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a b s t r a c t 

A common approach to tackle 3D object recognition tasks is to project 3D data to multiple 2D images. 

Projection only captures the outline of the object, and discards the internal information that may be cru- 

cial for the recognition. In this paper, we stay in 3D and concentrate on tapping the potential of 3D rep- 

resentations. We present NormalNet, a voxel-based convolutional neural network (CNN) designed for 3D 

object recognition. The network uses normal vectors of the object surfaces as input, which demonstrate 

stronger discrimination capability than binary voxels. We propose a reflection–convolution–concatenation 

(RCC) module to realize the conv layers, which extracts distinguishable features for 3D vision tasks while 

reducing the number of parameters significantly. We further improve the performance of NormalNet by 

combining two networks, which take normal vectors and voxels as input respectively. We carry out a 

series of experiments that validate the design of the network and achieve competitive performance in 3D 

object classification and retrieval tasks. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

As we live in a 3D world, recognition and analysis of 3D

eometric models is an inevitable problem for computer vision

esearch. With the emergence of large 3D repositories in the last

everal years [1–4] , an extensive research on the classification,

etrieval, and semantic labeling of 3D objects is becoming possi-

le, and these areas have drawn great attention from researchers.

eanwhile, deep convolutional neural networks (CNNs) are in-

roduced to 3D pattern recognition, and they are replicating the

mpressive success that they have achieved in the 2D field. Most

f the recent systems which achieve state-of-the-art performance

n 3D object classification on the ModelNet40 [4] benchmark are

ased on CNNs [5–10] . 

In this paper, we specifically focus on the classification and re-

rieval tasks of 3D objects obtained from CAD models and point

louds. A common approach to tackle these problems is to project

D data to multiple 2D images, and a series of multiview-based

D CNN architectures have been proposed [7,8,10,11] . Benefiting

rom the exhaustive 2D image classification research and the mas-

ive image databases that can be used to pre-train 2D CNNs
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e.g. ImageNet [12] ), these methods have outperformed their coun-

erpart 3D voxel-based methods [4,13] . However, from the view-

oint of 3D data processing, projecting to 2D is a way of avoid-

ng the issue instead of solving it. Projection only captures the

utline of the object, and discards the internal information that

ay be important for the recognition of some specific categories.

ig. 1 gives an example. The middle of the figure shows a glass-

ox model. From outside, it is a simple cube, but in fact it has a

omplex internal structure. As the 3D data includes all original in-

ormation, in this work, we concentrate on tapping the potential of

D representations. 

One obstacle to operate directly on 3D data is the computa-

ional and memory costs generated by the additional dimension.

or example, images of 256 × 256 pixels are quite common for 2D

mage classification, while training a deep network on a 3D dataset

ith resolution 256 3 is computationally prohibitive. However, re-

earchers have pointed out that the primary reason for the per-

ormance gap between 2D and 3D CNNs is the architecture of the

etwork, not the input resolution [8] . In OctNet [14] , the classifi-

ation accuracy on ModelNet10 changes slightly between resolu-

ions 32 3 , 64 3 , and 128 3 , and even decreases with resolution 256 3 .

 64 3 occupancy grid has the same size as a 512 × 512 image,

hich is totally affordable for current computers and GPUs. On the

ther hand, the amount of information in 3D data is not necessar-

ly larger than 2D data. A 3D shape is defined on its surface, and

https://doi.org/10.1016/j.neucom.2018.09.075
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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mailto:chm99@xmu.edu.cn
https://doi.org/10.1016/j.neucom.2018.09.075


140 C. Wang et al. / Neurocomputing 323 (2019) 139–147 

Fig. 1. Examples of CAD models from ModelNet40 and the corresponding (outward) 

normal vectors. From left to right: bottle, glassbox, and guitar. The models are vox- 

elized with resolution 30 3 , and the normal vectors of the surface voxels are calcu- 

lated. The shown glassbox and guitar models have 10,942 and 119 surface voxels 

respectively, maximal and minimal in ModelNet40. 
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in a 3D occupancy grid each voxel is binary, whereas a 2D pixel

has 256 gray levels. In this sense, a 3D classifier should be simpler

than a 2D one. 

In this paper we propose NormalNet, a voxel-based CNN with

normal vectors as input. Intuitively, the performance of normal

vector input should not be worse than voxel input, as the former

contains more information (position and orientation of the model

surface). In Section 4.1 we demonstrate that under the same net-

work architecture, the normal vector input outperforms the voxel

input consistently. 

Furthermore, we improve the performance of NormalNet from

three aspects: network architecture, data augmentation, and net-

work fusion. We propose a reflection-convolution-concatenation

(RCC) module to realize the conv layers in NormalNet, which gen-

erates feature maps by both conv kernels and their reflections. We

use model rotation as a data augmentation method to increase

training samples and reduce overfitting. We combine two net-

works, which take normal vectors and voxels as input respectively,

and train them synchronously using the network fusion technique.

The key technical contributions of this paper are as follows:

we propose to use normal vectors as input to a 3D CNN classifier,

which outperform the voxel input. To the best of our knowledge,

this is the first time that normal vectors are exploited in conjunc-

tion with volumetric CNN. We design an RCC module for the conv

layer, which achieves higher classification accuracy than an ordi-

nary conv layer with fewer parameters. We study the methods to

combine multiple inputs, and further improve the performance in

object classification and retrieval tasks. 

The rest of this paper is organized as follows: In Section 2 , we

review current deep networks on 3D model. The proposed Normal-

Net is introduced in Section 3 including the network architecture,

data augmentation method, and network fusion technique. Exten-

sive experiments and results are given in Section 4 . In Section 5 ,

we summarize our conclusion. 

2. Related work 

A number of shape descriptors have been designed for 3D

model analysis [15–17] . A comprehensive performance evalua-

tion of 3D descriptors can be found in [18] where ten popular
escriptors are compared in terms of descriptiveness, compactness,

nd robustness. Many of these descriptors are handcrafted towards

pecific tasks, and do not generalize well for shapes across a vari-

ty of classes with large variations. With the advancement in the

eld of deep learning, CNNs have been widely and successfully

sed on 2D and 3D data by the computer vision community. Af-

er trained on large dataset, CNNs can learn general purpose fea-

ures that outperform handcrafted descriptors, and have achieved

tate-of-the-art results for various vision tasks. 

Volumetric CNNs 3D CNNs have been used in video analy-

is [19,20] , where time acts as the third dimension. The pioneer

ork in [4] made effort s to build deep learning models on 3D

hapes directly. The authors trained a convolutional deep belief

etwork (DBN) on a 30 3 voxel grid for shape classification, shape

etrieval, and next-best-view prediction. They also released the

arge-scale CAD dataset ModelNet which boosts the research on 3D

eep learning. A similar approach is VoxNet [13] which uses typ-

cal CNN architecture consisting of conv and fc layers. Following

hese works, Sedaghat et al. [21] studied the role of object orien-

ation in 3D recognition. They trained a multi-task network which

as forced to predict the pose of the object in addition to the class

abel. Volumetric CNNs are also part of the work in [8] where two

istinct network architectures were proposed, i.e. CNN with auxil-

ary training by subvolume supervision and CNN with anisotropic

robing kernels. These architectures work on volumetric occupancy

rid, and can process different sources of 3D data, including CAD

odels, RGB-D point cloud, and LiDAR point cloud [22] . 

Further developments in volumetric CNNs include the appli-

ations of generative models [23] , denoising auto-encoders [24] ,

ery deep discriminative architectures, and lightweight architec-

ure. Brock et al. [5] trained networks with up to 45 layers and

mproved the ModelNet classification task by large margins. Zhi

t al. [25] proposed LightNet to address the real-time 3D object

ecognition problem, which predicts class and orientation simul-

aneously and achieves the state-of-the-art 3D object recognition

erformance among shallow volumetric CNNs with the smallest

umber of training parameters. 

Multiview CNNs The spatial resolution of volumetric CNNs is

imited due to their computational and memory costs, and some

orks turn to relying on 2D CNNs fully or partly. In multi-view

NN (MVCNN) [8] 12 or 80 2D rendered images of a single object

re aggregated by a view-pooling layer, and then passed to a CNN

re-trained on ImageNet to generate a compact shape descriptor.

ohns et al. [7] applied CNN to generic multi-view recognition by

ecomposing an image sequence into a set of image pairs, classify-

ng each pair, and weighting its contribution. Shi et al. [26] con-

erted each 3D shape into panoramic views via a cylinder pro-

ection around its principle axis, then a CNN is used to learn

he representations from these views. Sfikas et al. [9] also used

he panoramic views consisting of 3-channel images, i.e., the spa-

ial distribution map, the normals deviation map, and the mag-

itude of the normals deviation map gradient image. Rotation-

et [11] takes multi-view images of an object as input and jointly

stimates its pose and object category. An ensemble of networks

ave been shown to boost the performance and this approach is

dopted in FusionNet [6] , which combines volumetric CNN and

ultiview CNN. 

Point cloud CNNs Point cloud is becoming popular for represent-

ng 3D objects. It is an attractive approach to feed point clouds

o deep networks directly since it does not need any transforma-

ion to the input data (i.e., voxelization or projection) and avoids

oss of information. The difficulty is that point cloud is spatial ir-

egular and permutation invariant, essentially different from ras-

erized data (pixel or voxel). Some networks have been proposed

ecently to challenge this difficulty. Kd-network [27] uses kd-tree

o represent point clouds. The network mimics the operations in
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Fig. 2. In an RCC module, the input combined with two of its reflection images are 

fed into the conv layer. Considering that the input may have different sizes across 

dimensions, a second time of reflection is necessary before concatenating the conv 

results. 
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1 Batchnorm scaling is not useful with ReLUs. 
NNs with modifications to adapt to the input data structure.

ointNet [28] directly takes point clouds as input, represented by

hree coordinates, and outputs class or part labels. A max pool-

ng layer is applied before output to realize permutation invari-

nce. PointNet++ [29] is later proposed by the same author which

pplies PointNet hierarchically for better capturing of local struc-

ures. Another two networks that consuming point coordinates are

ointCNN [30] and SO-Net [31] . The former uses the so-called X -

onv layers to extract features from input points. The latter models

he spatial distribution of point cloud by building a self-organizing

ap (SOM), then performs hierarchical feature extraction on SOM

odes. 

Although the idea of using coordinates as input is straightfor-

ard, the performance of current point cloud CNNs is still worse

han multiview CNNs on 3D object recognition tasks. 

. Proposed method: NormalNet 

NormalNet uses the unit normal vector as input, calculated for

ll surface voxels. In the process of voxelization, each patch of the

AD model is split iteratively until all vertices fall into the same

oxel, then the value of the voxel is set to 1. A little extra opera-

ion can generate the normal vector at the voxel position by cal-

ulating the cross product of the two edges of the subpatch. For

oint cloud, the eigenvector corresponding to the minimum eigen-

alue of the covariance matrix can be approximated as the normal

ector. Fig. 1 shows several examples of CAD models from Model-

et40 and their corresponding normal vectors. 

Compared with how to generate the normal vector, more at-

ention should be paid to how to store it. If we use float type

o store each coordinate component, a normal vector will take 12

ytes for storage, which is a huge burden on the memory. In prac-

ice we use one byte ( signed char type) to store each coor-

inate, i.e., −128 represents −1 and +127 represents 0.9922, and

he precision is 1/128 ≈ 0.0078. We find this precision is accurate

nough for network training and inference. 

After defining the input of NormalNet, we improve its perfor-

ance from three aspects, which will be described in detail be-

ow. The feature generation method for object retrieval will also be

resented. 

.1. Network architecture 

NormalNet is a CNN consisting of conv and fc layers. We pro-

ose a new structure to realize the conv layer: the RCC module.

n an RCC, the input of the conv layer combined with two of its

eflection images are fed into the conv layer, and the conv results

re concatenated along the channel dimension as the output of the

ayer (shown in Fig. 2 ). The consideration behind this idea is that if

ou can recognize an object, you can also recognize it from a mir-

or. As the feature extraction part in CNN, the conv layers should

lso have this capability. Thus, we send both the input and its re-

ections to the conv kernel, and force the conv kernel to extract

eatures from multiple directions. This arrangement compels the

onv kernel to be isotropic and to extract more distinguishable fea-

ures for 3D vision tasks. 

It is well known that parameter sharing is an important feature

f CNN. The RCC module extends the idea of parameter sharing.

he parameters are shared not only between different receptive

elds, but also between the input and its reflections. This extension

ignificantly reduces the number of parameters in the conv layers.

n the case of the same number of output channels, the number of

onv kernels is reduced to one-third. 

A commonly used data augmentation technique in 3D CNN is

ata rotation (also used in this work) and randomly mirroring. The

dea looks similar to RCC, but in fact there is essential difference.
ata augmentation is applied to the input data, which are fed into

he first conv layer only. Oppositely, RCC can be used in all conv

ayers. It reflects the output of the previous layer, and feeds the

eflections and the original output into the next one. 

When using the RCC module, there is a problem that needs to

e considered: the size of the input. If the input has different sizes

cross dimensions, a second time of reflection has to be applied

efore concatenation. In practice we reflect the conv kernel instead

f the input (shown in Fig. 3 ), and the results are exactly the same.

n most applications, the kernel size and the stride are the same

n different dimensions, and the conv results can be concatenated

irectly. 

We define two types of RCC, denoted by RCC-I and RCC-II

espectively. RCC-I includes only one conv layer, while RCC-II

ncludes an additional conv layer with a kernel size of 1 × 1 × 1.

onvolution with kernel size 1 is common in 2D CNNs (e.g., in

nception Net [32] ), which increases the feature transformation

nd nonlinearity with little cost. We apply this idea to RCC. Batch

ormalization [33] is used after each conv layer. 

Let m, n i , and n o be the kernel size, number of input chan-

els, and number of output channels, the numbers of trainable pa-

ameters in vanilla conv layer, RCC-I, and RCC-II are m 

3 n i n o + n o ,
1 
3 m 

3 n i n o + n o , and 

1 
3 m 

3 n i n o + n 2 o + 2 n o respectively. 1 

The architecture of NormalNet is shown in Fig. 4 . The 3D object

s voxelized with resolution 30 3 , and the three coordinate compo-

ents of the normal vectors serve as the three input channels. The

umbers of convolution output channels n 1 , n 2 , n 3 and the num-

er of hidden units in fc layer n 4 are alterable, and we test differ-

nt combinations in the experiments. Classification losses are com-

uted using softmax and cross entropy. 

.2. Data augmentation 

The appearance of the voxelized models depends on the ori-

ntation, and we augment the training data with multiple rota-

ions. Two forms of rotation augmentation are compared [10] . The

rst form includes 12 rotations. Assuming that all models in the

ataset are upright oriented along the z -axis (ModelNet40 satisfies

his requirement), we create 12 copies for each model, each ro-

ated at 30 ° intervals around the z -axis. The second form includes

0 rotations, and the viewpoints are set at the 20 vertices of an
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Fig. 3. Practical RCC module reflects the conv kernel instead of the input. In most applications, the conv kernel has the same size in different dimensions, thus the conv 

results can be concatenated along the channel dimension directly. We define two types of RCC, and RCC-II includes an additional conv layer with kernel size 1 × 1 × 1. 

Fig. 4. NormalNet architecture, including three conv layers and one fc layer. The conv layer is defined by its kernel size, stride, number of input channels, and number of 

output channels. Both vanilla conv layer (with batch normalization) and RCC module are investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Two network fusion strategies. Top: hard parameter sharing. The sharing can 

cover one or more layers from conv2, conv3, and fc4. Bottom: cross-stitch networks. 
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icosahedron enclosing the model. At training time, the rotations

of the same model are deemed to be different training samples.

While during the test stage, all rotations of the same test sample

are fed into the network in one batch, and the activations of the

output layer are averaged. 

3.3. Combination of multiple inputs 

The fusion of multiple networks can achieve a better classifica-

tion performance than separate ones. In [8] the best result is ob-

tained by training an SVM over the concatenation of fc7 features

from three networks. FusionNet [6] combines volumetric CNN and

multiview CNN after the final fc layer. A linear combination of the

fc outputs is used as the classification basis. In general, the fusion

strategy in the present literature is relatively simple, i.e., combin-

ing the outputs of fc layers (concatenation or weighted average)

as class scores, and the class corresponding to the highest score is

declared to be the predicted class. 

In this work, we combine normal vector input and voxel input

for 3D object classification and retrieval using the network fusion

technique. In the context of deep learning, network fusion can be

realized with either hard or soft parameter sharing of hidden lay-

ers [34] . The former shares the hidden layers between all tasks

while keeping several task-specific output layers, which greatly re-

duces the risk of overfitting. In the latter case, each task has its

own model with its own parameters, while the distance between

the parameters is regularized to encourage the parameters to be

similar [35] . 

We use two networks denoted by N-net and V-net, which take

normal vectors and voxels as input respectively. The structure of

the two networks is almost identical except for the number of

input channels. Two network fusion strategies are investigated

(shown in Fig. 5 ). The first one is hard parameter sharing, which

can cover one or more layers among the conv and fc layers. The

second one is cross-stitch networks (CSNs) [36] , in which the in-

put of each layer is the linear combination of the activations of the

previous layers from multiple networks. The combination may be

layer-wise or channel-wise, and the coefficients are trainable. 
The improvement of the performance can be expected only

hen each network provides distinct information about the ob-

ect. In our realization, the inputs of the two networks are from

he same object, but they can be different rotations. Furthermore,

e use anisotropic rescaling [27] as a data augmentation method

or voxel input. This method is not suitable for normal vector in-

ut, since it changes the direction of the normal vector. The soft-

ax outputs of the two networks are averaged and the index of

he largest value indicates the class of the object. We also tried av-

raging the outputs of fc layers before softmax and we found the

hange of the performance is insignificant. 

.4. Feature generation for object retrieval 

The features extracted by deep learning can be used for object

etrieval as well. In this work, the activations of the fc layer of Nor-

alNet for each input 3D model is deemed as the descriptor of

hat object. To perform the retrieval task, a 3D model descriptor is

ompared against the rest of the 3D model descriptors using the

 2 distance metric. 

Dimensionality reduction of the descriptor can yield a sig-

ificant retrieval performance boost [8,10] . Let φ ∈ R 

d be the

riginal descriptor, and we learn a projection matrix W ∈ R 

p×d 

ith p � d to generate a compact descriptor W φ ∈ R 

p . The pur-

ose of the projection is twofold: it improves the discrimination
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Table 1 

Classification accuracy on ModelNet40 (binary voxel input vs. normal vector input). 

The accuracy is averaged over sample and class respectively. The normal vector in- 

put outperforms the voxel input consistently. 

network voxel normal vector 

sample (%) class (%) sample (%) class (%) 

VoxNet [13] 84.2 82.3 84.9 83.1 

ours-vanilla 86.7 84.1 87.8 85.8 

ours-RCC-II 88.7 86.0 90.1 88.0 

Fig. 6. Change of classification accuracy between normal vector input and voxel in- 

put per class (blue bars). The classes are sorted by the number of training samples 

(black line). Classes with accuracy change ≥ 5% are labeled. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

Table 2 

Classification accuracy on ModelNet40 under various network configurations. 

conv ( n 1 , n 2 , n 3 , n 4 ) #trainable #rotations accuracy 

layer parameters sample (%) class (%) 

vanilla (48,96,192,256) 1,508,856 12 86.9 84.5 

vanilla (96,192,384,512) 5,951,432 12 87.8 85.8 

vanilla (96,192,384,512) 5,951,432 20 87.7 85.1 

RCC-I (48,96,192,256) 772,344 12 87.5 85.5 

RCC-I (96,192,384,512) 3,046,856 12 89.0 86.6 

RCC-I (96,192,384,512) 3,046,856 20 88.9 86.5 

RCC-II (48,96,192,256) 821,064 12 88.6 86.5 

RCC-II (96,192,384,512) 3,241,064 12 90.1 88.0 

RCC-II (96,192,384,512) 3,241,064 20 90.6 88.2 
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apability of the descriptors and dramatically reduces the dimen-

ionality. We use the ratio between the intra-class distance and

nter-class distance to evaluate the discriminative improvement of

he projection. Suppose the dataset includes C classes, and class c

as N c samples. Let φ(c) 
i 

be the descriptor of sample i in class c ,

nd μ(c) = 

1 
N c 

∑ N c 
i =1 

φ(c) 
i 

be the center of class c . The optimal pro-

ection matrix should minimize the ratio: 

 

∗ = arg min 

W 

∑ C 
c=1 

1 
N c 

∑ N c 
i =1 

‖ W φ(c) 
i 

− W μ(c) ‖ 2 ∑ 

1 ≤r<s ≤C ‖ W μ(r) − W μ(s ) ‖ 2 

. (1) 

e use the large-margin dimensionality reduction method

n [37] to solve W 

∗ iteratively. The method learns the projection

atrix such that the squared Euclidean distance ‖ W φi − W φ j ‖ 2 2 
s smaller than a learnt threshold b ∈ R if samples i and j are

n the same class, and larger otherwise. Furthermore, the method

mposes a margin of at least one between the distance and the

hreshold, resulting in the constraints: 

 i j (b − ‖ W φi − W φ j ‖ 

2 
2 ) > 1 , (2)

here y i j = 1 iff i and j are in the same class, and y i j = −1 other-

ise. The solution is found using a stochastic sub-gradient method.

t each iteration t , the algorithm samples a single pair of ( i, j ) and

erforms the following updates: 

 t+1 = 

{
W t if (2) is satisfied 

W t − γ y i j W t Ψi j otherwise 
(3) 

 t+1 = 

{
b t if (2) is satisfied 

b t + γ y i j b t otherwise 
(4) 

here Ψi j = (φi − φ j )(φi − φ j ) 
T is the outer product of the differ-

nce vectors, and γ is a constant learning rate. 

. Experiments and analysis 

We now demonstrate the results of application of NormalNet to

D object classification and retrieval. Our implementation of Nor-

alNet uses the TensorFlow framework. 

.1. CAD shape classification 

Dataset and training settings We use the popular ModelNet40

ataset for the 3D shape classification task. The dataset contains

0 object classes and consists of 9843 shapes for training and 2468

hapes for testing. Each shape is provided as a CAD model oriented

n a canonical pose. 

All normal vectors are precomputed and stored. When storing

he normal vectors, the whole voxel grid is stored as well with

ne bit for each voxel. The 1-voxels are used as the indices of the

ormal vectors. If each model is voxelized with resolution 30 3 and

as 20 rotations, the maximum and minimum numbers of surface

oxels are 10,942 and 119 respectively, and the average number is

795 (averaged over all 12,311 samples in the dataset and 20 rota-

ions). The storage of all normal vectors needs 1.23 GB. 

The network is trained end-to-end by the gradient descent op-

imizer. Conv kernels are initialized from a zero-mean truncated

ormal distribution with σ = 0 . 1 . The loss function includes 0.001

imes the � 2 weight norm for regularization. The learning rate

tarts from 0.01 and is decreased by a factor of 2.5 each 15,0 0 0

pochs. Batch size is 64 and the probability that each element is

ept in dropout is 0.75. 

Voxel input vs. normal vector input We compare the performance

f voxel input and normal vector input under the same network

rchitecture in Table 1 . The classification accuracy is averaged over

ample and class respectively. The latter is lower because gener-

lly classes with fewer samples have lower classification accuracy.
hree types of network architecture are investigated. We imple-

ent and train VoxNet following [13] , and change it slightly to

uit the normal vector input. As VoxNet uses 12-rotation input, we

se the same input for the other two networks to enable the com-

arison between them. As can be seen, the normal vector input

utperforms the voxel input consistently. Comparing the three net-

orks, we find that the more sophisticated the network architec-

ure is, the larger the performance difference between voxel input

nd normal vector input will be. It shows that sophisticated net-

ork has a strong capability to exploit the extra information pro-

ided by normal vectors. 

We further study the per-class gain in classification accuracy

hen using RCC-II, and the results are shown in Fig. 6 . About half

f the classes have positive gains when changing the input from

oxels to normal vectors, and classes with fewer training samples

end to have larger gain. The two classes bowl and wardrobe get a

0% increase in classification accuracy, while they have the fewest

nd the third fewest training samples. When using the voxel input

hey are apt to be misclassified as flowerpot and dresser respec-

ively. The normal vector input makes these categories with similar

ppearance more distinguishable. 

Evaluation of network configurations We study a variety of net-

ork configurations with the normal vector input, and the results

re summarized in Table 2 . For the numbers of channels n 1 to

 4 , we investigate two combinations: N 1 = (48 , 96 , 192 , 256) and

 2 = (96 , 192 , 384 , 512) . A steady improvement in the classifica-

ion accuracy can be seen from N to N , especially for RCC conv
1 2 
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Table 3 

Classification accuracy on ModelNet40 with the combination of normal vector input 

and voxel input. Hard parameter sharing performs worse than no sharing, while 

CSNs do have the effect of improving the classification accuracy. 

method 12 rotations 20 rotations 

sample (%) class (%) sample (%) class (%) 

share(3) 89.6 87.5 89.8 87.4 

share(3,4) 90.0 87.9 89.9 87.6 

share(4) 90.2 88.4 90.3 88.0 

no sharing 90.7 88.3 91.3 88.6 

CSNs(channel) 91.0 88.5 91.7 88.8 

CSNs(layer) 91.0 88.8 91.9 88.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Precision-recall curves of different methods on ModelNet40. 
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layers. It shows that an increase in the numbers of channels im-

proves the performance. However, the use of more channels than

N 2 does not yield a significant effect. Combination N 2 achieves an

accuracy of about 97% on the training set, which implies the net-

work fully exploits the information in the training data, and more

channels seem to just cause overfitting. 

Three types of conv layer structure are compared, and the RCC

module shows a clear superiority. The numbers of trainable param-

eters in RCC-I and RCC-II are 51% and 54% of that of the vanilla

conv layer respectively. RCC-II realizes one more conv layer than

the other two structures with a small price, and gets a significant

boost in performance. 

The 20-rotation input does not show an advantage over the 12-

rotation input with vanilla and RCC-I conv layers, but produces

some improvement with RCC-II. Once again, we find the need to

handle complex data with complex network. 

Network fusion We use the RCC-II module to realize the conv

layers in both N-net and V-net. The two networks are pre-trained

separately, which can reduce the training time of the fused net-

works by about 50%. Hard parameter sharing can cover one or

more layers from conv2, conv3, and fc4, and we test all com-

binations except share(2,4) (i.e. sharing conv2 and fc4) under

the assumption that the shared layers should be consecutive. We

also test the case of no parameter sharing, which is used as

a benchmark. For the evaluation of CSNs, we test both layer-

wise and channel-wise cases. The combination coefficients αS and

αD (see [36] for the definition) are initialized to 0.9 and 0.1

respectively. 

The results of different network fusion strategies and differ-

ent inputs are summarized in Table 3 . For hard parameter shar-

ing, we have share(3) < share(3,4) < share(4) < no sharing in terms
Table 4 

Classification accuracy of different methods on ModelNet40 and ModelNet10 (abbreviate

randomized kd-trees, TA = translation augmentation, SA = anisotropic scaling augmentat

Method Input Pre-train Size 

PointNet [38] volumetric − 80 M 

3DShapeNets [4] volumetric MN40 38 M 

VoxNet [13] volumetric − 0.92 M 

ORION [21] volumetric − 4M 

AniProbing [8] volumetric − −
Subvol. Sup. [8] volumetric − 16 M 

LightNet [25] volumetric MN10 0.3 M 

VRN-ensemble [5] volumetric MN40 90 M 

MVCNN [8] multiview ImageNet VGG-M 

PANO-ENN [9] multiview − −
RotationNet [11] multiview ImageNet VGG-M 

FusionNet [6] vol. + mul. ImageNet 118 M 

NormalNet (ours) norm. + vol. − 6.5 M 

Kd-network [27] points − −
PointCNN [30] points − 0.45 M 

SO-Net [31] pt. + norm. MN40 −
f the classification accuracy. This is true for both inputs. If the

hared layers include conv2, the accuracy is even lower than that

f share(3), and is not shown in the table. Since sharing any layer

enerates worse results than no sharing, we conclude that hard

arameter sharing has no help for this task. On the other hand,

SNs improve the classification accuracy noticeably. It is somewhat

onfusing that layer-wise CSNs perform slightly better than the

hannel-wise case. Theoretically, this should not happen since the

ormer is only a special case of the latter. It seems that channel-

ise CSNs have too many combination coefficients and tend to fall

nto a local optimal solution. 

We finally obtain the best classification accuracy in this work,

hich is generated by layer-wise CSNs, combining N-net and

-net, and with 20-rotation input. Note that the sample accuracy

ncreases by 1.3%, whereas the class accuracy increases by only

.6%, which suggests that the improvement mainly comes from

lasses with more samples. 

Performance comparison We compare our method with state-

f-the-art methods in Table 4 . Overall, the performance of volu-

etric CNNs is worse than multiview CNNs and point cloud net-

orks, except VRN-ensemble [5] which is a combination of 6 mod-

ls. The proposed NormalNet performs inferior to VRN-ensemble,

hile comparable to other volumetric CNNs. To the network size,

ormalNet has less than 6.5 M parameters (about 3.2 M for N-net

nd V-net each, and 16 for cross-stitching), and has 6 conv layers

2 for each RCC-II module) and an fc layer. The training of CSNs
d as MN40 and MN10 respectively). The accuracy is averaged over classes. RT = 

ion. 

Augmentation Accuracy 

MN40 (%) MN10 (%) 

− − 77.6 

12 rot. 77.3 83.5 

12 rot. 83 92 

12 rot. − 93.9 

20 ori-pooling 85.6 −
20 ori-pooling 86.0 −
12 rot. 88.9 93.9 

12&24 rot. 95.5 97.1 

based 80 views 90.1 −
− 95.6 96.9 

based 12 views 97.4 98.5 

60 rot. 90.8 93.1 

20 rot. 88.8 93.1 

RT + TA+SA 88.5 93.5 

random sample 91.7 −
noise + scaling 90.8 95.5 
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Fig. 8. Examples of labeled point clouds in Sydney Urban Objects Dataset (top) and the corresponding normal vectors (bottom). From left to right: traffic light, car, and bus. 

Table 5 

Retrieval performance of different methods on ModelNet40 measured in terms of 

mAP. 

method mAP (%) 

3D ShapeNets [4] 49.2 

MVCNN [10] 79.5 

DeepPano [26] 76.8 

GIFT [39] 81.9 

NormalNet (ours) 84.4 

PANORAMA-ENN [9] 86.3 
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Table 6 

Classification performance of different methods on Sydney Urban Objects Dataset. 

method average F 1 

UFL + SVM [40] 0.67 

GFH + SVM [41] 0.71 

multi-resolution VoxNet [13] 0.73 

NormalNet (ours) 0.74 

ORION Fusion [21] 0.78 

LightNet [25] 0.80 
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2 http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml . 
akes about 9 h on Titan X, and roughly the same amount of time

s needed to pre-train each net. The classification of each test sam-

le takes about 5.6 ms. 

.2. CAD shape retrieval 

Dataset and feature generation The retrieval performance of Nor-

alNet is also evaluated on ModelNet40. The features are gen-

rated from the layer-wise CSNs with 20-rotation input, which

chieves the best classification accuracy in Table 3 . The activations

f the two fc4 layers are concatenated to form a vector, and the

ectors from all rotations of the same object are averaged to gen-

rate the original descriptor φ ∈ R 

1024 . A projection matrix W is

rained to reduce the dimensionality to p = 64 . For the evaluation,

e treat each test sample as a query model and all of the samples

n the test set as the target retrieval database. Note that the first

etrieved model is always the query model itself. 

Performance and comparison The retrieval performance is mea-

ured via mean average precision (mAP) and precision-recall (P-R)

urve. The comparison between our method and state-of-the-art

ethods in terms of mAP is shown in Table 5 , and the P-R curves

f the methods are shown in Fig. 7 . The curves of the compared

ethods are duplicated from the literature in which the resolu-

ion of recall is relatively low. The performance of our method is

orse than PANORAMA-ENN [9] , while better than other compared

ethods. 

Effect of projection We test different values of p from 32 to 192

ith interval 32, and we find that p = 64 achieves the highest

AP. However, the change of mAP for different values of p is less

han 1%. It is worth noting that without the projection, the mAP is

nly 66.9%. The projection improves the mAP by about 17% and re-

uces the dimensionality of the descriptors to 1/16. We also calcu-

ate the ratio between the average intra-class distance and the av-

rage inter-class distance before and after projection. For the train-

ng set, these two ratios are 0.551 and 0.350, and for the test set,

.573 and 0.437, respectively. 
.3. Point cloud object classification 

Dataset and network settings The experiment is conducted on

he Sydney Urban Objects Dataset, 2 which contains labeled Velo-

yne scans of 631 objects of 26 categories. The sizes of the objects

ange from one meter to dozens of meters. In the voxelization pro-

ess, there is a tradeoff between retaining the overall shape and

apturing sufficient spatial details. In [13] , two voxel sizes (0.1 m

nd 0.2 m) are used to construct a multi-resolution VoxNet. We

est several values and empirically select a voxel size of 0.3 m. We

ut a (9 m) 3 cube from the point cloud that contains the max-

mum number of points, and voxelize it to 30 3 occupancy grid

see Fig. 8 for examples). We use N-net with RCC-II conv layers

or the classification, and set the numbers of channels n 1 to n 4 
o N 3 = (18 , 36 , 72 , 96) . Following [13] , we use 18 rotations around

he z -axis for data augmentation. Dropout is not applied. 

Performance and comparison We follow the protocol employed

y the dataset authors, which measures the performance using the

verage F 1 score, weighted by class support, for a subset of 588

amples in 14 classes over 4 training/test splits. We compare the

erformance of different methods in Table 6 . Our method achieves

n average F 1 of 0.738, marginally better than multi-resolution

oxNet, better than SVM-based methods [40,41] , while lower than

RION [21] and LightNet [25] . We also tested voxel input, which

chieves a slightly lower average F 1 , i.e., 0.729. 

. Conclusion 

We present NormalNet, a voxel-based CNN which exploits 3D

epresentations for object recognition tasks. We use normal vec-

ors as input, and boost the performance of the network from the

spects of network architecture, data augmentation, and network

usion. Our method achieves competitive performance in a series

f experiments. The techniques used in this work can easily be ex-

ended to other volumetric CNNs. We use two reflections in each

CC, and the optimal number of reflections in an RCC module is an

pen question. 

http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
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