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Abstract—This paper presents the development of a semiauto-
mated driving line generation method using point clouds acquired
by a mobile laser scanning system. Horizontally curved driving
lines are a critical component for high-definition maps that are
required by autonomous vehicles. The proposed method consists
of three steps: Road surface extraction, road marking extraction,
and driving line generation. First, the points covering road sur-
faces are extracted using the curb-based road surface extraction
algorithms depending on both the elevation and slope differences.
Then, road markings are identified and extracted according to a
variety of algorithms consisting of georeferenced intensity imagery
generation, multithreshold road marking extraction, and statisti-
cal outlier removal. Finally, the conditional Euclidean clustering
algorithm is employed, followed by the cubic spline curve-fitting
algorithm and equidistant line-based driving line generation algo-
rithms for horizontally curved driving line generation. Our method
is evaluated by six MLS point cloud datasets collected from vari-
ous types of horizontally curved road corridors. Quantitative eval-
uations demonstrate that the proposed road marking extraction
algorithm achieves an average recall, precision, and F1-score of
90.79%, 92.94%, and 91.85%, respectively. The generated driving
lines are assessed by overlaying them on the manually interpreted
reference buffers from 4-cm resolution unmanned aerial vehicle or-
thoimagery, and a 15 cm level navigation and localization accuracy
is achieved.

Index Terms—Cubic spline, driving line, equidistant line, high-
definition (HD) map, mobile laser scanning (MLS), point clouds,
road marking, road surface.

I. INTRODUCTION

IN RECENT years, many prominent multinational
automotive manufacturers (e.g., General Motors, BMW,

Mercedes-Benz, Audi, Toyota, and Ford) and information and
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communication technology companies (e.g., Google, Apple,
Uber, Tesla, Baidu, and Nvidia), are investing heavily, adjusting
their development strategies, and indicating their ambitions
to participate in the emerging market of autonomous vehicles
(AVs) [1]. An AV is capable of determining the best navigation
routes, driving itself on the most challenging road environ-
ments, and avoiding collisions with fixed or moving road
users (e.g., pedestrians, cyclists, and cars) without direct driver
intervention [2].

According to the updated policy on automated vehicle de-
velopment, released in May 2016 by the U.S. Department of
Transportation and the National Highway Traffic Safety Ad-
ministration (NHTSA), six levels are defined for vehicle au-
tomation: No automation (Level 0), driver assistance (Level 1),
partial automation (Level 2), conditional automation (Level 3),
high automation (Level 4), and full automation (Level 5) [3].
In order to achieve fully autonomous driving (Level 5), several
subsystems, including sensing and perception systems, decision
support systems, operating systems, hardware platforms, and
cloud platforms, are highly integrated to work in parallel [4].

These subsystems are essential components to control and
navigate an AV, depending on two sources of data: Real-time
sensing and perception data from multiple onboard sensors, and
preloaded high-definition (HD) maps [5]. The onboard sensors,
including Global Navigation Satellite System (GNSS) units,
RAdio Detection And Ranging sensors, video cameras, and
Light Detection And Ranging (LiDAR) sensors, are capable of
supporting the navigation, localization, object detection, and ob-
ject tracking missions. Moreover, a centralized computing sys-
tem analyzes all of the data obtained from the multiple sensors
to manipulate the steering, acceleration, and braking. However,
such onboard sensors cannot provide efficient and reliable nav-
igation services for AVs under complex urban street canyons or
uncertain road conditions, including the limited sight distances
and ambiguous visual clues [6]. Therefore, detailed and updated
HD maps are necessary to provide precise vehicle localization
and real-time route navigation services for autonomous driving
in all road environments [7]. These preloaded maps can provide
AVs with an extended monitoring range, allowing cars to an-
ticipate in turns, roundabouts, and intersections far beyond the
reach of onboard sensors.

Compared with conventional navigation maps, the lane-level
accuracy performance of HD maps can reach 30 cm [8]. These
HD maps, composed of detailed sublane level road informa-
tion, are commonly developed by remote sensing and surveying
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techniques. Laser scanning techniques are capable of providing
highly accurate and georeferenced 3-D data with higher time
efficiency and better cost savings in comparison to aerial imagery
[9]. Mobile laser scanning (MLS) systems are the vehicle-based
mobile mapping systems that produce three-dimensional (3-D)
point clouds from the surrounding objects in urban road envi-
ronments [10]. Furthermore, the point density captured by MLS
platforms can reach up to 8000 points/m2. It is challenging for
both airborne laser scanning (ALS) and terrestrial laser scanning
(TLS) platforms to achieve such precision and flexibility [11].
Accordingly, due to its high flexibility and quick data collection
rate in large urban areas, MLS point clouds are more capable
than other surveying and remote sensing techniques for driving
line generation in this paper.

However, processing a massive amount of 3-D point clouds is
a great challenge. These 3-D point clouds contain highly dense
points with 3-D georeferenced intensity and detailed geographic
information, which also causes challenges. Additionally, the
complex patterns of curved road markings at horizontally curved
road sections make detection and extraction challenging. Object
variations, density variations, outliers, and the incompleteness
of objects caused by occlusions and different sensor-scanning
patterns must be checked and corrected. Moreover, other limita-
tions arise from prior knowledge (e.g., road design regulations)
in lane centerline extraction and driving line generation. Such
challenges add to the difficulty in generating driving lines using
MLS point clouds.

In this paper, we propose a semiautomated method for the
generation of horizontally curved driving lines in urban curved
road corridors using MLS point clouds. The main contributions
of this paper are as follows: 1) several optimized algorithms
to extract road surfaces and road markings using MLS point
clouds at horizontally curved road sections are developed; and
2) a novel semiautomated algorithm to generate horizontally
curved driving lines is proposed according to equidistant lines
and road design regulations.

II. RELATED WORK

MLS systems are capable of achieving a high acquisition rate
of three geospatial point clouds, which can be used for an ex-
tended range of intelligent transportation system applications
[12]. Such accurate and high-density 3-D MLS data contributes
to HD maps [13], road asset inventory [14], and road scene
structure [15]. MLS systems have indicated great potential for
rapid commercialization [16]. The following subsections present
a systematic literature review of related techniques and existing
methods for HD map development, road surface extraction, road
marking extraction, and driving line generation using MLS point
clouds.

A. Introduction to HD Maps and Horizontal Curves

HD maps provide a highly accurate and realistic representa-
tion of the current road networks, which are capable of updating
in real time and recording traffic changes, such as accidents, lane
closures, traffic congestion, and updated speed limitations at cm
level of accuracy [17]. Additionally, such maps are a signifi-
cant element of highly autonomous driving technology, assisting

Fig. 1. Lines in HD maps defined in this paper. (a) Circular horizontal curve
and straight lines. (b) Complex road section.

AVs to precisely localize themselves on the road, and providing
them with an extended monitoring range to anticipate in turns
and intersections far beyond the reach of onboard sensors [18].
Furthermore, the HD Live Map established by HERE consists
of dynamic content layers to provide detailed and real-time road
information, including detailed sublane level information, dy-
namic road conditions, roadside infrastructure (e.g., traffic signs,
roadside trees, and light poles), and speed profile data [13].

Horizontal curves have a considerable impact on traffic safety
and efficiency due to gradual transitions to or from the curves
and limited sight distances for both drivers and onboard sensors
[19]. According to the Preliminary 2016 Ontario Road Safety
Annual Reports Selected Statistics submitted to the Ministry of
Transportation Ontario, Canada, 11.9% of fatal collisions oc-
curred in Ontario were related to horizontal curves [20].

Fig. 1 shows typical line-shaped curved road markings de-
fined in HD maps at a two-way and two-lane horizontal curve
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[see Fig. 1(a)], and a two-way and four-lane road corridor with
horizontal curves [see Fig. 1(b)], respectively. Several assump-
tions are made in the process of generating driving lines for HD
maps. First, each horizontally curved road section is composed
of many line-shaped curved road markings, such as lane lines,
edge lines, and centerlines, which describe the geometric de-
tails of horizontal curves. Second, driving lines are generated to
represent the real driving routes for AVs within the allowable
positioning and navigating errors. Third, it is assumed that a
majority of curved road sections are designed as simple circular
curves in order to ensure a steady driving transition and reduce
road hazards. This paper mainly focuses on developing reliable
driving lines at horizontally circular curved road sections. The
fully autonomous driving function requires positional accuracy
of better than 30 cm for a 3 m wide lane, and provides AVs with
a lateral 20-cm offset from the lane centerlines [21].

B. Road Surface Extraction

A variety of methods and algorithms have been developed to
detect and extract road surfaces from MLS data. Such methods
are mainly classified into three categories based on the following
data formats: 3-D raw point clouds, 2-D feature images, and
other data sources [14].

Road surface detection and extraction can be implemented
on either 3-D point clouds or 2-D feature images derived from
3-D points. In [22], the authors performed a road segmentation
method using a curvature analysis directly interpreted from MLS
data. According to the parametric active contour or snake model,
an automated algorithm for road edge extraction was proposed
from MLS point clouds [23]. In [24], road edges and road sur-
faces were extracted by determining the angular distance to the
ground normal from MLS point clouds. In [12], [25], and [26],
a voxel-based upward growing algorithm was proposed to di-
rectly filter out ground points from raw MLS data. In order to
enhance computational efficiency, trajectory data was widely
applied [27]–[29]. In [15] and [30], a supervoxel generation
method was applied to automatically extract road boundaries
and road surfaces from MLS data. A computationally efficient
method integrating supervoxel with Hough forest framework
was used in [31] to filter out pavement from 3-D MLS points for
further object detection. In [32], the raw MLS point clouds along
the trajectory of a vehicle was vertically partitioned by first. The
RANdom SAmple Consensus algorithm was then implemented
to extract ground points based on the average height of ground.
Additionally, the spatial configuration of the scan line relies on
related parameters (e.g., driving speed, sensor trajectory, and
scanner orientation) of a specific MLS system. Thus, the high-
density pavement points boost the computational efficiency in
road segmentation by processing scan lines [28], [29], [33], [34].
Furthermore, some studies concentrated on extracting road sur-
faces directly from MLS data, based on the smoothness of road
surfaces [35]. These methods are computationally expensive and
time consuming. Moreover, the majority of previous methods re-
quire much prior knowledge about data characteristics and road
properties. It is thus challenging to achieve fully automated road
surface extraction.

Converting 3-D laser point clouds into 2-D georeferenced fea-
ture (GRF) images can effectively extract road surfaces using
the existing image processing approaches, and achieve com-
putational efficiency enhancement [36]. Road segmentation of
range scan lines was performed in 2-D. An effective method
was proposed in [33] to differentiate geometric features (e.g.,
buildings, trees, and road surfaces) by analyzing the height de-
viation. In [37], with the assistance of the scan line segment
between vehicles trajectory points, road edges and road sur-
faces were detected and extracted by taking height differences,
altitude mean values, and altitude variances into consideration.
In the study conducted by [38], high elevation points were fil-
tered out from the profiles, and rapid slope changes in the spline
were then determined. Subsequently, road surfaces were com-
pletely extracted in [39] by generating GRF images to separate
road surface points from the entire MLS point clouds. 3D–2D
dimensional reduction methods reduces the spatial distances be-
tween points belonging to the same classes and thus significantly
decreases computational cost. However, it is still challenging
to handle undulating terrain environments by using 2-D GRF
images.

With the assistance of other data sources, such as UAV im-
agery, high-resolution satellite imagery, and ALS or TLS point
clouds, the accuracy of extraction results can be improved by
using additional road texture information. In [40], 3-D surface
geometric models were generated with the fusion of MLS data
and camera data. Moreover, multiple aerial scans and TLS high-
density point clouds of an urban road scenario were combined
together to effectively extract road surfaces [41]. However, these
data obtained from multiple sensors at several times, in various
weather situations, under different lighting conditions, and with
diverse sampling densities, make the data calibration and data
fusion challenging [14]. Since point clouds are not in a regu-
lar format, the deficiencies of massive MLS points (e.g., large
volume, distortions, and occlusions) bring in dilemmas and un-
certainties for accurate road segmentation. Therefore, it is nec-
essary to propose an improved and robust road surface extraction
method from MLS point clouds to deal with the aforementioned
problems.

C. Road Marking Extraction

Road markings, as significant elements in traffic management
systems, play a critical role in providing guidance, warning,
and bans for all road users. Typically, road markings are highly
retro-reflective paintings on concrete pavement. Therefore, the
relatively high intensity is regarded as a unique characteristic to
identify and extract road markings from MLS point clouds [42],
[43]. According to semantic knowledge (e.g., shape and size) and
laser intensity characteristics, road marking extraction methods
are mainly categorized into two types: 2-D GRF image-based
extraction, and 3-D point-based extraction methods [44].

Most studies extracted road markings from 2-D GRF images
interpreted from 3-D point clouds. Therefore, the existing
image processing algorithms, including multiscale threshold
segmentation, Hough Transform, and multiscale tensor voting
(MSTV) were applied with regard to the semantic information
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of road markings [39], [45], [46]. For instance, in [43], a
range-dependence thresholding algorithm was employed to
identify and extract road markings from intensity and range
images. Based on the generated 2-D feature images from raw
MLS data, a global intensity filtering method was performed
to roughly detect road markings [45]. In addition, in [39], a
georeferenced reflectance intensity image was generated by
first, and a Hough Transform approach was then employed in
four connected regions of the image to extract broken lane line
markings and continuous road edge lines. However, the Hough
Transform method has a difficulty in processing complex road
markings (e.g., words) while specifying the number of road
markings to be extracted. In contrast, the MSTV algorithm is
capable of noise suppression and road marking preservation. In
[46], a dynamic multiple thresholding method was implemented
first by determining the relationships between scanning range
and intensity values, followed by a morphological nearest
operation with linear road structures. Then, a remarkable
improvement was achieved by using the MSTV algorithm.
Extracting road markings by generating 2-D GRF images from
MLS data is persuasive to deal with the intensity inconsistency
issue caused by scanning patterns. Nevertheless, extracting
complicated types of road markings (e.g., digits and hatchings)
is a very difficult task using 2-D feature image processing
algorithms.

Meanwhile, many studies focused on directly extracting road
markings from 3-D point clouds. In [12], road markings were
directly extracted and classified from raw 3-D point clouds into
edge lines, stop lines, zebra crossing lines, arrow markings, rect-
angular markings, and centerlines. Based on road curbs and tra-
jectory data, the large-size road markings through spatial density
filtering and multisegment thresholding methods were extracted
by first, while Otsus thresholding algorithm was adopted to de-
termine optimal thresholds [47]. Subsequently, the small-size
road markings were extracted according to the principal com-
ponent analysis (PCA) and machine learning methods. In [48],
profile-based intensity analysis algorithms were proposed to di-
rectly extract painted markings from raw point clouds. First,
raw 3-D points were segmented into point cloud slices with
the assistance of trajectory data. Next, road surfaces were iden-
tified, based on the geometric properties of road edges, bar-
riers, and boundary lines. Finally, linear road markings were
successfully extracted by analyzing the peak value of intensity
within each scan line. Compared with 2-D image-based extrac-
tion methods, MLS point-based extraction methods aiming to
directly detect and extract road markings using raw MLS data,
which is capable to improve completeness and correctness in ex-
traction results within a short computational time. Additionally,
their geospatial information of road markings is preserved after
extraction, which can be utilized in further applications. How-
ever, automated extraction of road markings from a mass of
3-D laser points especially with huge concavo-convex features
and unevenly distributed point clouds is still a very challeng-
ing task. Thus, a refined multithreshold road marking extraction
algorithm is proposed in this paper to improve the robustness
and effectiveness for road marking extraction using MLS point
clouds.

D. Road Horizontal Parameter Estimation

Driver behavior, including misperceptions of driving speed
and poor visibility at horizontal curves, increases the potential
risks of traffic accidents. Thus, detecting traffic conditions, espe-
cially at horizontally curved road sections, and estimating road
horizontal parameters (e.g., curvature) are significant for AVs to
determine reliable driving lines and prevent collisions [49].

Many studies have been performed to extract geometric pa-
rameters at horizontally curved road sections by using MLS sys-
tems [50]–[54]. In [50], the software for precise estimations of
road horizontal geometric features was released using a suitably
equipped vehicle moving along the road on a two-way trip. Road
centerlines were extracted at first with the assistance of trajectory
data. Subsequently, the parameters of horizontal features were
determined according to a least-squares optimization of charac-
teristic curves. Additionally, in [51], an automated solution was
proposed to estimate curvature diagrams and analyze horizontal
geometric features by using trajectory data. In [52], road geom-
etry of horizontal elements was defined, based on the dynamic
measurements of GNSS systems. To begin with, the centerlines
were regarded as the middle points between two trajectories in
opposite directions. Then, a least-squares adjustment was ap-
plied to estimate the horizontal elements (e.g., straight lines,
circle arcs, and clothoid curves). Additionally, Holgado-Barco
et al. [54] proposed a semiautomatic method to extract road hor-
izontal alignment from a mobile LiDAR system, such as road
centerlines, straight lines, circular arcs, and clothoids accord-
ing to road axis modeling and transportation design standards.
Meanwhile, in [55], a cost-effective system was developed to
calculate vertical alignments of a road, based on data acquisi-
tion from GNSS sensors. In [56], the road geometry of hori-
zontal alignments was semiautomatically extracted from MLS
data. The related features were first extracted to model the road
axis from MLS data. The geometric design features of the hori-
zontal alignments were afterward calculated using azimuth and
curvature information. However, these methods mainly depend
on the localization precision of GNSS signals, which can be im-
pacted in GNSS weak/denied environments. Therefore, in this
paper, estimating such road horizontal parameters based on the
generated mathematical equations can remarkably improve the
estimation precision and reduce the labor cost.

III. METHOD FOR DRIVING LINE GENERATION

In this section, we present the theoretical and technical de-
tails for the proposed method of semiautomated generation of
horizontally curved driving lines. Such generated driving lines
can be further used to support the development of HD maps and
autonomous driving.

A. Workflow of the Proposed Method

To guarantee solid and precise navigation solutions for AVs in
complex urban road environments, this semiautomated method
endeavors to generate driving lines from MLS point clouds. This
method consists of three modules: Road surface extraction, road
marking extraction, and driving line generation (see Fig. 2).
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Fig. 2. Workflow of the proposed method.

In Module I, with the assistance of trajectory data, the
curb-based road surface extraction algorithm [28] is performed
to detect and extract road surfaces from raw MLS point clouds.
In Module II, the multithreshold road marking segmentation
method [12] is conducted for road marking extraction. A
statistical outlier removal (SOR) algorithm is afterward to filter
out noise points (e.g., isolated points and outliers). Module
III, in order to determine the best-fitting horizontal curves,
the conditional Euclidean clustering (CEC) algorithm is used
first, followed by a cubic spline curve-fitting algorithm. The
equidistant-line based driving line generation algorithms are
subsequently proposed to generate driving lines.

B. Module I: Road Surface Extraction

In this paper, we employ a curb-based road surface extrac-
tion algorithm [28] to extract road surfaces from the raw MLS
point clouds. Depending on the vehicle’s trajectory data, the
raw MLS point clouds are partitioned into a sequence of point
cloud data blocks, in each of which a corresponding profile is
sectioned with a certain width. Next, the point clouds in each
profile are projected onto the plane perpendicular to the direction
in which the vehicle moves forward. Each profile is afterward
gridded to generate a pseudo scan line, and a principal point
is determined within each grid cell. Then, road curb points are
extracted from each pseudo scan line, based on both elevation
and slope differences. Finally, a cubic B-spline interpolation al-
gorithm is employed to fit the curb points into two smooth road
edges. All point clouds located between two smooth edge lines
are considered road surface points.

The curb-based road surface extraction algorithm is adopted
and revised to improve the performance in road surface extrac-
tion. However, the majority of road surface extraction methods
based on trajectory data generally used a fixed-size data block to
segment road surfaces. Such methods cannot accurately extract
road surfaces for curved road sections. Moreover, point densi-
ties are various due to different scanning patterns and varying

Fig. 3. Profiling process on an MLS point cloud dataset.

Fig. 4. Curb identification in a profile image.

scanning distances between scanning objects and onboard laser
scanners. In order to overcome the variations of point density
and enhance the computational efficiency, trajectory points can-
not be directly used, since the curvatures of horizontal curves
have an influence on the size of a data block to be partitioned.
Therefore, compared to the previous study conducted in [28],
which utilized a fixed size of data blocks, our revised algorithm
can dynamically determine this size based on the differences of
horizontal curvatures. Fig. 3 presents a test sample of the raw
MLS point clouds. The red rectangles represent the sliced pro-
files, and the yellow line indicates the vehicle’s trajectory data.
Such data, regarded as a driving route of a moving vehicle, play
a critical role in the process of MLS point clouds profiling. To
this end, three critical parameters, block width (Bg), grid width
(Sp), and profile width (Pg), are involved. The Bg determines
the size of a data block to be sectioned, Sp is the grid size of a
pseudo scan line, and the Pg controls the number of points to
be counted at the stage of pseudo scan line generation. Accord-
ing to a collection of experiments, the values of Bg range from
0.5 to 2.0 m, and Sp range from 0.05 to 0.10 m in this paper,
based on the trajectory data and curvatures of horizontal curves.
The larger curvature of the horizontally curved road section is,
the smaller the values of Bg and Sg are determined, and the
more data blocks are to be generated. Based on [28], the Pg is
predefined as 25 cm.

According to two magnified views, Fig. 4 shows that the
road curbs are sharp height jumps, and vertical to road surfaces.
Thus, curb points can be identified by analyzing both elevation-
jump and slope-difference thresholds. The proposed algorithms
mathematically define the slope between two adjacent princi-
pal points (highlighted in red dots) within a generated pseudo
scan line, and the elevation difference of a certain point to its
nearest point in the pseudo scan line (see Fig. 5). According to
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Fig. 5. Pseudo scan line of a profile image.

both slope and elevation differences, a point can be identified
whether it is a curb point or not. These two criteria are therefore
defined by

∀pi :
{

if((Sslope ≥ ST )&(Hmin ≤ Hi ≤ Hmax)), candidates

otherwise, noncurb points
(1)

where Sslope represents the slope of two consecutive neighbour
points. ST denotes a predefined slope threshold (i.e., ST is Π/3
in this paper). Hi is the elevation difference of a specified point
to its adjacent point. Hmin and Hmax indicate the minimal and
maximal curb height thresholds (i.e., Hmin = 5 cm and Hmax =
30 cm in this paper). Furthermore, Sslope can be calculated by

⎧⎨
⎩Sslope = arctan

(
Zi+1−Zi√

(Xi+1−Xi)2+(Yi+1−Yi)2

)
Sslope∈

[−Π
2 ,Π2

] (2)

where (Xi, Yi, Zi) and (Xi+1, Yi+1, Zi+1) denote the coordi-
nates of two adjacent MLS points within a pseudo scan line,
while X and Y coordinates located on the YZ-plane and Z coor-
dinate represented by the elevation direction. Considering that
there are both positive and negative values in (2), a positive slope
value represents the point queue adding an off-road point from
the road at the curb edge; whereas a negative slope value indi-
cates the point queue switching an off-road point to the road at
the curb edge.

Accordingly, an MLS point will be regarded as a curb point
candidate if the slope of this point is equal or larger than the
predefined slope threshold ST (i.e., Sslope ≥ ST ). If the eleva-
tion difference of a road curb point candidate is within the range
of [Hmin, Hmax], this candidate is labeled as a real curb point.
Otherwise, it will be grouped into the noncurb points. Based on
a prior knowledge of the road design and construction standards,
these curb point candidates nearest to the vehicle’s moving tra-
jectory, are determined as the road curbs. As demonstrated in this
study, such curb-based road surface extraction strategies by em-
bedding the curvatures of horizontal curves and dynamic sizes
of point cloud data blocks, can achieve greater computational
efficiency than directly using fixed-sized data blocks.

C. Module II: Road Marking Extraction

Road markings, painted at horizontally curved road sections,
such as solid edge lines, dashed centerlines, and broken lane
lines, should be completely and effectively extracted from road
surfaces for driving line generation. Based on the inverse dis-
tance weighting method [39], in combination with intensity in-
formation and local-global elevation data, the MLS road surface
points are interpolated to generate 2-D GRF intensity images.
There are two crucial rules for such images generation: 1) the
greater intensity value of a certain point, the greater weight is as-
signed; and 2) the closer from a certain point to the center of the
grid, the greater weight is assigned. A grid resolution is defined
as 4 cm in this paper to ensure the accuracy and computational
efficiency.

Road markings are brightly painted with higher reflectance
materials than surrounding road surfaces. Such road markings
provide higher intensities than other pavement points. Therefore,
the multithreshold extraction method [12], and the Otsus thresh-
olding [47] method are conducted to extract road markings from
the generated GRF intensity imagery. The Otsus thresholding
approach supposes that an image is bimodal, and its illumina-
tion is consistent. The bimodal brightness is thus calculated by
analyzing the different properties of surface materials. Further-
more, the generated intensity imagery is divided into two classes:
Road markings as foreground, and others (e.g., road surfaces
and cracks) as background. Then, their cumulative probabilities
and mean levels are determined, accordingly. Consequently, the
intensity imagery is automatically segmented by selecting opti-
mum thresholds to minimize the within-class variance.

However, noises (e.g., isolated points and outliers) inevitably
exist that reduce the accuracy of extraction results and affect
the completeness of the road markings. Therefore, in order to
minimize the effect of noises, an SOR filter in the PCL package
[57] is employed to remove noises from the extracted road mark-
ing point clouds. First, the SOR algorithm defines the number
of the nearest searching points k of a certain point and deter-
mines their corresponding distances from this point to its neigh-
bors. Next, the average distancedi(i = 1, 2, . . . , n)of each point
pi(i = 1, 2, . . . , n) to its neighbors is calculated, whereas n is
the total number of road marking points. Furthermore, with an
assumption that the distribution of average distances should be
fitted to a Gaussian distribution with the mean μ and standard
deviation σ, points located outside a thresholding interval is de-
scribed as noise points and is removed afterward from the road
marking point clouds. In this way, road markings are completely
extracted.

D. Module III: Driving Line Generation

3-D MLS points, pertaining to the same semantic objects, are
still unorganized and isolated after noise removal. In order to suc-
cessfully generate driving lines at horizontal curves, the sparse
and unorganized road marking points are clustered into topolog-
ical and semantic objects using the CEC method. Compared to
the existing clustering methods, such as Fuzzy C-Means cluster-
ing, the advantage of using CEC method is that the constraints
for clustering are customizable by the users. First, a predefined



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: GENERATION OF HORIZONTALLY CURVED DRIVING LINES IN HD MAPS USING MOBILE LASER SCANNING POINT CLOUDS 7

Euclidean distance thresholdde is determined by considering the
point density and average spacing of the generated road marking
point clouds. Subsequently, two adjacent points will be assigned
into the same cluster if their Euclidean distance di is less than or
equal to de (i.e., di ≤ de). Otherwise, these two points will be
grouped into different clusters. The clustering targets in this pa-
per are road markings, particularly for lane lines, centerlines, and
edge lines. A prior knowledge (e.g., shape, scanning distance,
and urban street design regulations) are utilized for completely
filtering based on [56]. Accordingly, the final road marking clus-
ters are optimized using the following criteria:{

reversed clusters, if dr ≤ dc & wr ≥ wc

removed clusters, if dr ≥ dc & wr ≤ wc

(3)

where dc denotes a scanning distance threshold, wc indicates
a clustered road marking width threshold, and dr is the scan-
ning distance. The clusters will be removed if either the scan-
ning distance dr is less or equal than the given dc (i.e.,
dr ≤ dc), or their width wr is larger or equal than the given
wc (i.e., wr ≥ wc).

According to the road design and construction standards [58],
the majority of horizontally curved road segments are designed
as the combination of circular curves with straight lines [see
Fig. 1(a)]. A cubic spline curve fitting algorithm is thus em-
ployed to determine the best-matching mathematical functions
of these horizontal curves. Since the extracted road marking
points have been projected on the XY-plane in Module II, the
cubic spline function is defined as

S(x) = Φ0

[
x− xi

hi

]
yi +Φ1

[
x− xi

hi

]
yi+1

+ hiΨ0

[
x− xi

hi

]
mi + hiΨ1

[
x− xi

hi

]
mi+1 (4)

where S(x) represents the spline function, (xi, yi) de-
notes the coordinate information in XY-plane, i = 0, 1,...,
n, n is the total number of clustered road marking points
to be fitted, and mi is the parameters defined in the cubic
spline function. In addition, xi ≤ x ≤ xi+1, hi = xi+1 − xi,
Φ0(x) = (x+ 1)2(2x+ 1), Φ1(x) = x2(−2x+ 3), Ψ0(x) =
x(x− 1)2, and Ψ1(x) = x2(x− 1) are predefined in (4), re-
spectively. Subsequently, in order to determine the parameters
mi, the second derivative of (4) is further calculated as follows:

S
′′
(x) =

6

h2
i

[
2
(x− xi)

hi
− 1

]
yi − 6

h2
i

[
2
(x− xi)

hi
− 1

]
yi+1

+
1

hi

[
6
(x− xi)

hi
− 4

]
mi +

1

hi

[
6
(x− xi)

hi
− 2

]
mi+1.

(5)

To ensure the continuity of the second derivative, S
′′
(xi − 0)

should be equal toS
′′
(xi + 0), where i = 1, 2, . . . , n− 1, which

get the following:

(mi−1 + 2mi)

hi−1
+
(mi+1 + 2mi)

hi
=3

[
yi − yi−1

h2
i−1

+
yi+1 − yi

h2
i

]
.

(6)

TABLE I
VARIABLES DEFINED IN A SIMPLE CIRCULAR CURVE

Assume that⎧⎪⎪⎨
⎪⎪⎩
αi =

hi−1

hi−1 + hi

βi = 3

[
(1− αi)

(yi − yi−1)

hi−1
+ αi

(yi+1 − yi)

h2
i

]
.

(7)

Thus, based on (4)–(7), the cubic spline functions with param-
eters mi(i = 1, 2, . . . , n− 1) for extracted road marking points
can be obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2mi + α1m2 = β1 − (1− α1)y
′
0

(1− α2)m1 + 2m2 + α2m3 = β2

...

(1− αn−2)mn−3 + 2mn−2 + αn−2mn−1 = βn−2

(1− αn−1)mn−2 + 2mn−1 = βn−1 − αn−1y
i
n

(8)

where y
′
= S

′
(x), it denotes the first derivative of the spline

function. Therefore, the piecewise cubic spline functions about
the clustered road marking point clouds at horizontal curve road
section are determined. Accordingly, the curvatures of generated
cubic spline functions [i.e., (8)] are calculated as follows:

ρ =

∣∣S ′′
(x)

∣∣
(1 + S ′(x)2)

3
2

. (9)

Accordingly, if ρ = 0, the output of (8) is a straight line; if ρ
is a constant, the output is a circular curve; and if ρ ranges from
zero to a constant, the output is a transition curve. Based on (9),
the normals slope of any point on the curve and correspond-
ing normal equations are determined. Subsequently, the control
points on the equidistant lines are ascertained according to the
given width, slope, and direction. Table I presents all variables of
a circular horizontal curve, such variables are calculated based
on the obtained best-matching functions, to support the urban
street design and maintenance.

According to driving behaviors and prior knowledge, the gen-
erated driving lines are parallel to the road centerlines and edge
lines to ensure gradual transitions and traffic safety. Addition-
ally, assumed that the curvatures of the generated driving lines
are equal to curvatures of road centerlines or edge lines, and then
the centers of these horizontal curves are the same (see Fig. 6).
Meanwhile, equidistant lines play a significant role in road
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Fig. 6. Determining a driving line using the proposed method.

Fig. 7. Surveyed areas in the City of Xiamen, China. (a) Ring Road.
(b) Haicang Industrial Park.

design and construction, particularly for horizontally curved
road sections. In this study, the driving lines to be generated
can be regarded as equidistant lines of road centerlines and edge
lines. Furthermore, the equation of equidistant lines is accord-
ingly determined as follows:

Pd(t) = (x(t), y(t))± d
(−y

′
(t), x

′
(t))√

x′(t)2 + y′(t)2
(10)

where Pd(t) is the curve equation of a driving line to be created,
Pd(t) = (x(t), y(t)) denotes the curve equation of the extracted
road markings obtained using (8), and d is the equidistant dis-
tance. Consequently, the equidistant line located between two
extracted road markings is determined, as shown in the yellow
dashed line in Fig. 6. Therefore, the relative coordinates of all
3-D MLS points belonging to the driving lines, are calculated.

IV. RESULTS AND DISCUSSION

A. MLS Point Cloud Datasets

In this study, 3-D MLS point clouds at multiple road corridors
were collected on Ring Road and in Haicang Industrial Park in
the City of Xiamen, Fujian, China (see Fig. 7). These MLS
point clouds were collected using a RIEGL VMX-450 system.

TABLE II
SPECIFICATIONS OF THE RIEGL VMX-450 SYSTEM

This system comprises two fully calibrated RIEGL VQ-450 laser
scanners, four RIGEL VMX-450-CS6 digital cameras with the
pixel array of 2452H× 2056V, and one integrated Applanix POS
LV 520 processing system with one GNSS antenna, one inertial
measurement unit (IMU), one DMI, and one POS computing
system. Based on a point-of-sale synthetic computer system,
main components are assembled within a case and mounted on
the roof of a motorized vehicle. Table II indicates the detailed
specifications of all sensors in a VMX-450 system. The absolute
accuracy of the collected MLS point clouds is 8 mm, and the
measurement precision is 5 mm.

Six test datasets were selected from the Ring Road and
Haicang Industrial Park datasets [see Fig. 8(a)]. Dataset I is
an MLS point cloud dataset of a typical two-way and two-lane
horizontally curved road section with 65 68 656 MLS points,
containing road-side trees, light poles, and fences. Dataset II
is a two-way horizontal curve with 20 504 262 MLS points,
which includes both straight and curved circular road segments.
Dataset III presents a two-way road section with 41 688 329
MLS points, which consists of two reversed curved road seg-
ments. Dataset IV indicates a two-way and two-lane horizontal
curve with 2 063 626 MLS points, where it contains typical
types of road markings, including lane lines, centerlines, and
zebra crossings. Dataset V is a two-way and two-lane horizontal
curve with 3 661 745 MLS points with a high curvature. Dataset
VI is a one-way horizontal curve with 18 561 253 MLS points,
and its length is approximately 200 m. Since these six datasets
cover the most types of horizontal curves and road markings,
they are used to validate the flexibility and computational effi-
ciency of the proposed algorithms. Additionally, the workstation
used in this paper is a Dell Alienware x51 desktop with an Intel
Quad Core i5-6400 CPU, and an 8-GB RAM. The performance
evaluations about road marking extraction and driving line gen-
eration were conducted on these test datasets.

B. Driving Line Generation

In order to completely extract road markings and further boost
computational efficiency, road surface points were first extracted
using the revised curb based road surface extraction algorithms.
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Fig. 8. Driving line generation results from six test datasets. Column (a): Raw MLS point clouds of six test datasets. Column (b): Road surface points (green)
obtained after road surface extraction. Column (c): Road marking extraction results (red) obtained by using the revised multithreshold road marking extraction
algorithm. Column (d): Generated driving lines (yellow) in this paper.

According to [28], Hmin = 5 cm, Hmax = 30 cm, ET = 5
cm, and ST = Π/3 were predefined. To determine the optimal
parameters of Bg , Pg , and Sp, a series of experiments were
conducted based on prior knowledge about road surfaces. Ac-
cordingly, the width of a block was set ranging from Bg = 0.5
m to Bg = 2.0 m, depending on the curvatures of the horizontal
curves. The value of Pg was set to be 0.25 m. Each profile was
then gridded into a number of grids with an adaptive grid width
Sp ranging from 0.05 to 0.10 m to acquire more road segments

and road profiles. Subsequently, more road curb points can be
extracted for precisely detecting road curbs based on different
input datasets for pseudo scan line generation. Fig. 8(b) shows
the road surface extraction results, which demonstrates that our
algorithm is able to deal with roads with various curvatures.
Though the curvatures of horizontal curves vary in complex
urban environments, the extraction results indicate a great
number of nonground points were effectively excluded, and
the road surfaces were thoroughly extracted. On the whole, the
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revised method can achieve promising road surface extraction
results on the six selected test datasets, and reduce the time
complexity of the followup algorithms. However, some road
surface points failed to be extracted occurred in Dataset IV.
The health condition of road curbs has a great influence on the
performance of the revised road surface extraction algorithms.
According to the visual inspection, the settlement, decay, and
fragile structure of road curbs in Dataset IV could conduce
to the false extraction of road surfaces. In conclusion, first,
the extracted road surface points are used to improve the
computational efficiency and completeness in the process of
road marking extraction. Additionally, the smooth boundaries
of road surfaces are extracted for creating HD maps. Finally,
small cracks still exist, due to the damages to road surfaces.

Road markings indicate higher illumination than pavement
with respect to intensity information. Accordingly, the GRF
intensity imagery with 4-cm resolution was generated from
extracted road surface points using the IDW interpolation al-
gorithm. The multithreshold method was afterward performed
to extract road markings. A series of experiments were carried
out to refine related parameters, including the numbers of bins
Bn, the intensity values of road markings Ii, and the distances
between vehicle trajectories to the road markings Di. In this
paper, k = 20 was set in the SOR filter based on a collection
of experiments. Fig. 8(c) shows the road marking extraction
results after noise removal. Consequently, most of the discrete
noises were successfully eliminated, and the road markings
were completely and effectively extracted. However, some
painted road markings covered by obstacles (e.g., cars, cyclists,
and pedestrians), have low reflectance and intensities. Such road
markings were difficult to be detected and extracted. Besides,
due to the inevitable damage of painted markings caused by
moving heavy-duty trucks and weather conditions (e.g., salt-fog
corrosion), there exist small gaps in the extracted road markings
[see the boxes labeled A in Fig. 8(c)]. Such defects of the road
markings result in a failure at the stage of curve fitting, thus
causing errors in driving line generation.

Based on the Gaussian point density distributions and the
resolution of the generated noise-removed point clouds, a col-
lection of experiments by adjusting two critical parameters: The
range of scanning distances de, and the width of a road marking
wc, were implemented using the CEC algorithm. According to
[56], wc ≥ 15 cm and de ≥ 100 cm were determined. In this
paper, all of horizontal curves in MLS test datasets were re-
garded as circular horizontal curves, and the mean curvatures of
horizontal curves were smaller than 0.15 using a kernel size of
0.2 m. Due to the existence of noncurved road markings (e.g.,
hatch markings) and the discontinuity of broken centerlines, the
mean curvature of each test dataset was overestimated. In order
to increase computational efficiency at the stage of driving line
generation, the noncurved road markings (e.g., zebra crossings)
were successfully removed by using the cubic spline curve fitting
algorithm.

Driving lines at horizontally curved road sections were gener-
ated, based on the best-fitting functions of curved road markings.
The equidistant distance from the edge line, lane line, or cen-
terline to the driving line d was used, d was set to be ranging

TABLE III
VARIABLES OF A GENERATED DRIVING LINE OF TEST DATASET I

from 2.0 to 2.5 m in this study according to the road design reg-
ulations. Fig. 8(d) indicates the driving line generation results.
The final results demonstrate that all driving lines at horizontal
curves can be successfully generated on the six test datasets by
using the proposed algorithms. As can be perceived, most of the
generated driving lines are located at central locations between
lane lines and edge lines (or centerlines), which provides the
best-matching driving lines that meet the requirements of HD
maps and ensure traffic safety for AVs. Table III shows the com-
puted variables of a generated driving line in the test Dataset I.
However, these algorithms are still affected by disconnectivity
of edge lines or centerlines. As shown by the box labeled B in
Fig. 8(d), two generated driving lines interruption occur, due to
the presence of a zebra crossing and the discontinuities of edge
lines and centerlines.

C. Accuracy Assessment of Road Marking Extraction

In this paper, the accuracy assessment mechanism of road
marking extraction is based on the differences between the
extracted road markings and the manually created reference
data. According to [59], the following three criteria were used
to perform the accuracy evaluation: Recall, precision, and F1-
score. The expressions are given as follows: Recall = tp/(tp +
fn), precision = tp/(tp + fp), and F1− score = 2 ∗ recall ∗
precision/(recall + precision), where tp denotes true positive,
fp indicates false positive, and fn presents false negative clas-
sification. The recall shows how complete the extracted road
markings are, while the precision describes what percentage of
the extracted road markings are valid. In addition, F1-score rep-
resents an overall score with the integration between recall and
precision. In this paper, tp indicates the number of road mark-
ing points that are correctly classified, fp indicates the number
of noise points is misclassified as road marking points, and fn
is the number of road marking points is misclassified as noise
points.

Table IV presents the quantitative accuracy assessment of the
road marking extraction results. Consequently, an average re-
call, precision, and F1-score of 90.79%, 92.94%, and 91.85%,
respectively, were achieved for all of six test datasets. The low
performance occurs in Dataset IV, because the SOR filter cannot
eliminate all outliers in the processing of road marking extrac-
tion. Besides, some MLS points belonging to road surfaces were
misclassified into road markings due to the improper thresh-
old selection, as illustrated in black circles in the right zoom-in
view of Fig. 9. Moreover, the proposed equalization method at
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TABLE IV
ACCURACY ASSESSMENT OF ROAD MARKING EXTRACTION

Fig. 9. Two close views of road marking extraction results from Dataset IV.

the stage of GRF intensity imagery generation, lessens the in-
fluence of intensity imbalance that might result in the decline
of recall. The value of precision is larger than that of recall
for each dataset, which demonstrates that certain road marking
points were misclassified as road surface points, as shown in the
left zoom-in view in Fig. 9. The inevitable errors evolving in
the process of creating manually interpreted reference data also
result in accuracy reduction for road marking extraction. Ad-
ditionally, the sizes of manually interpreted reference data are
larger than the road markings due to the decay of them. Thus,
the overall performance of the proposed road marking extraction
algorithms is underestimated in the final results.

D. Comparative Study

Furthermore, a comparative study was carried out concentrat-
ing on the extracted road marking results by using the proposed
algorithms and other methods, i.e., Chen et al. [48] and Yu et al.
[12]. Since Test Datasets I, VI, and V contain many types of
road markings, they were selected to evaluate the performance
of such methods. MLS point clouds were directly used in the
process of road marking extraction in both Chen’s [48] and Yu’s

TABLE V
ROAD MARKING EXTRACTION RESULTS OBTAINED BY

USING DIFFERENT METHODS

[12] methods. Chen’s [48] method mainly focuses on the lane
marking extraction along the moving direction of the vehicle, re-
sulting in limitations at the stage of complex and semantic road
marking extraction (e.g., arrows, words, and curved road mark-
ings). Meanwhile, based on deep learning and PCA methods,
Yu’s [12] approach can be applied in the extraction of any types
of road markings, but it has limitations in the process of curved
road marking extraction, and it requires rich prior knowledge.

The overall performance of the proposed method in this paper
and other two methods were evaluated, based on the quantitative
assessment (i.e., recall, precision, and F1-score). As shown in
Table V, Chen’s [48] method achieved an average recall, pre-
cision, and F1-score of 76.91%, 91.27%, and 83.42%, respec-
tively; Yu’s [12] method achieved an average recall, precision,
and F1-score of 81.15%, 91.17%, and 85.81%, respectively;
while the proposed method in this paper achieved an average
recall, precision, and F1-score of 90.26%, 92.36%, and 91.30%,
respectively. Since Chen’s [48] method cannot completely ex-
tract complex road markings (e.g., words) especially for hori-
zontally curved road sections, it had a low recall, precision, and
F1-score in Test Datasets I, IV, and V. Meanwhile, Yu’s [12]
method had a relatively low F1-score in these three test datasets,
since its road surface extraction and road marking extraction
methods were both depending on the fixed-interval straight tra-
jectory. Compared to both Chen’s [48] and Yu’s [12] methods,
the proposed method can achieve a better performance than their
methods, in terms of both recall and precision at horizontally
curved road sections. Nevertheless, road marking points were
not effectively extracted due to the loss of reflectance, inten-
sity deduction, and the decay of road markings. Road surface
points with high reflectance might be incorrectly identified as
road marking points. Additionally, outliers around some road
markings were not completely eliminated by using the SOR fil-
ter, and the extraction accuracy was therefore affected.

E. Accuracy Assessment of Driving Line Generation

According to [60], the generated driving lines were evalu-
ated using the buffer overlay statistics method. This method
specifies a different buffer size, based on reference lines and
reference orthoimagery through overlaying and statistics. Ac-
cording to the georeferenced MLS point clouds, UAV orthoim-
agery with 4 cm resolution was calibrated first as the reference
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TABLE VI
ACCURACY ASSESSMENT OF GENERATED DRIVING LINES

FROM TEST DATASET I

data. Then, reference driving lines were manually created on
the UAV orthoimagery using ArcGIS Desktop v10.2.2. In order
to conduct both visual inspection and quantitative evaluation of
driving lines, buffering and overlaying is performed iteratively.
Given a number (n) of buffer sizes Si(1 ≤ i ≤ n), the follow-
ing three procedures were conducted. First, creating Si buffers
in the reference data R based on the manually created driving
lines, and defining the generated buffer zones SiR. Next, over-
lay the generated driving lines L with SiR to produce mixed
datasets LSiR. Third, compute the total length of the generated
driving lines in L, the sum of the length of the generated driving
lines from L inside SiR in LSiR, and the sum of the length
of the generated driving lines from L outside SiR in LSiR,
respectively.

Accordingly, the accuracy of the generated driving lines was
assessed, based on recall and miscoding. The miscoding repre-
sents what percentage of the generated driving lines are located
outside of the reference buffers. It is calculated by

Miscoding =
Length (L outside SiR in LSiR)

Length (L)
× 100. (11)

Reference buffer zones with different ranges established by
the manually interpreted driving lines, were generated and over-
lapped with the generated driving lines on the georeferenced
high-resolution UAV orthoimagery.

Table VI indicates the quantitative assessment in both recall
and miscoding of the generated driving lines from Test Dataset I.
Reference buffers with the width of 5, 10, and 15 cm were es-
tablished to evaluate the performance of proposed driving line
generation algorithms. As a consequence, the proposed algo-
rithms are capable of achieving an average recall of 72.90%
in 5 cm level reference buffers, 91.80% in 10 cm level ref-
erence buffers, and 100.00% in 15 cm level reference buffers
for two generated driving lines. The values of miscoding de-
crease with the increased width of reference buffers, which
demonstrates that the majority of generated driving lines are
located within the precision permissible reference buffers. Ex-
perimentally, the proposed algorithms provide a 15 cm level
localization accuracy in order to meet the quality require-
ments of HD maps, and improve the safety of autonomous
diving [8].

Additionally, Fig. 10 shows the final results of generated driv-
ing lines within 5, 10, and 15 cm width of reference buffers. It
is identified that black rectangles in Fig. 10 indicate miscoding
parts, while setting the width of reference buffers to be 5 and

Fig. 10. Driving line generation results from Test Dataset I within refer-
ence buffers. (a) Generated driving line validation using 5-cm reference buffer.
(b) Generated driving line validation using 10-cm reference buffer. (c) Generated
driving line validation using 15-cm reference buffer.
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10 cm, respectively. Moreover, it is worth noting that the gen-
erated driving lines are completely located within the reference
buffers with the width of 15 cm.

V. CONCLUSION

The generated driving lines are vital components in HD maps.
Such maps are integrated and preloaded on AVs to cooperate
with onboard sensors for precise localization and navigation ser-
vices. In this paper, we have presented a method for driving line
generation using MLS point clouds at horizontally curved road
sections. Based on the curvature analysis, the curb-based road
surface extraction and multithreshold road marking extraction
algorithms were revised to apply to horizontally curved road
sections. Furthermore, by using a cubic spline curve fitting ap-
proach and considering road construction regulations, we pro-
posed a novel method for driving line generation from MLS
point clouds.

The feasibility and validity of the proposed algorithms were
evaluated on six MLS point cloud datasets. The quantitative
evaluation indicated that the revised road marking extraction
algorithm achieved an average recall, precision, and F1-score
of 90.79%, 92.94%, and 91.85%, respectively. Through the
comparative studies, it demonstrated that the revised method
outperformed the other two existing methods in completely
and correctly extracting road markings from various horizontal
curves. Based on the buffer overlay statistics method, the
proposed algorithm was capable of achieving an average recall
of 72.90% within 5 cm level reference buffers, 91.80% within
10 cm level reference buffers, and 100.00% within 15 cm level
reference buffers in generating driving lines, with the assistance
of 4-cm resolution UAV orthoimagery. Thus, the proposed
algorithms can successfully and effectively generate driving
lines at horizontally curved road sections from six MLS point
cloud datasets with 15-cm localization accuracy.

In conclusion, the proposed method is capable of efficiently
generating driving lines at horizontally curved road sections
from MLS point clouds to provide highly accurate localiza-
tion services. We have provided a reliable solution to demon-
strate that MLS point clouds can be effectively utilized to extract
on-road information (i.e., road markings) and generate driving
lines to support the development of HD maps and autonomous
driving. However, the proposed driving line generation method
mainly concentrate on the circular horizontal curves. It cannot
deal with complex and spiral road curves, such as intersections,
which need to be further studied.
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