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Lichun Sui, Li Li, Jonathan Li , Senior Member, IEEE, Nan Chen, and Yongqing Jiao

Abstract—This paper presents a new approach to fusion of
hyperspectral and multispectral images based on Bayesian non-
parametric sparse representation. The approach formulates the
image fusion problem within a constrained optimization frame-
work, while assuming that the target image lives in a lower dimen-
sional subspace. The subspace transform matrix is determined by
principal component analysis, and the sparse regularization term
is designed depending on a set of dictionaries and sparse coeffi-
cients associated with the observed images. Specifically, the dictio-
nary elements and sparse coefficients are learned by the Bayesian
nonparametric approach with the beta-Bernoulli process, which
establishes the probability distribution models for each latent vari-
able and calculates the posterior distributions by Gibbs sampling.
Finally, serving the obtained posterior distributions as a priori,
the fusion problem is solved via an alternate optimization process,
where the alternate direction method of multipliers is applied to
perform the optimization with respect to the target image. The
Bayesian nonparametric method is used to optimize the sparse co-
efficients. Exhaustive experiments using both two public datasets
and one real-world dataset of remote sensing images show that
the proposed approach outperforms the existing state-of-the-art
methods.

Index Terms—Bayesian nonparametric model, dictionary learn-
ing, hyperspectral and multispectral images, image fusion, sparse
representation.

I. INTRODUCTION

IN RECENT years, hyperspectral images (HSIs) have been
widely used in a range of applications, such as monitoring

and management of natural resources, biodiversity, ecosystems,
and disasters [1]–[4]. HSIs, which have the characteristics of
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high spectral resolution, acquire a faithful spectral representa-
tion of a scene. However, because of the physical and technical
bottlenecks of imaging spectrometers, HSIs are relatively re-
stricted in terms of signal-to-noise ratio (SNR), spatial resolu-
tion, and scanning width, which, to some extent, limit the range
of potential applications, such as medical imaging and remote
sensing [5].

If high spatial resolution images, such as multispectral images
(MSIs) of a scene of interest are available, an HSI with high spa-
tial resolution is obtained by using an image fusion approach,
which effectively combines the multiband information of a sin-
gle sensor, or the single-band information of multiple sensors,
thereby improving the precision and effectiveness of interpre-
tation. Fusion data is viewed as a product of a synthetic sensor
consisting of the high spectral resolution of the hyperspectral
sensor and the high spatial resolution of the multispectral sensor,
which allows for additional new potential applications, such as
high spatial resolution ecosystem monitoring, or the monitoring
of urban surface materials, minerals, etc. [6].

Considering remote sensing images, pan-sharpening
(archetypal fusion) generally refers to the fusion of lower spa-
tial resolution MSIs and a higher spatial resolution panchro-
matic (PAN) image. Pan-sharpening has been explored for
several decades. The representative techniques of pan-
sharpening are classified roughly as follows: component sub-
stitution (CS) [7], [8], multiresolution analysis (MRA) [9],
[10], and sparse representation (SR) [11]–[13]. Because pan-
sharpening can be regarded as a special case of HSI–MSI fusion,
much effort has been made toward generalizing the existing pan-
sharpening technique for HSI–MSI fusion. A pan-sharpening
approach based on a generalized Laplacian pyramid (GLP) was
used in [10] for HSI–MSI fusion. Although the algorithm could
not de-noise, its performance was associated with noise post-
processing. A hybrid pan-sharpening hyperspectral method was
used in [14] for fusing a pan-sharpening image with an HSI.

Indeed, because HSI–MSI fusion contains more spatial and
spectral information, it differs from pan-sharpening methods,
thereby rendering many pan-sharpening methods, such as com-
ponent replacement [7], [8] and relative spectral contribu-
tion [15] inapplicable or inefficient for HSI–MSI fusion. In
this regard, more sophisticated attempts with respect to HSI–
MSI/PAN fusion have been explored. Based on recent advances
in pan-sharpening, a framework called hypersharpening was
developed through adapting the MRA-based pan-sharpening
methods to HSI–MSI fusion [16]–[18]. The main idea of the
framework is to synthesize a high-resolution image for each
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HSI band as a linear combination of MSI bands via linear re-
gression [16]. In addition, the principle of spectral unmixing was
applied to multisensor, multiresolution image fusion [19], [20].
In [19], an approach was presented to unmix HSIs with low spa-
tial resolution and enhance abundance maps by merging HSIs
with higher resolution PAN images using constrained optimiza-
tion algorithms. A method was presented in [20] to obtain the
spatial details of segmentation from high-resolution images,
then use them to unmix the low-resolution images, and finally
sharpen the low-resolution images by assigning estimated end-
member signatures to the related high-resolution pixels of the
segmentation map. A nonnegative matrix factorization (NMF)
based HSI–MSI fusion algorithm was presented in [21] for the
midinfrared bands. The HSI with low spatial resolution is un-
mixed by NMF. Using least squares regression by holding the
resampled endmember signatures fixed, the abundance maps
with high spatial resolution are acquired from the MSI. A cou-
pled nonnegative matrix factorization (CNMF) unmixing was
used in [22] for the HSI–MSI fusion based on NMF, where
both HSIs and MSIs were alternately unmixed into abundance
and endmember matrices by the CNMF approach. Later, a simi-
lar fusion algorithm based on coupled spectral unmixing (CSU)
was presented in [23]. A coupled sparse nonnegative matrix fac-
torization method was constructed in [24] for the fusion of PAN
and MSIs. To solve the fusion and unmixing problem by maxi-
mizing the joint posterior distribution of endmember and abun-
dance matrices, a multiband image fusion method was presented
in [25] based on spectral unmixing. Recently, two joint-criterion
nonnegative matrix factorization approaches were proposed in
[18] for hypersharpening, yielding sharpened HSIs with good
spectral and spatial fidelities. A hybrid unmixing algorithm was
proposed in [26] for HSIs based on region adaptive segmenta-
tion. A multiple multiband images fusion (MMIF) method was
presented in [27] using the well-known forward observation and
linear mixture models to cast the fusion problem as a reduced-
dimension liner inverse problem, which is more suitable for the
fusion of more than two multiband images.

Recently, due to its ability to exploit the self-similarity proper-
ties of natural images, sparse representation has received much
attention [28]–[31]. Based on this property, sparse constraints
were applied in both [32] and [33] to regularize the ill-posed
super-resolution and/or fusion problems. An HSI restoration
method was created in [34] to measure the low-rank structure
with a new sparsity regularizer. In [33], multiple images were
first decomposed into high- and low-frequency components fol-
lowed by fusing them through applying a sparse regulariza-
tion. However, this method requires a training dataset to learn
the dictionary in advance. An online coupled dictionary learn-
ing based pan-sharpening method was presented in [35]. The
Bayesian SR (BSR) algorithm was used in [36] to learn the end-
member and abundance matrices, which, by super-resolution,
implement the HSI–MSI fusion. An approach based on dic-
tionary learning and sparse coding was presented in [37] to
obtain the endmember and abundance matrices, respectively.
However, the performance of the method proposed in [37] was
sensitive to the algorithm parameters, especially to the dimen-
sions of matrices, such as dictionary size. There is no principled

method to introduce prior knowledge to enhance the perfor-
mance. Later, a Bayesian-based HSI–MSI fusion method was
presented in [38]. The problem formulation is based on infor-
mation of the prior distribution in the observed scene, such as
Gaussian or sparsity promoted Gaussian. Both subspace trans-
formation and regularization are used in the fusion problem to
solve the ill-conditioned inverse problem. On this basis, a fast fu-
sion method was developed in [39] based on Sylvester equation
(FUSE) method through integrating a Sylvester equation-based
explicit solution into the Bayesian HSI–MSI fusion method. The
FUSE method significantly reduces the computational complex-
ity, while obtaining the same performance as the approach pro-
posed in [39]. An HSI–MSI fusion algorithm was presented in
[40] based on sparse representation (SRFM). Their method, to
learn the dictionary and sparse coefficients of the observed im-
ages projected into the low-dimensional subspace, used Online
Dictionary Learning and Orthogonal Matching Pursuit algo-
rithms, respectively. Conditionally, with these dictionaries and
sparse coefficients, the fusion problem was solved via alternate
optimization with respect to the target image and the sparse coef-
ficients. This approach shows the state-of-the-art results in HSI–
MSI fusion. Although very powerful, the algorithm presented
in [40] required one to specify the number of the dictionary
elements and the variance of the noise in advance parameters
that may be difficult to assess for real-world images. It was
also unable to introduce more priori information during the dic-
tionary learning and sparse coefficients learning and update to
further improve the quality of the fusion results. Bayesian non-
parametric algorithms can circumvent all the limitations. These
algorithms adapt sufficiently the structure of the latent space to
the images and infer the algorithm parameters nonparametri-
cally that otherwise have to be assigned a priori [41]. The non-
parametric properties decrease the human interference factors
and introduce uncertainty by applying probabilistic estimation
instead of point estimation with respect to the unknown parame-
ters in the estimation process, further improving the automation
degree of the models and enhancing the performance of fusion
methods [42]. In this regard, we develop an HSI–MSI fusion
method based on Bayesian nonparametric sparse representation
in this paper.

The proposed approach fuses HSIs with MSIs within a con-
strained optimization framework roughly in a two-stage process.

Stage 1: In the first stage, the proposed approach projects
the observations, i.e., HSIs and MSIs, into a low-dimensional
subspace, and then regards them as a training dataset to learn
the overcomplete dictionary and sparse coefficients using the
Bayesian nonparametric method with beta process [41]. More
specifically, the beta-Bernoulli process is applied to establish the
probability distribution models of the dictionary elements and
other parameters, while the Gibbs sampling method [43] is used
to calculate the posterior distribution of each latent variable.

Stage 2: In the second stage, the proposed approach solves
the final constrained optimization problem by alternatively op-
timizing with respect to the target image and the corresponding
sparse coefficients. The Split Augmented Lagrangian Shrinkage
Algorithm (SALSA) [44], an instance of the Alternating Direc-
tion Method of Multipliers (ADMM), is performed to achieve
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optimization with respect to the target image. The Bayesian non-
parametric approach is used to optimize the sparse coefficients,
where the posterior distributions of the latent variables obtained
from the first stage are served as a priori information in this
stage.

The rest of this paper is structured as follows. Section II for-
mulates the image fusion problem in a constrained optimization
framework. Section III presents the proposed method of dic-
tionary, sparse coefficients learning and sparse regularization.
Section IV presents the details of the approach investigated to
cope with the final optimization problem. Section V discusses
the experimental results. Section VI concludes the paper.

II. PROBLEM FORMULATION

A high spatial, high spectral image, X = [x1 , . . . , xn ] ∈
Rm λ×n (target image), is recovered by fusing a high spec-
tral HSI, YH ∈ Rm λ×m , and a high spatial resolution MSI,
YM ∈ Rnλ×n , where mλ, nλ (nλ < mλ) are the number of
bands of HSI and MSI, respectively, and m, n are the num-
ber of pixels in each band of HSI and MSI, respectively. The
HSI is regarded as a downsampled, blurred version of the target
image; the MSI is a spectral degradation of the target image.
The corresponding degradation model is expressed as follows:
[39], [40]

YH = XBS + NH , YM = RX + NM (1)

where X is the full resolution target image, YH and YM are
the observed HSIs and MSIs, respectively. B ∈ Rn×n denotes
a cyclic convolution operator acting on each band; S ∈ Rn×m

denotes a downsampling matrix; R ∈ Rnλ×m λ represents the
spectral response function of the MS sensor; NH , NM are the
noise matrices of the HSI and MSI, respectively. In this paper,
both NH and NM are drawn from a normal distribution.

According to the storage characteristics of the BIP (the band
interleaved by pixels) data format, where each pixel is cross ar-
ranged in band order [45], the unknown target high spatial, high
spectral image, X, is decomposed as X = [x1 , . . . , xn ], where
xi = [xi,1 , xi,2 , . . . , xi,m λ

]T represents the mλ × 1 vector cor-
responding to the ith spatial position. Because the adjacent bands
of the HSI are generally spectrally correlated, the vector xi of
the HSI usually exists in a low-dimensional subspace whose
dimension is much smaller than the number of bands, mλ, in
the HSI [46]. It can be further expressed as xi = Hui , where ui

denotes the projection of xi onto the subspace spanned by the
column of HT ∈ Rm λ×m̃ λ . The value of H is obtained by defin-
ing a priori on the scene or directly determined from the HSI; H
is an orthogonal matrix such that HT H = Im̃ λ

. Therefore, the
target image, X, is represented as follows:

X = HU (2)

where U = [u1 , . . . , un ] with U ∈ Rm̃ λ×n . H is invertible,
thereby satisfying U = HT X . In the proposed fusion frame-
work, we refer to principal component analysis (PCA) [39] to
calculate H from the HSI. PCA is used only to learn the required
subspace (Algorithm 1, Step 1). Because the dimension of sub-
space m̃λ is much smaller than the number of HS bands, namely,

m̃λ � mλ, fusing in the subspace greatly reduces the compu-
tational complexity of the fusion algorithm, while avoiding

Algorithm 1: Fusion of HSIs and MSIs based on Bayesian
Nonparametric Sparse Representation.
Input: YH , YM , NH , NM , B, S, R, m̃λK;

% Determinate the subspace from YH

1 Ĥ ← PCA(YH , m̃λ);
% Propose a rough estimation Ũ of U

2 Calculate Ũ
Δ= μ̂U |YM

by using the method in [47];
% Learning dictionary and sparse coefficients
(see III-C)

3 for i = 1 to m̃λ do
4 (D̄i , Āi , π, γ, γs)← Beta− Bernoulli(Ũi);
5 end

% Alternate optimization
6 for t = 1, 2, . . . to stopping rule 1 do

% Optimize with respect to U using SALSA
7 Û (t) ∈ {U |L(U, Â(t − 1)) ≤ L(Û (t − 1) , Â(t − 1))};

% Update with respect to A (see IV-B)
8 Â(t) ← Beta− Bernoulli(Û (t − 1) , D̄i , π, γ, γs);

% Identify the sparse coefficient
9 Set Ω̄i = {(j, k)Â(t)(j, k) �= 0};

10 end
11 Recover X̂ = ĤÛ ;
Output: X̂

possible matrix singularity caused by the strong spectral corre-
lation of the HSI.

III. METHOD

A. Ill-Posed Inverse Problem

Using (2), (1) is reformulated as follows:

YH = HUBS + NH , YM = RHU + NM (3)

It can be seen that recovering the high spatial resolution and
high spectral resolution target image, X, from the observation
images, YH and YM are linear inverse problems (LIPs) [44].
Whether the LIP problem is a well-posed problem or an ill-posed
problem depends mainly on the dimension of the subspace and
the number of spectral bands [40]. In this paper, we focus merely
on the ill-posed case.

According to the statistical properties of the noise matrices,
NH and NM , the observations, YH and YM , are assumed to be
drawn from a normal distribution, expressed as follows:

YH ∼ Nm λ,m (HUBS,ΛH , IH )

YM ∼ Nnλ,n (RHU,ΛM , IM ) (4)

Because the observations, YH and YM , are acquired by dif-
ferent (or heterogeneous) sensors, the noise matrices, NH and
NM , are sensor-dependent and generally considered to be in-
dependent of each other. Therefore, in terms of the Bayesian
theorem, the posterior distribution of U after taking the negative
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logarithm on both sides is expressed as follows:

− log p (U |YH , YM )

≥ − log p (YH |U)− log p (YM |U)− log p (U)

=
1
2

∥
∥
∥Λ
− 1

2
H (YH −HUBS)

∥
∥
∥

2

F
+

1
2

∥
∥
∥Λ
− 1

2
M (YM −RHU)

∥
∥
∥

2

F

+ λφ (U) (5)

where ‖X‖F denotes the Frobenius norm of X. The first two
terms represent the corresponding data fidelity terms with re-
spect to HSIs and MSIs, respectively. φ(U) is the regularization
term, and λ is the regularization parameter, whose optimal value
is affected by the noise level. In this paper, the main purpose
is to cope with the image fusion problem by calculating the
maximum a posteriori estimator of U, which is equivalent to
minimizing (5).

B. Sparse Representation of the Regularization Terms

In signal processing literature, sparse representation has re-
ceived much attention, because of the use of the self-similarity
property in terms of natural images [32], [40]. Because of its
sparsity, sparse representation is generally used to regularize
the fusion problem [37], [40]. As seen from the definition, the
reconstructed signal can be approximated by the product of a
prepared overcomplete dictionary and sparse coefficients [32],
which means that the image patches of the target image pro-
jected onto a low-dimensional subspace can be represented by
a linear combination of an appropriate overcomplete dictionary
and sparse coefficients. The overcomplete dictionary can be a
well-trained dictionary or be tuned to the input images. In this
paper, we adopt the Bayesian nonparametric approach with beta
process prior [41] to learn the dictionary from the input images,
YH and YM . The regularization term is expressed as follows:

φ (U) =
1
2

m̃ λ∑

i=1

∥
∥Ui − P

(

D̄iĀi

)∥
∥

2
F

(6)

where Ui ∈ Rn is the ith (i = 1, 2, . . . , m̃λ) band of U ∈
Rm̃ λ×n , and D̄i ∈ Rnp ×K is an overcomplete dictionary ob-
tained from the input images. Āi ∈ RK×np a t , containing a small
number of nonzero elements, are the sparse coefficients asso-
ciated with the ith band. P(·) : Rnp ×np a t 
→ Rn×1 represents a
linear operator that averages the overlapping image patches of
each band. The size of overlapping patches is

√
np ×√np ; the

adjoining operation is denoted as P∗(·) : Rn×1 
→ Rnp ×np a t ,
such that P[P∗(X)] = X .

C. Bayesian Nonparametric Dictionary Learning

Referring to [47], we first construct the rough estimation, Ũ
of U, from the observations, YH and YM (Algorithm 1, Step
2) and then use the Bayesian nonparametric dictionary learning
method [41], [42], [48], to learn the overcomplete dictionary,
D̄i , and sparse coefficients, Āi , associated with the band, Ũi

of Ũ (Algorithm 1, Step 4). Regarding Ũi as trained samples,
a hierarchical model, based on the beta-Bernoulli process [48],

[49] dictionary learning, is written as follows:

Ũi = D̄iĀi + εi ∀i ∈ {1, . . . , npK}
dk ∼ N (0, υ−1Iυ ) ∀k ∈ {1, . . . , K}

Āi = si � zi sik ∼ N
(

μ̂ik0 ,
̂
∑

ik0

)

εi ∼ N
(

0, γ−1Iυ

)

zik ∼ Bern(πk0 ) πk ∼ Beta(τ0η0 , τ0(1− η0))

γs ∼ Gamma(e0 , f0) γ ∼ Gamma(c0 , d0) (7)

In the above model, � denotes the element-wise product; dk

is the dictionary element of D̄i ; υ represents the dimensionality
of the dictionary elements. Iυ denotes the υ × υ identity ma-
trix; K is the dictionary size. Bern, Beta, and Gamma denote
Bernoulli, Beta, and Gamma distributions, respectively. sik are
the sparse valued weights; zik are the binary valued assignments
to record whether the dictionary element is activated for the cor-
responding observations. Conjugate beta prior is placed over πk

with hypermeters τ0 and η0 , which denotes the probability of
using element dk ; γs and γ represent the precision of the sparse
weights and observation noise, respectively; c0 , d0 , e0 , and f0
denote the hyperparameters; εi is the observation noise. The
above hierarchical model is completely conjugate; hence the
Gibbs sampling approach [43] can be used over it for Bayesian
inference. To acquire the maximum posterior, we use the Gibbs
sampling method to iteratively sample from the conditional dis-
tribution of each latent variable given the others and the input
data. This defines a Markov chain Monte Carlo (MCMC) whose
stationary distribution is the posterior distribution [50]. The cor-
responding sampling formulas for the Gibbs sampling process
used in our method are as follows:

Sample dk : from N (μ̃k ,˜
∑

k ), where

˜
∑

k
=

(

2υI2υ + γ

N∑

i=1

(sik zik )2

)−1

μ̃k = γ
˜
∑

k

N∑

i=1

sik x̃i(−k)

⎞

⎠

(8)

Sample zik : from Bern( ς πk 0
1−πk 0 +ς πk 0

), where

ς = exp
(−γ

(

s2
ik dT

k dk − 2sikdT
k x̃i(−k)

)

/2
)

(9)

Sample sik : from N (μ̂ik ,̂
∑

ik ), where

ˆ∑

ik
=
(

γs + γdT
k dk

)−1
, μ̂ik = γ

ˆ∑

ik
d

T

k x̃i(−k) (10)

Sample πk : from Beta(a, b), where

a = τ0η0 +
N∑

i=1

zik , b = N −
N∑

i=1

zik + τ0 (1− η0) (11)

Sample γ: from Gamma(c, d), where

c = c0 + Nυ, d = d0 + 1/2
N∑

i=1

∥
∥xi − D̄i (si � zi)

∥
∥

2
2 (12)
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Sample γs : from Gamma(e, f), where

e = e0 + NK/2, f = f0 + 1/2
N∑

i=1

‖si‖22 (13)

where x̃i(−k) = xi − D̄i(si � zi) + dk (sik � zik ) represents
the reconstruction error using all but the kth dictionary element.
As a result of MCMC inferencing, we obtain the posterior dis-
tributions of the five latent variables.

D. Sparse Coding for the Regularization Term

We assume that the prior distributions of the images
Ui (i = 1, . . . , m̃λ) of U are independent, and the marginal dis-
tribution p(Ui) of Ui is drawn from a normal distribution with
meanP(D̄iĀi). Besides, as seen in Section III-C, Āi is a binary
vector that encodes which D̄i , varying depending upon the up-
date of Ui , is activated for the estimated image Ui . Therefore,
we adopt the strategy that jointly updates Ui and Āi with D̄i

fixed to minimize the regularization term, φ(U). Using the joint
prior distribution of U and A, (6) is reduced to the following:

φ (U,A) = 1/2
m̃ λ∑

i=1

∥
∥Ui − P

(

D̄iĀi

)∥
∥

2
F

= 1/2
∥
∥U − Ū

∥
∥

2
F

s.t. Ai �Mi = 0 (14)

where Ū = P(D̄iĀi) with i = 1, . . . , m̃λ. Mi is a matrix con-
sisting of 0 and 1, which satisfies Mi(j, k) = 1 when Ai(j, k) =
0; otherwise, Mi(j, k) = 0. All zero elements in Ai marked
through the label matrix Mi determined by constraints avoid
the case where the structure of Ai is destructed by nonzero ele-
ments during alternate optimization. Besides, the position set of
the nonzero elements of Ai , namely, Ω̄i = {(j, k)|Ai(j, k) �= 0}
are also identified (Algorithm 1, Step 9). We only need to calcu-
late the nonzero elements during the update of Ai , which results
in a much more computationally efficient approach.

Combining (14) and (5), the final optimization problem is
written as follows:

min
U,A

L (U,A) Δ=
1
2

∥
∥
∥Λ
− 1

2
H (YH −HUBS)

∥
∥
∥

2

F

+
1
2

∥
∥
∥Λ
− 1

2
M (YM −RHU)

∥
∥
∥

2

F
+

λ

2

∥
∥U − Ū

∥
∥

2
F

s.t. {Ai �Mi = 0}m̃ λ

i=1 (15)

IV. ALTERNATE OPTIMIZATION

As shown in (15), the optimization problem is a standard
quadratic constrained optimization problem with respect to U
and A. Because the computational dimension among matrices
is large and the related operators are difficult to diagonalize,
such a constrained optimization problem is usually difficult to
solve. Hence, as in the case of Wei et al. [40], to cope with this
problem, we implement the strategy that holds A fixed to update
U, and then updates A with U fixed.

The ADMM technique, elaborated on by Wei et al. [40], is
used to optimize U, whose convergence is guaranteed by the
Eckstein–Bertsekas theorem [51]. For optimization in terms of

A, we apply the Bayesian nonparametric approach described in
Section III-C. It is noteworthy that the posterior distributions of
D̄i , π, γ, γs , obtained in Section III-C, are served a priori at
this stage; only Āi , γ, and γs are updated with Gibbs sampling.

A. Updating U With ADMM

Holding A fixed (equivalent to fixing Ū ), the optimization
problem with respect to U in (15) is translated into the following:

min
U

L (U) Δ=
1
2

∥
∥
∥Λ
− 1

2
H (YH −HUBS)

∥
∥
∥

2

F

+
1
2

∥
∥
∥Λ
− 1

2
M (YM −RHU)

∥
∥
∥

2

F
+

λ

2

∥
∥U − Ū

∥
∥

2
F

(16)

By adding the variables V1 = UB, V2 = U , and V3 = U , the
above formula is converted into the following form associated
with the augment Lagrangian approach:

L (U, V1 , V2 , V3 , G1 , G2 , G3) =
1
2

∥
∥
∥Λ
− 1

2
H (YH −HV1S)

∥
∥
∥

2

F

+
μ

2
‖UB − V1 −G1‖2F +

1
2

∥
∥
∥Λ
− 1

2
M (YM −RHV2)

∥
∥
∥

2

F

+
μ

2
‖U − V2 −G2‖2F +

1
2

∥
∥Ū − V3

∥
∥

2
F

+
μ

2
‖U − V3 −G3‖2F

(17)

where G1 , G2 , and G3 are the Lagrangian multipliers (μ > 0).
The updates of U, V1 , V2 , V3 , G1 , G2 , and G3 are achieved by
the SALSA approach [40], [44].

B. Bayesian Nonparametric Sparse Coding

The above section implements the optimization with respect
to U. Holding U fixed, the optimization problem with respect
to the sparse coefficients A (equivalent to optimizing Ū ) is con-
verted as follows:

Âi = arg min
Ai

∥
∥pi − D̄iAi

∥
∥

2
F

, s.t. {Ai �Mi = 0}m̃ λ

i=1 (18)

where pi = P∗(Ui). As described in Section III-D, we optimize
only the nonzero elements in Ai , which are easily solved.

In this section, to solve the optimization problem, we con-
tinue to use the Bayesian nonparametric approach with the
beta-Bernoulli process. The solution is basically the same as
that described in Section III-C. The main differences are that
1) the posterior distributions of D̄i , π, γ, γs , obtained from
Section III-C, are used as the initial values in this phase; 2)
fixing dictionary, D̄i , and the usage probability of dictionary
elements, π, the optimization with respect to A is implemented
by using the corresponding Gibbs sampling equations to update
the components sik and zik .

C. Complexity Analysis

Compared with optimization methods, the MCMC method
is computationally costly. The computational complexity of the
proposed approach consists mainly of three parts: 1) Bayesian
nonparametric dictionary learning; 2) optimization with respect
to U by using the SALSA algorithm; 3) sparse coding with
respect to A. The complexity of the Bayesian nonparametric
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dictionary learning is O(KTm̃λ log Knpnpat), where T is the
number of Gibbs sampling iterations. The complexity of the
SALSA algorithm is O(nitm̃λn log(m̃λn)) [40], where nit is
the number of SALSA iterations. The complexity of the sparse
coding with respect to A is O(KHm̃λ log Knpnpat), where H
is the number of sparse coding iterations.

D. Experimental Datasets

The Reflective Optics System Imaging Spectrometer (ROSIS)
dataset, acquired by the ROSIS sensor in 2003 over Pavia, Italy,
has 610× 340 pixels with a spatial resolution of 1.3 m per pixel.
The original ROSIS image contains 115 spectral bands covering
the spectral range from 0.430 to 0.838 μm, which was widely
used in [40], [52], [53]. After the 22 bands corrupted by water
absorption and noisy effects have been discarded, the remaining
93 bands are adopted for analysis.

The Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) dataset, gathered by the AVIRIS sensor over Indian
Pine in 1996, contains 512× 614 pixels with a spatial resolution
of 20 m, and has 224 bands covering the spectral range from
400 to 2500 nm [54].

The New York dataset, consisting of HSIs and MSIs that
were collected by two different sensors over the same zone.
The HSI was collected by the Hyperion sensor, which provides
242 bands from 0.4 to 2.5 μm, with 30 m of spatial resolu-
tion. The MSI was captured by the Advanced Land Imager
(AL1) sensor, which provides nine bands with 30 m of spatial
resolution, covering the 0.433–0.453, 0.45–0.515, 0.525–0.605,
0.63–0.69, 0.775–0.805, 0.845–0.89, 1.2–1.3, 1.55–1.75, and
2.08–2.35 μm regions of the electromagnetic spectrum. Both
sensors were carried by the EO-1 satellite [55]–[57].

E. Fusion Quality Metrics

To evaluate the quality of the proposed fusion approach, the
following six widely used and complementary quality measures
are investigated in our study. Referring to [6] and [39], we
propose to use the restored SNR (RSNR), root mean square error
(RMSE), spectral angle mapper (SAM), universal image quality
index (UIQI), relative dimensionless global error in synthesis
(ERGAS) [58], and degree of distortion (DD) as quantitative
measures, which are defined as follows:

1) RSNR: RSNR is used to reflect the difference between the
reference image, X , and the fused image,X̂ . The larger
the RSNR, the better the fusion quality and vice versa.
RSNR is defined as follows:

RSNR
(

X, X̂
)

= 10log10

(

‖X‖2/
∥
∥
∥X − X̂

∥
∥
∥

2

2

)

(19)

2) RMSE: RMSE measures the similarity between the refer-
ence image, X , and the fused image X̂ . The smaller the
RMSE, the better the fusion quality. RMSE is defined as
follows:

RMSE
(

X, X̂
)

= 1/nmλ

∥
∥
∥X − X̂

∥
∥
∥

2

F
(20)

3) SAM: SAM is commonly used to quantify the spectral
information preservation. SAM is defined as follows:

SAM (xn , x̂n ) = arccos (〈xn , x̂n 〉 /‖xn‖2‖x̂n‖2) (21)

where xn and x̂n represent the spectral vector of x and
x̂, respectively. We use the average SAM value calculated
between the spectral vectors of the reference image and
the estimated image. The smaller the SAM, the less the
spectral distortion.

4) UIQI: UIQI reflects the similarity between the single-
band images of the reference image and the fused im-
age, namely, a = [a1 , . . . , aN ] and â = [â1 , . . . , âN ]. The
larger the UIQI, the smaller the spectral distortion. The
value is related to the correlation, luminance, and contrast
distortions of the fused image with respect to the reference
image. UIQI is defined as follows:

UIQI (a, â) = 4σ2
aâμaμâ/

(

σ2
a + σ2

â

) (

μ2
a + μ2

â

)

(22)

where (μa , μâ , σ2
a , σ2

â) represents the means and variances
of a and â, and σ2

aâ is the covariance of (a, â).
5) ERGAS: ERGAS calculates the amount of spectral distor-

tion and provides a global statistical measure of the fused
image with the best value at zero. ERGAS is defined as
follows:

ERGAS = 100×m/n

√
√
√
√1/mλ

m λ∑

i=1

(RMSE (i) /μi)
2

(23)

where μi is the mean of the ith band of the HSI; mλ is the
number of the HS bands; and m/n is the ratio between
the HSIs and MSIs. The smaller the ERGAS, the less the
spectral distortion.

6) DD: DD reflects the degree of spectral distortion of the
reference image and the fused image. The smaller the
value, the higher the fusion quality. The measure of fusion
quality is defined as follows:

DD
(

X, X̂
)

= 1/nmλ

∥
∥
∥vec (X)− vec

(

X̂
)∥
∥
∥

1
(24)

where vec(·) represents the vectorization of the matrix.

V. RESULTS AND DISCUSSION

A. Experiments With ROSIS Data

We propose reconstructing the reference image, X, from the
low spatial resolution, HSI, and the high spatial resolution, MSI,
by using the proposed algorithm.

For simulation experiments, we selected, from the ROSIS
dataset, three scenes (Scenes 1–3) with dimensions of 128× 128
× 93. The related composite color images, formed by selecting
the red, green, and blue bands of the reference images with
respect to Scenes 1–3, are depicted in Fig. 1(a)–(c).

In all three scenes, the reference images, X, are used to gen-
erate the degraded images, YH and YM . Specifically, the HSIs
YH are generated by applying a 5 × 5 Gaussian spatial filter
and by downsampling every 4 pixels in both horizontal and
vertical directions for each band of the reference images, X.
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Fig. 1. Reference images with respect to Scenes 1–3 of ROSIS dataset. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) IKONOS-like spectral responses.

Fig. 2. Dictionaries of the first three bands with respect to Scene 1 of ROSIS data. (a) Dictionary for Band 1. (b) Dictionary for Band 2. (c) Dictionary for
Band 3.

Besides, four-band MSIs YM are obtained by filtering the refer-
ence images, X, with the IKONOS-like spectral response shown
in Fig. 1(d). Providing for reality, the HSIs and MSIs are con-
taminated by zero-mean additive Gaussian noise, and the noise
power s2

H,i and s2
M,j depend on the SNR defined by

SNRH,i = 10 log
(

‖(XBS)‖2F /s2
H,i

)

(25)

SNRM,i = 10 log
(

‖(RX)‖2F /s2
M,i

)

(26)

In all three scenes, we assumed that SNRH,i is 35 dB for the
first 43 bands, and SNRH,i is 30 dB for the remaining 50 bands
of the HSIs YH ; whereas SNRM,i of the MSIs YM is 30 dB for
all bands.

B. Low-Dimensional Subspace Learning

We used the PCA similar to [39], to learn the low-dimensional
subspace transform matrix, H. Note that the PCA, which is
widely used in HSIs [38], [40], projects the original image onto
a low-dimensional subspace while retaining most of the infor-
mation. The experiment with respect to Scene 1 reveals that,
when there are five bands in the subspace, m̃λ, the eigenvectors
contain nearly 99.9% of the spatial and spectral information of
the original image. Therefore, in all three scenes, the first five
eigenvectors of the HSIs are selected to build the subspaces of
interest.

C. Dictionary Learning

As explained earlier, dictionary learning plays a vital role in
the reconstruction of high spatial resolution HSIs. We use the

Bayesian nonparametric approach with beta process [41] prior
to learning the overcomplete dictionaries.

With our experiments in all three scenes, the input images,
Ũ , are divided into 8 × 8 pixel image patches for dictionary
learning, with maximum overlap between adjacent patches. The
dictionary elements and other parameters are all initialized with
the singular value decomposition SVD method. The hyperpa-
rameters are c0 = d0 = e0 = f0 = 10−6 , τ0 = 2, and η0 = 0.5.
These are standard uninformative priors applied in, e.g., [48].
We initialized the Gibbs sampling with dictionary size K = 50,
which is the value based on our prior belief that the total num-
ber of endmembers in a given image is generally less than fifty
[36]. The number of iterations is 500, and Gibbs sampling is
used to obtain the posterior distributions of the five latent vari-
ables. Especially noteworthy is the fact that the dictionary size,
K, is inferred by the Bayesian nonparametric method through
searching and deleting the unused dictionary elements during
the Gibbs iterative sampling, which reduces the dictionary di-
mension and improves learning efficiency. Because dictionary
learning is carried out in subspace, where the number of samples
is relatively smaller, we do not infer the dictionary size nonpara-
metrically. Fig. 2 shows the dictionaries of the first three bands,
with respect to Scene 1 of the ROSIS data, in descending order
according to the usage probability of the dictionary elements, π.
As seen in Fig. 2, the learned dictionary elements well represent
the structure and texture features of the target image.

D. Selection of the Regularization Parameter

To select an appropriate value for λ, we evaluate our pro-
posed method as a function of λ. As shown in Fig. 3 the results
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Fig. 3. Performance of the proposed method verse λ with respect to Scene 1 of ROSIS data. (a) RSNR. (b) SAM. (c) ERGAS. (d) DD.

Fig. 4. Fusion results and absolute error images with respect to Scene 1 of ROSIS data. (a1) to (d1) and (a2) to (e2) reference, HSI, MSI, and fusion results using
different methods, respectively. (a3) to (d3) and (a4) to (e4) absolute error images of the competing methods. (a1) Reference image X. (b1) HSI YH . (c1) MSI
YM . (d1) GLP [10]. (a2) CNMF [22]. (b2) BSR [36]. (c2) MMIF [27]. (d2) SRFM [40]. (e2) Our method. (a3) Error of X. (b3) Error of YH . (c3) Error of YM .
(d3) GLP [10]. (a4) CNMF [22]. (b4) BSR [36]. (c4) MMIF [27]. (d4) SRFM [40]. (e4) Our method.

with respect to Scene 1 of the ROSIS data that the values of
the evaluation indexes tend to be stable when λ ≥ 35, and the
performance of our proposed algorithm is superior to that of the
other five methods in the range of the given values of λ. Hence,
for all three scenes, we choose λ = 35 to conduct the fusion
experiments.

E. Comparative Study

We compared our approach with the other five approaches,
which constitute the state-of-the-art in this area: GLP [10],
CNMF [22], BSR [36], MMIF [27], and SRFM [40]. All the

related experimental parameters, with respect to the five meth-
ods, are referenced to the original literature.

All the algorithms were implemented using MAT-
LABR2012A on a computer with Intel(R) Xeon(R) CPU
E3-1230 V2 @ 3.30 GHz and 8 GB RAM. The fusion results
and absolute error images, with respect to Scene 1 of the ROSIS
data, are depicted in Fig. 4. The performance of the proposed
algorithm, while slightly better than that of the SRFM [40]
algorithm, especially in the white ground area, is significantly
superior to that of the GLP [10], CNMF [22], BSR [36], and
MMIF [27] algorithms. Figs. 5 and 6 display the fusion results
and absolute error images, with respect to Scenes 2 and 3 of the
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Fig. 5. Fusion results and absolute error images with respect to Scene 2 of ROSIS data. (a1) to (d1) and (a2) to (e2) reference, HSI, MSI, and fusion results using
different methods, respectively. (a3) to (d3) and (a4) to (e4) absolute error images of the competing methods. (a1) Reference image X. (b1) HSI YH . (c1) MSI
YM . (d1) GLP [10]. (a2) CNMF [22]. (b2) BSR [36]. (c2)MMIF [27]. (d2)SRFM [40]. (e2) Our method. (a3) Error of X. (b3) Error of YH . (c3) Error of YM .
(d3) GLP [10]. (a4) CNMF [22]. (b4) BSR [36]. (c4) MMIF [27]. (d4) SRFM [40]. (e4) Our method.

ROSIS data, respectively, which show the same performance of
the proposed algorithm as in Scene 1. The main reason is that
using the Bayesian nonparametric method to learn the dictio-
nary elements and sparse coefficients and optimizing the sparse
coefficients in the alternate optimization process introduces
more a priori information to enhance the ability of the dictio-
nary elements to express the structure and texture information
of the target image, thereby further improving the quality of the
fusion results. To illustrate more intuitively the difference in
fusion quality under different algorithms, Tables I–III give the
corresponding quantitative indicators with respect to the three
scenes. As seen from the PSNR, RMSE, SAM, UIQI, ERGAS,
and DD values, the performance of the algorithm is always
optimal, which is consistent with the above visual results.
However, compared with optimization methods, the MCMC
method can be computationally costly; therefore, the compu-
tational time of the proposed method is relatively improved.

F. Experiments With AVIRIS Dataset

In this section, we analyze another group of experimental
results of image fusion with AVIRIS data to further reveal the

performance of the proposed algorithm. We select a 120 × 120
× 224 AVIRIS image as the reference image. The simulation of
YH is the same as that described in Section V-C, and the bands
of YM correspond to Bands 1–5 and 7 of Landsat TM, whose
wavelength ranges are 450–520, 520–600, 630–690, 760–900,
1550–1750, and 2080–2350 nm, respectively [59]. The spectral
values of each band are the average of the spectral values in
the corresponding band with respect to the reference image, in-
cluding six bands. We contaminate YH and YM with zero-mean
additive Gaussian noise, assuming that SNRH,i = 300 dB and
SNRM,j = 200 dB, respectively. The proposed method is im-
plemented to simulate HSI and MSI with a subspace of dimen-
sion m̃λ = 10, which contains nearly 99.3% of the spatial and
spectral information of the original image. We choose λ = 40
to conduct the fusion experiments. For dictionary training and
sparse coefficient learning, the related parameters are the same
as in Section V-C. Fig. 7 displays the reference images, HSI,
MSI, and the fusion results under different algorithms. Ad-
ditionally, the absolute error images of the fusion results are
also given. Table IV shows the quantitative results correspond-
ing to different algorithms. As shown in Fig. 7 and Table IV,
the proposed fusion algorithm is still superior to GLP [10],
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Fig. 6. Fusion results and absolute error images with respect to Scene 3 of ROSIS data. (a1) to (d1) and (a2) to (e2) reference, HSI, MSI, and fusion results using
different methods, respectively. (a3) to (d3) and (a4) to (e4) absolute error images of the competing methods. (a1) Reference image X. (b1) HSI YH . (c1) MSI
YM . (d1) GLP [10]. (a2) CNMF [22]. (b2) BSR [36]. (c2) MMIF [27]. (d2)SRFM [40]. (e2) Our method. (a3) Error of X. (b3) Error of YH . (c3) Error of YM .
(d3) GLP [10]. (a4) CNMF [22]. (b4) BSR [36]. (c4) MMIF [27]. (d4) SRFM [40]. (e4) Our method.

TABLE I
PERFORMANCE OF DIFFERENT FUSION METHODS BASED ON

SCENE I OF ROSIS DATA

CNMF [22], CSU [23], and SRFM [40] algorithms for AVIRIS
data.

G. Experiments With New York Dataset

In order to evaluate the proposed algorithm under a more
realistic scenario, the New York dataset has also been used. Since
both the HSI and MSI have the same spatial resolution, the HSI

TABLE II
PERFORMANCE OF DIFFERENT FUSION METHODS BASED ON

SCENE II OF ROSIS DATA

has just been spatially degraded, performing the same simulation
measures as that described in Section V-C. We make use of only
the MSI bands 4, 7, and 9 to make the problem more challenging
[55]. In addition, the images are co-registered before carrying on
the fusion process, and the portion of 60 × 120 pixels has been
selected for the fusion. The proposed method is implemented
with a subspace of dimension m̃λ = 5, which contains nearly
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Fig. 7. Fusion results and absolute error images of AVRIS data. (a1) to (d1) and (a2) to (d2) reference, HSI, MSI, and fusion results using different methods,
respectively. (a3) to (d3) and (a4) to (d4) absolute error images of the competing methods. (a1) Reference image X. (b1) HSI YH . (c1) MSI YM . (d1) GLP [10].
(a2) CNMF [22]. (b2) CSU [23]. (c2) SRFM [40]. (d2) Our method. (a3) Error of X. (b3) Error of YH . (c3) Error of YM . (d3) GLP [10]. (a4) CNMF [22]. (b4)
CSU [23]. (c4) SRFM [40]. (d4) Our method.

TABLE III
PERFORMANCE OF DIFFERENT FUSION METHODS BASED ON

SCENE III OF ROSIS DATA

TABLE IV
PERFORMANCE OF DIFFERENT FUSION METHODS BASED ON AVRIS DATA

TABLE V
PERFORMANCE OF DIFFERENT FUSION METHODS BASED ON NEW YORK DATA

99% of the spatial and spectral information of the original image,
and the regularization parameter is set λ= 35. For dictionary
training and sparse coefficient learning, the related parameters
are the same as in Section V-C. Fig. 8 and Table V show the
visual results and the corresponding quantitative results. It can
be seen that the proposed fusion algorithm still outperforms the
other algorithms for New York data. These results agree well
with those we obtained with the abovementioned two datasets,
proving that the proposed fusion algorithm improves the fusion
quality.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 8. Fusion results and absolute error images of New York data. (a1) to (d1) and (a2) to (d2) reference, HSI, MSI, and fusion results using different methods,
respectively. (a3) to (d3) and (a4) to (d4) absolute error images of the competing methods. (a1) Reference image X. (b1) HSI YH . (c1) MSI YM . (d1) GLP [10].
(a2) CNMF [22]. (b2) CSU [23]. (c2) SRFM [40]. (d2) Our method. (a3) Error of X. (b3) Error of YH . (c3) Error of YM . (d3) GLP [10]. (a4) CNMF [22]. (b4)
CSU [23]. (c4) SRFM [40]. (d4) Our method.

VI. CONCLUSION

In this paper, we proposed an effective HSI and MSI fu-
sion method based on Bayesian nonparametric sparse repre-
sentation. The proposed algorithm performs image fusion in
subspace. Using the Bayesian nonparametric dictionary learn-
ing, the proposed algorithm learns the posterior distributions
of the relevant parameters in the scenes of interest. Later, the
information is applied to the alternate optimization algorithm,
consisting of ADMM and the Bayesian nonparametric sparse
coefficients learning to minimize the objective function. Ex-
haustive experiments with both two public datasets and one real-
world dataset show that, with the advantages of offering smaller
spatial structure error and smaller spectral distortion while ob-
taining superior quantitative results (except for the time index),
the proposed algorithm outperforms the existing state-of-the-
art. The main reason is that the Bayesian nonparametric method
applied in this paper introduces more prior information to en-
hance the expression accuracy of the dictionary elements and the
estimation precision of the target image. However, because the
MCMC method used in the Bayesian model is computationally
costly compared with optimization methods, more calculation
time is required. Future works will jointly update the target
image, sparse coefficients, and dictionary elements to achieve
superior fusion results. Developing the parallel methods to im-
prove the computational efficiency with respect to the Bayesian
nonparametric model will also deserve some attention.
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