang, D., Hu, W., Dong, D., Huang, Y., Zhao, M., 2013. Spatio-temporal
variation of PM2. 5 concentrations and their relationship with geographic and so-
cioeconomic factors in China. Int. J. Environ. Res. Public Health 11 (1), 173-186.

Li, L., Yang, J., Wang, Y., 2014. An improved dark object method to retrieve 500m-
resolution AOT (Aerosol Optical Thickness) image from MODIS data: A case study in
the Pearl River Delta area, China. ISPRS J. Photo. Rem. Sen. 89, 1-12.

Liu, X, Cheng, Y., Zhang, Y., Jung, J., Sugimoto, N., Chang, S.-Y., Kim, Y.J., Fan, S., Zeng,
L., 2008. Influences of relative humidity and particle chemical composition on
aerosol scattering properties during the 2006 PRD campaign. Atmos. Environ. 42 (7),
1525-1536.

Liu, Y., He, K., Li, S., Wang, Z., Christiani, D.C., Koutrakis, P., 2012. A statistical model to
evaluate the effectiveness of PM2. 5 emissions control during the Beijing 2008
Olympic Games. Environ. Int. 44, 100-105.

Liu, Y., Paciorek, C.J., Koutrakis, P., 2009. Estimating regional spatial and temporal
variability of PM2. 5 concentrations using satellite data, meteorology, and land use
information. Environ. Health Perspect. 117 (6), 886.

Liu, Y., Sarnat, J.A., Kilaru, V., Jacob, D.J., Koutrakis, P., 2005. Estimating ground-level
PM2. 5 in the eastern United States using satellite remote sensing. Environ. Sci.
Technol. 39 (9), 3269-3278.

Liu, Z., Hu, B., Ji, D., Wang, Y., Wang, M., Wang, Y., 2015. Diurnal and seasonal variation
of the PM2. 5 apparent particle density in Beijing, China. Atmos. Environ. 120,
328-338.

Luo, J., Du, P., Samat, A., Xia, J., Che, M., Xue, Z., 2017. Spatiotemporal pattern of PM2.5
concentrations in mainland china and analysis of its influencing factors using geo-
graphically weighted regression. Scientific Report 7, 40607.

Lyapustin, A., Wang, Y., Korkin, S., Huang, D.J.A.M.T., 2018. MODIS Collection 6 MAIAC
algorithm. Atmos. Meas. Tech. 11 (10), 5741-5765.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote
sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote
Sens. 152, 166-177.

Ma, Z., Hu, X., Huang, L., Bi, J., Liu, Y., 2014. Estimating ground-level PM2.5 in China
using satellite remote sensing. Environ. Sci. Technol. 48 (13), 7436-7444.

Ma, Z., Hu, X., Sayer, A.M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., Liw, Y.,
2016. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-
2013. Environ. Health Perspect. 124 (2), 184-192.

O'Neill, N.T., 2003. Spectral discrimination of coarse and fine mode optical depth. J.
Geophys. Res. 108 (D17), 4559.

Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., Kleeman, M.J., 2015.
Associations of mortality with long-term exposures to fine and ultrafine particles,
species and sources: results from the California Teachers Study Cohort. Environ.
Health Perspect. 123 (6), 549.

Pope, C.A,, Ezzati, M., Cannon, J.B., Allen, R.T., Jerrett, M., Burnett, R.T., 2018. Mortality
risk and PM 2.5 air pollution in the USA: an analysis of a national prospective cohort.
Air Qual. Atmos. Health 11, 1-8.

Prats, N., Cachorro, V., Berjon, A., Toledano, C., De Frutos, A., 2011. Column-integrated
aerosol microphysical properties from AERONET Sun photometer over southwestern
Spain. Atmos. Chem. Phys. 11 (24), 12535-12547.

Qian, J., Liu, C., 2018. Distributions and changes of aerosol optical depth on both sides of
HU Huanyong Line and the response to land use and land cover. Acta Scientiae
Circumstantiae 38, 752-760.

Raabe, 0.G., 1976. Aerosol aerodynamic size conventions for inertia! sampler calibration.
J. Air Poll. Control Assoc. 26 (9), 856-860.

Reid, J.S., Jonsson, H.H., Maring, H.B., Smirnov, A., Savoie, D.L., Cliff, S.S., Reid, E.A.,
Livingston, J.M., Meier, M.M., Dubovik, O., 2003. Comparison of size and morpho-
logical measurements of coarse mode dust particles from Africa. J. Geophys. Res.:
Atmos. 108 (D19), 8593.

98

ISPRS Journal of Photogrammetry and Remote Sensing 158 (2019) 90-98

Remer, L., Mattoo, S., Levy, R., Munchak, L., 2013. MODIS 3 km aerosol product: algo-
rithm and global perspective. Atmos. Meas. Tech. 6, 1829.

Sacks, J.D., Stanek, L.W., Luben, T.J., Johns, D.O., Buckley, B.J., Brown, J.S., Ross, M.,
2011. Particulate matter-induced health effects: who is susceptible? Environ. Health
Perspect. 119 (4), 446-454.

Samoli, E., Andersen, Z.J., Katsouyanni, K., Hennig, F., Kuhlbusch, T.A., Bellander, T.,
Cattani, G., Cyrys, J., Forastiere, F., Jacquemin, B., 2016. Exposure to ultrafine
particles and respiratory hospitalisations in five European cities. Eur. Respir. J. 48
(3), 674-682.

Schuster, G.L., Dubovik, O., Holben, B.N., 2006. Angstrom exponent and bimodal aerosol
size distributions. J. Geophys. Res.-Atmos. 111 (D7). https://doi.org/10.1029/
2005JD006328.

Stafoggia, M., Schneider, A., Cyrys, J., Samoli, E., Andersen, Z.J., Bedada, G.B., Bellander,
T., Cattani, G., Eleftheriadis, K., Faustini, A., 2017. Association between short-term
exposure to ultrafine particles and mortality in eight European urban areas.
Epidemiology 28 (2), 172-180.

Steele, H.M., Eldering, A., Lumpe, J.D., 2006. Simulations of the accuracy in retrieving
stratospheric aerosol effective radius, composition, and loading from infrared spectral
transmission measurements. Appl. Opt. 45 (9), 2014-2027.

Steyn, D.G., Galmarini, S., 2008. Evaluating the predictive and explanatory value of at-
mospheric numerical models: between relativism and objectivism. Open Atmos. Sci.
J. 2 (1), 38-45.

Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H.C., Chen, W., 2015. Using optimal
interpolation to assimilate surface measurements and satellite AOD for ozone and
PM2. 5: A case study for July 2011. J. Air Waste Manag. Assoc. 65 (10), 1206-1216.

Tian, P., Cao, X., Zhang, L., Wang, H., Shi, J., Huang, Z., Zhou, T., Liu, H., 2015.
Observation and simulation study of atmospheric aerosol nonsphericity over the
Loess Plateau in northwest China. Atmos. Environ. 117, 212-219.

van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., Villeneuve,
P.J., 2010. Global estimates of ambient fine particulate matter concentrations from
satellite-based aerosol optical depth: development and application. Environ. Health
Perspect. 118 (6), 847-855.

van Donkelaar, A., Martin, R.V., Spurr, R.J., Burnett, R.T., 2015. High-resolution satellite-
derived PM2.5 from optimal estimation and geographically weighted regression over
North America. Environ. Sci. Technol. 49 (17), 10482-10491.

Wang, H., Zhang, L., Cao, X., Zhang, Z., Liang, J., 2013. A-Train satellite measurements of
dust aerosol distributions over northern China. J. Quant. Spectrosc. Radiat. Transfer
122, 170-179.

Wang, X., Dong, Z., Zhang, J., Liu, L., 2004. Modern dust storms in China: an overview. J.
Arid Environ. 58 (4), 559-574.

Yan, X,, Li, Z., Luo, N., Shi, W., Zhao, W., Yang, X., Liang, C., Zhang, F., Cribb,
M.J.R.S.0.E., 2019. An improved algorithm for retrieving the fine-mode fraction of
aerosol optical thickness. Part 2: Application and validation in Asia. Remote Sens.
Environ. 222, 90-103.

Yan, X., Li, Z., Shi, W., Luo, N., Wu, T., Zhao, W., 2017a. An improved algorithm for
retrieving the fine-mode fraction of aerosol optical thickness, part 1: Algorithm de-
velopment. Remote Sens. Environ. 192, 87-97.

Yan, X., Shi, W., Li, Z., Li, Z., Luo, N., Zhao, W., Wang, H., Yu, X., 2017b. Satellite-based
PM 2.5 estimation using fine-mode aerosol optical thickness over China. Atmos.
Environ. 170, 290-302.

Yao, F., Wu, J., Li, W., Peng, J., 2019. A spatially structured adaptive two-stage model for
retrieving ground-level PM2.5 concentrations from VIIRS AOD in China. ISPRS J.
Photo. Rem. Sen. 151, 263-276.

Yang, J., Hu, M., 2018. Filling the missing data gaps of daily MODIS AOD using spatio-
temporal interpolation. Sci. Total Environ. 633, 677-683.

Yang, X., Zheng, Y., Geng, G., Liu, H., Man, H., Lv, Z., He, K., de Hoogh, K., 2017.
Development of PM2.5 and NO2 models in a LUR framework incorporating satellite
remote sensing and air quality model data in Pearl River Delta region, China.
Environtal Pollution 226, 143-153.

You, W., Zang, Z., Pan, X., Zhang, L., Chen, D., 2015. Estimating PM2.5 in Xi'an, China
using aerosol optical depth: a comparison between the MODIS and MISR retrieval
models. Sci. Total Environ. 505, 1156-1165.

You, W., Zang, Z., Zhang, L., Li, Y., Pan, X., Wang, W., 2016. National-scale estimates of
ground-level PM2.5 concentration in China using geographically weighted regression
based on 3 km resolution MODIS AOD. Remote Sensing 8 (3). https://doi.org/10.
3390/rs8030184.

Zhang, C., Ni, Z., Ni, L., 2015a. Multifractal detrended cross-correlation analysis between
PM2. 5 and meteorological factors. Physica A 438, 114-123.

Zhang, L., Sun, J.Y., Shen, X.J., Zhang, Y.M., Che, H., Ma, Q.L., Zhang, Y.W., Zhang, X.Y.,
Ogren, J.A., 2015b. Observations of relative humidity effects on aerosol light scat-
tering in the Yangtze River Delta of China. Atmos. Chem. Phys. 15 (14), 8439-8454.

Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z.,
Zhao, Y., Shen, Z., 2013. Chemical characterization and source apportionment of
PM; 5 in Beijing: seasonal perspective. Atmos. Chem. Phys. 13, 7053-7074. https://
doi.org/10.5194/acp-13-7053-2013.

Zhang, Y., Li, Z., 2015. Remote sensing of atmospheric fine particulate matter (PM2.5)
mass concentration near the ground from satellite observation. Remote Sens.
Environ. 160, 252-262.

Zhao, X., Shi, H., Yu, H., Yang, P., 2016. Inversion of nighttime PM2.5 mass concentration
in Beijing based on the VIIRS day-night band. Atmosphere 7 (10), 136.

Zheng, G., Duan, F., Su, H., Ma, Y., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T.,
Chang, D.J.A.C., 2015. Physics Exploring the severe winter haze in Beijing: the im-
pact of synoptic weather, regional transport and heterogeneous reactions. Atmos.
Chem. Phys. 15 (6), 2969-2983.



