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Abstract - Ambient suspended fine particulate matter (PM2.5) is 

a greatest environmental risk factor for premature mortality. 

We adopted aerosol optical depth (AOD) retrieved from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

instrument to produce annual-mean PM2.5 concentrations from 

2012 to 2017 with a spatial resolution of 3km. A geographically 

weighted regression model was conducted using vertical- and 

hydroscopic-corrected AOD and meteorological data. The 

PM2.5 estimates were validated by the ground measurements, 

with R2 and RMSE (MPE) of 0.79 and 18.26 (12.03) μg/m3. The 

results show that national average of PM2.5 concentration 

represented a 31% decline over five years, from 69.37 μg/m3 in 

2013 to 43.85 μg/m3 in 2017, after a slightly rise (6%) during 

2012-2013. Significant reduction was revealed in the Beijing-

Tianjin-Hebei region, decreasing by 37.31% from 2013 to 2017. 

Despite low decline in some southeastern provinces, the 

national-mean PM2.5 concentration has decreased by 31%, 

indicating the effectiveness of the control policies issued by 

Chinese government in 2013. Nevertheless, efforts to improve 

air quality are still required to further reduce the mass 

concentration in China. 

 
Index Terms - PM2.5, satellite remote sensing, air pollution, trend 

 

I.INTRODUCTION 

 

China has suffered severe fine particulate matter (with 

aerodynamic diameters lower than 2.5μm, PM2.5) pollution 

due to urbanization and economic development [1]. Exposure 

to PM2.5 could increase the mortality risk from respiratory 

diseases, cardiopulmonary diseases and lung cancer [2], since 

these small particles could penetrate into the respiratory tract, 

even the alveoli and the blood stream [3]. The Global Burden 

of Diseases (GBD) study reported that PM2.5 poses the 

fourth highest risk factor for premature mortality in China, 

resulting in 11.1% of all deaths in 2016 [4].  

Chinese government introduce a series of control 

policies to improve the air quality. Following the World 

Health Organization (WHO) air quality guidelines [5], fine 

particulate matter was included into the Ambient Air Quality 

Standard (GB3095-2012) in 2012. Since then, “Action Plan 

for Air Pollution Prevention and Control” were published as 

the guideline for air quality improvement, intending to reduce 

PM2.5 concentration by 25% from 2012 to 2017 [6].  

Therefore, long-term PM2.5 estimation is inevitable to 

ensure the implementation of these strategies in China. 

Although air quality monitoring network could accurately 

quantify ground PM2.5 concentrations, it cannot reflect the 

spatial variation of the concentrations. Satellite remote 

sensing technique provide a possibility to estimate large-scale 

outdoor PM2.5 concentration based on the relationship 

between satellite-observed aerosol optical depth (AOD) and 

PM2.5. Various statistical models have been conducted using 

satellite observations, such as land use regressions [7], mixed 

effects models [8], generalized additive models [9] and 

artificial neural networks [10]. However, few models 

considered the aerosol physical characteristics, resulting in 

weak interpretability. Although chemical transport models 

could simulate PM2.5 concentrations with strong physical 

mechanism, the accuracy is influenced by initial parameters 

(such as emission inventory) and incomplete description of 

the processes [11].  

In this study, the satellite-observed AOD was corrected 

based on aerosol vertical distribution and hydroscopic growth 

characteristics for PM2.5 estimation using geographical 

weighted regression (GWR) model. Annual PM2.5 

concentrations from 2012 to 2017 were estimated over China, 

with spatial resolution of 3km. The long-term PM2.5 trend 

was explored to assess the implementation of current air 

control policy in China, providing scientific basis for future 

policy-making. 

The rest of paper is structured as follows. Section II 

introduces the adopted datasets and the main retrieval method. 

The validation results of ground PM2.5 retrieval and the trend 

during 2012-2017 are explored in Section III. Section IV 

concludes the paper. 

 

II.METHOD 

 

A. Data Collection  

Hourly ground PM2.5 measurements were obtained and 

calibrated with quality control according to “National 

Ambient Air Quality Standard” and “Environmental 

Protection Standard”. Annual PM2.5 concentrations were 

averaged from hourly concentrations when the satellite is 

passing by.  
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TABLE I. DETAILED INFORMATION OF ADOPTED DATASETS 

Dataset Unit Spatial resolution Data source 

Ground-level PM2.5 μg/m3 N/A China National Environment Monitoring Center (http://www.cnemc.cn), 

MODIS AOD Unitless 3km; 10km NASA Atmosphere Archive and Distribution System 

T K 

0.25 degree 
NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast 
Grids (https://rda.ucar.edu/datasets/ds083.3/) 

WS m/s 

P kg/m2 

RH % 
PBLH m 

VIS m N/A 
NCEP ADP Global Surface Observational Weather Data 

(http://rda.ucar.edu/datasets/ds461.0/) 
DEM m 1km Resources and Environmental Science Data Center 

The Moderate Resolution Imaging Spectroradiometer 

(MODIS) Collection 6 AOD data was adopted in our study. 

MODIS provides three AOD retrieval algorithms overland: 

the “Dark Target (DT)”, the “Deep Blue (DB)” and the 

“Multi-Angle Implementation of Atmospheric Correction 

(MAIAC)” algorithm. Considering the spatial extent and the 

computational efficiency, we employed MODIS 3km DT and 

10 km DB AOD in our study. DB algorithm excels DT in 

bight surface AOD retrieval, therefore, we employed DB 

10km AOD to fill the missing pixels in DT 3km AOD images. 

An inverse variance weighting (IVM) approach was adopted 

for gap- filling [12]. We also adopted AERONET (Aerosol 

Robotic Network) level 2.0 AOD measurements to calibrate 

MODIS AOD products.  

Meteorological data was acquired from NCEP/NCAR 

reanalysis dataset to perfect the AOD-PM2.5 relationship, 

which includes air temperature (K), surface wind speed (WS), 

precipitation (P), relative humidity (RH), planetary boundary 

layer height (PBLH) and visibility (VIS) (m). The 1km DEM 

data was also adopted in this study. The detailed information 

is shown in Table I. The VIS data was interpolated to 3km 

spatial resolution using the inverse distance weighted 

algorithm. All adopted datasets were unified with spatial 

resolution of 3 km for modelling using cubic convolution 

resampling algorithm. 

 
B. Satellite-derived PM2.5 estimation 

According to  [13], both RH and PBLH could affect the 

AOD-PM relationship. Since satellite-observed AOD is the 

aerosol optical property in the atmosphere column, it should 

be corrected the ground-level extinction via eliminating the 

effect of height. The majority of atmospheric aerosols evenly 

suspend in the PBL due to the active mixing was 

demonstrated in [14]. Meanwhile, aerosol hygroscopic 

characteristic affects extinction through changing the particle 

size, leading to the overestimation of mass concentration. 

Therefore, we corrected satellite-observed AOD to ‘meteo-

scaled’ optical depth using the following formula.  

AOD*= AOD/(PBLH*f(RH))                          (1) 

where f(RH) refers to hygroscopic growth function with 

independent variables of relative humidity RH, which is 

calculated based on the previous studies [15-17]. 

 The GWR model was conducted to estimate PM2.5 

across China based on the corrected AOD, which was 

developed according to the following model structure: 

𝑃𝑀2.5(𝑖,𝑗) = 𝛽0(𝑖,𝑗) + 𝛽𝐴𝑂𝐷(𝑖,𝑗)
∗ 𝐴𝑂𝐷(𝑖,𝑗)

∗ + 𝛽𝑇(𝑖,𝑗)𝑇(𝑖,𝑗) +

𝛽𝑊𝑆(𝑖,𝑗)𝑊𝑆(𝑖,𝑗) + 𝛽𝑃(𝑖,𝑗)𝑃(𝑖,𝑗) + 𝛽𝑉𝐼𝑆(𝑖,𝑗)𝑉𝐼𝑆(𝑖,𝑗) +

𝛽𝐷𝐸𝑀(𝑖,𝑗)𝐷𝐸𝑀(𝑖,𝑗) + 𝜀(𝑖,𝑗)                (2) 

where 𝑃𝑀2.5(𝑖,𝑗) is the annual ground-level PM2.5 

concentration at location (i, j); 𝛽0  is the intercept for each 

year;  β  with different subscripts denote the slope of 

corresponding variables. 𝜀(𝑖,𝑗) is the error term at location (i,j). 

The Gaussian distance decay functions were adopted to 

determine the weight. 

The model was developed based on the PM2.5 ground 

measurements from 2013 to 2017 due to the limited number 

of measurements in 2012. Considering the spatial 

autocorrelation, the 10-fold block cross validation (CV) were 

adopted to evaluate the model performance. 

 

III.RESULTS AND DISCUSSION 

 

A. Validation of PM2.5 concentrations 

We obtained available ground-level PM2.5 measurements 

across China over 2012-2017. Fig.1 presents the spatial 

pattern of the 6-year average PM2.5 concentrations. The 

spatial distribution of ground-level measurements is 

consistent with that of satellite-derived results, with severe 

PM2.5 pollution in the eastern China. Four hotspots 

(including three city clusters and one desert region) are also 

presented to highlight the details. Among the three city 

hotspots, the highest concentration occurred in the Beijing-

Tianjin-Hebei (BTH) metropolitan area, with six-year mean 

concentration higher than 75 μg/m3, followed by the Yangtze 

River Delta region (YRD) region and the Pearl River Delta 

(PRD) region. These three city clusters contribute over 28 % 

of the total Chinese population, with only 6% of the total area. 

PM2.5 concentrations in these densely populated regions 

result from the rapid urbanization and industrial development, 

while dust and sand are the primary sources of the PM2.5 in 

the Taklamakan Desert [18]. 
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Fig. 1Spatial pattern of the 6-year average of PM2.5 concentrations 

TABLE II. VALIDATION RESULTS OF ANNUAL MEAN PM2.5 

CONCENTRATION 

 N R2 RMSE (μg/m3) MPE(μg/m3) 

Model-fitting 5468 0.83 15.22 9.87 

Cross-validation 5468 0.79 18.26 12.03 

Note: N - sample numbers; R2 - determination coefficient; RMSE - root 
mean square error; MPE - mean predictive error 

 

Table II shows the validation results of annual mean 

PM2.5 concentrations. The model fitting and CV R2 are 0.83 

and 0.79, respectively. The performance is comparable to 

those in other studies [9, 18]. We selected three mega cities 

(Beijing, Shanghai and Guangzhou) corresponding to three 

hotspots (the BTH, YRD and PRD regions) in Fig. 1 to 

highlight the temporal pattern of PM2.5 concentrations 

during 2012-2017. The inter-annual variation of the retrieved 

and measured PM2.5 concentrations in three mega cities 

including Beijing, Shanghai, and Guangzhou are plotted in 

Fig. 2. The trends of estimated concentrations are similar with 

those of measured values. The mean differences between 

ground measurements and satellite estimations in these three 

cities are 4.63±3.81 μg/m3, 2.21±3.02 μg/m3 and 1.66±2.93 

μg/m3, respectively. The result shows that the method 

combined the GWR model with corrected AOD based on 

aerosol vertical distribution and hydroscopic growth 

characteristics could effectively estimate ground-level PM2.5 

concentration in national scale. 

 

 

Fig. 2 Interannual variations of the estimated and measured PM2.5 mass 

concentrations in China and three mega cities (marked by solid and dashed 

lines respectively) 

 

B. PM2.5 trend 

Fig. 3 Percentage changes over the eastern China during 2012-2013 and 

2013-2017 
 

The interannual variation shows that the annual mean PM2.5 

concentration in China was slightly increased from 65.66 

μg/m3 in 2012 to 69.37 μg/m3 in 2013 before decreasing to 

43.85 μg/m3 in 2017 (Fig. 2). The result is consistent with the 

previous studies [6, 19]. Hence, the spatial distributions of 

PM2.5 percentage changes from 2012-2013 and 2013-2017 

are separately plotted to highlight the trends in the densely-

populated areas (Fig. 3). PM2.5 concentrations were 

increased by 20%-30% in the northeastern China during 

2012-2013, while values in the southeast were rise slowly. 

After 2013, when “Action Plan for Air Pollution Prevention 

and Control” was issued, the PM2.5 concentrations in most 

provinces were decreased significantly. The concentrations in 

the BTH regions are decreased by 37.31%, with decreasing 

rates of -5.79 μg/m3/year in Beijing and -6.08 μg/m3/year in 

Tianjin. The significant decline in the BTH region is due to 

the intense air quality policies. Although some provinces, 

such as Fujian, Jiangxi and Jiangsu province, showed much 

less change, it is encouraging that the annual-mean PM2.5 

concentration in China has decreased by 31%, indicating the 
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effectiveness of Chinese government control policies. 

However, the efforts of air quality improvement are still 

required to meet the WHO standard. 

 

IV. CONCLUSION 

 

This paper investigated the annual average ground-level 

PM2.5 concentrations from 2012 to 2017 over China 

obtained from the corrected AOD and meteorological data 

using the GWR model. The PM2.5 estimation has been 

validated, with CV R2 and RMSE (MPE) of 0.79 and 18.26 

(12.03) μg/m3. The spatial patterns of six-year average PM2.5 

concentration across China have been presented. Among 

three metropolitan city clusters with highly dense population, 

the highest concentration occurred in the BTH region, 

followed by the YRD and PRD regions. The percentage 

changes of PM2.5 concentrations during 2012-2013 and 

2013-2017 were explored to assess the variation trends. The 

results show that the national-average PM2.5 concentration 

was decreased by 31% during 2013-2017 after a slightly rise 

(6%) during 2012 to 2013. Significant reduction was revealed 

in the BTH region, decreasing by 37.31% from 2013 to 2017. 

However, some provinces (e.g.S Jiangsu and Guizhou) 

showed little change. It is suggested that further efforts 

should be made to improve air quality in order to meet the 

WHO standard. 
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