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A B S T R A C T

The mapping of road boundaries provides critical information about roads for urban road traffic safety. This
paper presents a deep learning-based framework for recovering 3D road boundary using multi-source data,
which include mobile laser scanning (MLS) point clouds, spatial trajectory data, and remote sensing images. The
proposed road recovery method uses extracted 3D road boundaries from MLS point clouds as inputs. First, after
automatic erroneous boundary removal, a CNN-based boundary completion model completes road boundaries.
Then, to refine the imperfect road boundaries, road centerlines generated from dynamic taxi GPS trajectory data
and remote sensing images are used as completion guidance for a generative adversarial nets model to obtain
more accurate and complete road boundaries. Finally, after associating a sequence of taxi GPS recorded tra-
jectory points with the correct 3D road boundaries, inherent geometric road characteristics and road dynamic
information are extracted from the complete boundaries and taxi GPS trajectory data, respectively. The testing
dataset contains two urban road MLS datasets, and the KITTI dataset. The experimental results on point clouds
from different sensors demonstrate our proposed method is effective and promising for recovering 3D road
boundary and extracting road characteristics.

1. Introduction

As the main components of a map, roads provide the impetus for the
development of a city and give fundamental support for the develop-
ment of a modern metropolis. In addition, relevant road information
plays an important role in various applications such as city planning
(Hamilton et al., 2005), road transportation systems (Litescu et al.,
2016), driver assistance systems (Mogelmose et al., 2012), and disaster
management (Raber et al., 2007). Mobile laser scanning (MLS) point
clouds, which have millimeter-level accuracy and contain a wealth of
3D detailed information, have been successfully applied to much road-
related research, such as road surface analysis, road marking extraction
(Cheng et al., 2017), and roadside object extraction (Yu et al., 2016). As
the most succinct topology of a road, the road boundary is one of the
essential components of a high definition road map. Because of high-
density, long range, and insensitivity to lighting conditions, MLS point
cloud data are suitable for extracting highly accurate and complete road
boundary. Extracting road boundary from MLS data is usually defined
as curb detection along with road surface extraction. However, because
of occlusions and variations in data density during collection, raw MLS
point clouds are usually incomplete. Thus, the road boundary obtained

from MLS point clouds is usually incomplete with many gaps.
The straightforward way to solve the problem of acquiring in-

complete data is to re-scan and extract the incomplete parts of the road
again, at the extra cost of time, workforce, and money. A more practical
approach is to recover incomplete road boundaries. The gaps can be
directly completed by linear interpolation, but it is prone to curvature
loss in some incomplete curves. The main challenges for recovering 3D
urban road boundaries are summarized as follows: (1) Incomplete raw
point clouds are collected because of occlusion from cars or vegetation
(Fig. 1(a)), or the limited sensing range of the sensor. Incomplete 3D
road boundaries are obtained in some situations, e.g., no curb or low
curb (see Fig. 1(b)), because of incomplete raw data and the error, or
limitation, in the extraction method. (2) The uncertainties of gaps in
urban road boundaries make it difficult to determine whether or not the
gaps should be completed. Shown in Fig. 1(c), in the median of the
roadway, is a turning area, which cannot be completed. Shown in
Fig. 1(a) and (b) are gaps that require completion. Thus, automatically
achieving an accurate, complete road boundary is an important issue
that remains difficult.

With different types of data sources, different forms of roads, with
different characteristics, are obtained (see Table 1). Roads extracted
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from remote sensing images are usually road surfaces or centerlines that
interconnect as net structures. In urban scenes, extracted roads in re-
mote sensing images are usually incomplete and inaccurate because the
urban type of road is complex with the ground occluded by influential
objects. Additionally, roads in low-resolution images are fuzzy, and
roads in high-resolution images have more influencing factors, both of
which are inconducive to road extraction. Airborne laser scanning
(ALS) data, which provide 3D geographic positions of the ground, have
been a good source of data for road surface (Li et al., 2015) or centerline
(Hu et al., 2014) extraction in urban scenes. Roads obtained from ALS

data usually contain thick lines, and, because of the uneven distribution
of the LiDAR points, there are many broken lines.

Spatial trajectory data, especially a large-scale quantity of GPS
trajectory data collected from cars, like taxis, traveling on urban roads
over extended periods, can cover a whole road (including arterial roads,
branch roads, etc.). Furthermore, dynamic traffic information for each
road (such as traffic flow, vehicle speeds, road congestion, etc.), which
has theoretical scientific significance for road network planning and
design, can be extracted from this type of data. Spatial trajectory data
have been widely used to extract road centerline (Ouyang et al., 2014).

Fig. 1. Examples of incomplete road boundaries
extracted from MLS data. From left to right:
images, raw road point clouds with boundaries (in
red), and target complete boundaries (the blue
lines represent completion parts). Yellow boxes
represent the gaps in the extracted boundaries. (a)
Missing data because of occlusion. (b) Low curb. (c)
A turning area in the median of the roadway. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

Table 1
Summary of different forms of roads.

Data source Form of road Scene/publications

Single source Remote sensing image Surface Urban/Wegner et al. (2013), Li et al. (2014)
Suburban and countryside/Gao et al. (2018)

Centerline (graph structure) Urban/Shackelford and Davis (2003), Péteri et al. (2006)
Urban and rural/Tupin et al. (1998), Hedman et al. (2010), Zang et al. (2017)
Highway/Hu et al. (2007)

Surface & Centerline Urban and rural/Cheng et al. (2017)
GPS Centerline Urban/Xie et al. (2014), Ouyang et al. (2014)

Urban and freeway/Schroedl et al. (2004)
ALS Surface Urban/Zhu and Mordohai (2009), Li et al. (2015)

Centerline Downtown and surrounding residential areas/Zhao and You (2012)
Urban/Zhao et al. (2011), Peng and Gao (2011), Hu et al. (2014)

MLS Boundary (Edge or curb) Residential and urban/Xu et al. (2016)
Urban/Hervieu and Soheilian (2013), Reza et al. (2017)
Urban and industrial region/Zai et al. (2017)

Multi-source ALS with orthophotos Surface & Curb Urban/Vo et al. (2015)
MLS with EO images Boundary Rural/Yeo et al. (2016)
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Because of covering a wide range of roads, the completeness level of
roads obtained from a massive spatial trajectory data is higher than the
completeness level from other data. However, accuracy is worse be-
cause of the relatively poor accuracy of the GPS positioning in an urban
area. The completeness of a spatial trajectory data provides a potential
to build the relationship among different roads and guide the comple-
tion of a more detailed road, especially for solving the uncertainties of
gaps and determining whether to be completed.

Roads, extracted from different data sources, have different benefits
and drawbacks. If an MLS-based road boundary is formed by fusing
extraction results from other data sources, a more complete, higher
accurate road boundary, rich in detailed information, is likely to be
obtained. However, varying resolutions and accuracies of different
sources of data cause difficulty when fusing them to guide the recovery
of the road boundary.

In this paper, we propose a deep learning-based 3D road boundary
recovery framework using multi-source data. The multi-source data
include MLS point clouds, spatial trajectory data, and remote sensing
images. The workflow of our framework is shown in Fig. 2. More spe-
cifically, the 3D road boundaries extracted from MLS point clouds are
inputs of the framework. The initial road boundary lines, which usually
include some erroneous segments, are first cleaned by a U-Net seg-
mentation model based on images converted from boundary point
clouds. Then, a CNN-based boundary completion model, which con-
serves well the thickness and curvature of a line segment, is used to
efficiently complete boundary lines images. Then, considering the im-
perfect local details of a road boundary that result from CNN-based
boundary completion, based on the centerlines generated from spatial
trajectory data and remote sensing images, refined road boundaries are
obtained using a conditional generative adversarial network (cGAN).
Last, to combine dynamic road characteristics (e.g., traffic flow) with
inherent geometric road characteristics (such as width, curvature) and
achieve dynamic visualization (traffic data) of a road boundary, a road

matching method is developed to associate recorded drifted taxi GPS
trajectory points with the correct 3D road boundary.

2. Related work

2.1. Studies on road extraction

Previous studies have reported that roads extracted can be in dif-
ferent forms (as shown in Table 1). The most common methods are
based on different kinds of high-resolution images, such as satellite
(Péteri et al., 2006; Li et al., 2014; Shackelford and Davis, 2003),
synthetic aperture radar (SAR) (Tupin et al., 1998; Hedman et al.,
2010), and aerial (Wegner et al., 2013; Hu et al., 2007; Poz et al., 2006;
Gao et al., 2018). Most of the studies used road features to assist in road
extraction. However, the performance of road extraction in an image is
affected by the complexity of the scene. Buildings may mask a road and
reduce visibility. For monitoring purpose, a large quantity of taxi GPS
trajectory data can be acquired, making it possible to extract the road
based on the GPS trajectory (Schroedl et al., 2004; Xie et al., 2014;
Ouyang et al., 2014). Apart from imagery and GPS trajectory data, ALS
and MLS point clouds have been exploited to extract roads (Zhao and
You, 2012; Reza et al., 2017). However, because of the voxelization of
the point clouds, the results are not so accurate and complete. More-
over, road extraction methods using ALS and MLS data usually suffer
from incomplete data because of occlusion.

2.2. Studies on multi-source data-based road extraction

Given the drawback of using single source data, methods that
combine ALS point clouds with high-resolution aerial imagery data
were proposed to obtain color information (Gao et al., 2013; Hu et al.,
2004). Vo et al. (2015) used a quadtree-based region growing method
to extract roads from colored point clouds formed by fusing ALS point

3D road boundary extraction

MLS point clouds

GPS trajectory points

Remote sensing image

Road boundary completion network

CNN-based completion
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cGAN generator

Road centerline extraction

Road boundary refinement network
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Road inherent characteristics calculation
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Fig. 2. Workflow of the proposed framework.
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clouds and orthophotos. Hu et al. (2004) developed an iterative Hough
Transform-based approach to extract urban grid networks using ALS
data and aerial images. To create a 2D semantic map used to generate
dirt road boundary measurements, Yeo et al. (2016) fused the output
from a 3D LiDAR point cloud classifier and an image scene parser.
These methods introduce image information to improve the road ex-
traction performance to some extent, but they do not handle missing
parts of the road.

2.3. Studies on road completion

To remedy the problem of missing parts in a road caused by method
limitations and occlusions, Zhao et al. (2011) proposed a geometrical
guided gap filling method, based on ALS point clouds, to infer the ex-
tracted missing centerlines. To determine whether the gaps between
true centerlines should be connected, the following four geometrical
criteria are calculated: collinearity, proximity, curvature, and length.
For MLS point clouds, Xu et al. (2016) proposed an energy function to
extract candidate points of curbs and used a least cost path model to
refine candidate points. Inspired by Kalman filter models, Hervieu and
Soheilian (2013) designed a boundary detection model to estimate a
boundary in two linear parts with many occlusions. However, the
prediction is uncertain. If no 3D curb profile pattern is observed in a
bend, the model will fail to predict the shape of the roadside. Previously
published studies have many limitations and have not dealt well with
highly complex and uncertain urban road boundaries. Thus, it is vitally
important to develop a robust and highly accurate method for road
boundary completion.

3. Road boundary extraction and recovery

3.1. 3D road boundary extraction from MLS data

In our previous work (Zai et al., 2017), we developed a road
boundary extraction method, which includes the following two steps:
(1) By selecting smooth points as seeds and using several attributes that
assign points to facets centered on these seeds, facet supervoxels are
generated, which are then used to extract initial boundaries by using an
α-shape method. (2) A weighted, undirected graph to apply energy
minimization, using a graph-cuts method, separates initial boundary
points into the road and non-road boundary points. The method men-
tioned above, as well as several other road extraction methods, provides
road boundaries with different completeness to test the feasibility of the
proposed road boundary completion method (see Section 5.3).

3.2. Road boundary completion network

3.2.1. Erroneous boundary removal
For urban roads, the extracted boundaries are always rough and

have erroneous lines with occlusions from roadside vegetation, which
may negatively influence the recovery of the road boundaries. Thus, the
erroneous boundaries are removed first. Because of the irregularity of
the erroneous boundaries, it is difficult to remove them effectively from
a 3D point cloud form directly by a rule-based method.

In our method, 3D road boundary point clouds are first projected
onto a horizontal plane and gridded as a 2D road boundary image with
grid spacing R 1. Then, the erroneous boundary removal is treated as a
binary classification (classify road boundaries into correct and erro-
neous boundaries). A U-Net model (Ronneberger et al., 2015) auto-
matically classifies and removes the erroneous boundaries. This net-
work model consists of encoder and decoder layers (Fig. 3). Each
encoder layer is composed of convolution and max pooling operations.
Each decoder layer is composed of deconvolution and convolution op-
erations. The loss used to train the model is binary cross entropy. For
training, 200 training samples are created by using (1) some extracted
road boundary parts as input, and (2) the corresponding road boundary

parts without erroneous boundaries by manually removing as the
target. During training, the batch size and epoch are set at 2 and 100,
respectively.

3.2.2. CNN-based model for 2D boundary completion
The missing parts in extracted road boundaries may have different

structures with different curvature (e.g., straight line and circular
curve) causing difficulty in directly completing road boundaries in the
form of 3D point clouds. Recently, researchers have shown an increased
interest in 3D shape completion based on fully/weakly-supervised
learning (Dai et al., 2017; Stutz and Geiger, 2018). Also, deep learning-
based image inpainting/translation showed good performance (Zhu
et al., 2017; Isola et al., 2017). Sasaki et al. (2017) proposed a data-
driven approach to detect automatically and fill the missing regions of
line drawings. Their approach has shown good performance on line
segment completion, conserving thickness and curvature. Inspired by
image inpainting, we developed a CNN-based method for boundary
completion.

Based on the results obtained after erroneous boundary removal, a
CNN-based completion model (Fig. 3) is then used to complete gaps.
This model consists only of convolution layers and upsampling layers.
Except for the first layer, using a kernel size of 5× 5, all the con-
volution layers use a kernel size of 3×3. For activation functions, all
convolution layers use ReLU, except for the final one, where the Sig-
moid function is used instead. When training, batch normalization is
used after each convolution layer, except for the last. The sizes of the
input and output images are not fixed, and output images are the same
size as the input. The loss used to train our model is Mean Squared Error
(MSE), which represents the difference between the input S and the
target T as follows:

=loss T S
N

T S( , ) 1
| |

( )
p N

p p
2

(1)

where N is the set of all pixels in the image, and Sp andTp are the values
at the pixel p in the input and the target images, respectively. In this
section, the training data used is that of Sasaki et al. (2017).

Because of the limitation of the training dataset, the model may be
unable to handle gaps in images that are too large. Thus, to guarantee
that most of the gaps are detected automatically and completed by the
model, to find the best result, 3D boundary point clouds after erroneous
boundary removal are projected onto images with a grid spacing R 2.
After obtaining an image-based completion model, a 2D boundary
completion result is obtained by using the road boundary image as
model input. To maintain fine and smooth boundary point clouds, only
the completed 2D pixels by the image completion model are considered
to transform and add back to 3D road boundary point clouds.

3.2.3. Completion in 3D form
Before transforming the completed pixels back to 3D, it is essential

to detect the gaps in 3D. Here, the gap detection problem is defined as
matching the endpoint pair of gaps. First, a Euclidean distance clus-
tering method is applied to partition the boundary points into separated
line clusters. For each line cluster (Fig. 4(a)), the endpoint (e.g. point pm
in blue) is the point where the neighborhood points are all on the same
side and belong to the line cluster. Using this feature, the endpoints of
each line cluster are found and added to set S p p p{ , , , }e n1 2 . Then, gap
detection is achieved by pairing the points in Se. To avoid the mismatch
problem, where two matching endpoints belong to different roadside
boundaries, the taxi GPS trajectory data, which provide the driving
route of the vehicle and give the approximate location of the road, are
used to separate the inner and outer boundaries. For point p Ss e, the
matching endpoint pe, from the neighborhood points of ps, must satisfy
the following conditions (Fig. 4(b)):

>Tra p p Tra p p( ) · ( ) 0s e s s (2)
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<D p p D p p( , ) ( , )s e r e (3)

where Tra p( )s represents the point nearest to ps in the trajectory.
<D p p p p( , ) D( , )s e r e means that point pe is nearer to ps.

Fig. 4(c) shows the endpoint pairs set Sep of a part of road bound-
aries. The gap is between the endpoint pair that have the same color.
Based on the gap endpoint pair set Sep, the transformation relationship
between point clouds and images is reserved and used to transform
completed pixels to the newly added 3D points, which represent the
missing boundary points. The process used in this paper to project 3D-
2D-3D lines, as well as an analysis of precision loss in the projection
process, were introduced in detail in our previous work (Wang et al.,
2018).

3.3. Road boundary refinement network

Sometimes, because of the uncertainties of urban roads, results that
are based on above completion method are imperfect. The problems are
summarized as follows: (1) Gaps that should not be completed
(Fig. 5(a)). (2) Some large gaps that should be completed (Fig. 5(b)). (3)
Irregular completion structures (Fig. 5(c)). Thus, the boundaries from
the above CNN-based model must be refined. Whether a gap should be
completed can be determined based on the vehicle activities on both
sides of the gap. In this paper, we innovatively introduce big taxi GPS
trajectory data to generate road centerline, which reflects road struc-
ture to some extent, to guide the road boundary refinement with un-
certainties.

3.3.1. Road centerline extraction using multi-source data
In our method, to extract road centerlines, we use GPS trajectories

from taxis that show a global topology of the road. It is then used as
guidance for solving the uncertainties of gaps and refining the imperfect
road boundaries. Because a GPS receiver is easily susceptible to random
noise and position drift during acquisition, there are many abnormal
points in the collected data that affect further extraction of road cen-
terlines. Thus, it is necessary first to remove the abnormal points from
the original data.

Consider a taxi GPS trajectory point set, T p p p p{ , , , , , }p i k1 2 ,
where p c t lgt lat sp dr( , , , , , )i denotes a recorded taxi GPS trajectory
point i, and the recorded values for the number of taxis, time, longitude,
latitude, car speed, and direction are represented by c, t , lgt , lat , sp, and
dr , respectively. Then, the abnormal point set is represented as:

= >A p T D p c t p c t m{ | ( ( , ), ( , 1))p p i i 1

= =p sp p dr( ( 0) ( 0))}i i (4)

where >D p c t p c t m( ( , ), ( , 1))i i 1 means that a point i is added to Ap
if the distance from point i−1 to point i is larger than the expected
distance m, where points i and i−1 are collected from the same taxi in
adjacent times t and t−1. = =p sp p dr( 0) ( 0)i i means that a point i
is added to Apif the value of the speed and direction are both equal to
zero.

When a taxi is driving along a narrow road, the collected GPS tra-
jectory points may show the same location because of traffic conges-
tion. Such stagnated points, which affect the topology of the extracted
road, also must be removed. Here, we use the density-based clustering
method (Rodriguez and Laio, 2014) to find high-density areas, remove
the trajectory points within these areas, and then use Gaussian filtering
to ensure the smoothness of the overall trajectory. Based on the direc-
tional value of the points, including straight and curved, taxi GPS

Erroneous boundary removal CNN-based completion

Input Output

Conv, Batch normalization, ReLU
Conv,  Sigmoid

Copy and crop
Connect
Nearest  neighbor upsampling

De-conv
Max pooling

Fig. 3. The structure of the road boundary completion model.

Fig. 4. (a) Endpoint and other points in line cluster. (b) Right and wrong matching endpoints of ps. (c) Endpoint pairs with different colors (endpoints in black are
unmatched points).
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trajectory points are clustered and segmented to be separated road
points, for which the centerlines are fitted by a quartic polynomial
fitting.

A wide collection range, obtaining information rapidly, and visua-
lizing inaccessible areas are advantages of remote sensing images.
Therefore, remote sensing images are also a good source for obtaining
global road data. Because some urban roads in remote sensing images
are seriously occluded by buildings, the results extracted from remote
sensing images are incomplete and of low accuracy; however, the ex-
tracted results can still improve the structure of the road centerline
obtained by taxi GPS trajectories. Here, we use a deep learning network
(Zhou et al., 2018) to extract roads from remote sensing images. Ac-
cording to the global coordinate information of an image, the road
pixels extracted from the image are then transformed to a 3D point
cloud (height, z, set at 0) and merged with the road centerline. Some
road centerlines are added or extended toward the road point clouds;
therefore, the resulting final centerline is more complete.

Although it might drift and be inaccurate because of the sub-
standard positioning accuracy of the taxi GPS trajectory data, the
generated road centerline can match the accuracy of the road boundary
point cloud and provide an important reference for road boundary re-
finement. Conversely, the road boundary point cloud can correct the
deviation of the complementary taxi GPS trajectory points.

3.3.2. cGAN-based road boundary refinement under uncertainties
To solve the uncertainties of gaps and refine the road boundaries,

we first determine whether the completed gap should be removed based
on the road centerline. If the road centerline crosses the gap, revert it to
the original structure. Thus, mistaken completion can be solved.
However, the problems of gaps without completion and irregular
completion structures remain unsolved.

Generative models, for example the GAN model (Goodfellow et al.,
2014), have performed well in image restoration and image translation.
Here, we introduce the conditional GAN (cGAN) model, which is an
extended network of the GAN model, to solve the problems of gaps
without completion (considered as an image restoration problem) and
irregular completion structures (considered as an image translation
problem). Guided by the centerline of a road, the cGAN-based model
refines the imperfect road boundaries with rich details, especially for

curved boundaries, which are difficult for rule-based methods to re-
store.

The GAN model contains two adversarial models: generator model,
G, and discriminator model, D. Briefly, G produces an output that D
cannot distinguish as a “fake” sample. G distinguishes the output of D
from the “real” sample as much as possible. The GAN model learns
mapping from a random noise vector z to output x. The cGAN model
extends the GAN model by learning mapping from a condition y and a
random noise vector z to an output x. For cGAN, refinement of a road
boundary translates an image, with an imperfect road boundary line
and centerline obtained from taxi GPS trajectories, into an image with a
ground truth road boundary line. Here, a condition y represents an
image with an imperfect road boundary line and centerline. An output x
represents an image with a ground truth road boundary line; z is a
random noise vector. By changing the condition y, the cGAN model
generates different targets without modifying the generative network
and easily applies them to other road types.

The cGAN-based model requires only a small amount of training
data to achieve refinement of a road boundary. The training samples
include: (1) manually cut correct boundaries and their corresponding
centerlines, (2) imperfect boundaries (gaps without completion and
irregular completion structures) and their corresponding centerlines
generated from correct boundaries, and (3) imitated imperfect bound-
aries and their corresponding centerlines by hand-drawing.

Using training samples of gaps without completion and irregular
completion structures, two corresponding image translation models are
obtained after cGAN training. Since the cGAN model works on a 2D
plane, each gap completion line with two side boundary lines and
centerline is projected onto a 2D image. The road boundaries with gaps
are broken off, which are different from the boundaries with an irre-
gular complete structure; therefore, the road boundary samples, sepa-
rated easily into two categories, will apply different cGAN models to
refine (see Fig. 6). Because of the possibility of an undesired completed
structure, the results of refining a gap are again input to the model for
the problem of an irregular completion structure. After refining the
imperfect completion gaps in the images, the refined results in the
images are transformed back to the final complete 3D road boundaries
by converting 2D pixels to 3D points.

Fig. 5. Examples of imperfect completion results after road boundary completion.
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4. Road matching and road characteristics calculation

It has been proven that geometric road parameters influence traffic
accidents (Miaou and Lum, 1993; Karlaftis and Golias, 2002). In addi-
tion, for roads, some dynamic characteristics, such as traffic flows
analyzed from GPS trajectory data of cars, contribute to reducing traffic
accidents and further improving traffic facilities. Thus, an inventory of
regular road information to obtain road characteristics is significant to
traffic safety. Based on the road boundary and taxi GPS trajectory
points, we present a method for matching taxi GPS trajectory points
with corresponding road boundaries to achieve inherent and dynamic
road characteristics calculation.

4.1. Inherent road characteristics calculation

With complete boundaries, some inherent geometric road char-
acteristics, such as horizontal and vertical alignment parameters (see
Fig. 7), which have strong relationships with traffic, are selected to
calculate. Some required formulae to calculate inherent road char-
acteristics are shown in Table 2.

(1) Horizontal alignment parameters: Horizontal alignment para-
meters contain road width, the curvature of horizontal curves,
length of horizontal curves, and deflection angles. The deflection
angle is the exterior angle at the intersection of the two tangent
lines. The length of the horizontal curve s is the arc length be-
tween Phs and Phe. The curvature of a horizontal curveC is the mean
curvature between Phs and Phe.

(2) Vertical alignment parameters: Vertical alignment parameters
contain vertical curve length (VCL), gradient change, and K-value.
VCL is calculated using the curve integral of f x z( , )v . The change in
gradient g indicates the algebraic difference of the gradient be-
tween vertical starting point Pvs and vertical end point Pve.

4.2. Road matching for dynamic characteristics calculation

Because of poor signals, communication anomalies, or GPS

positioning errors, many recorded taxi GPS trajectory points cannot be
located on the correct road, leading to incorrect dynamic road in-
formation. We match taxi GPS recorded trajectory points to the correct
road of an underlying 3D road boundary by introducing the map
matching method, which matches a serial of recorded location points
with edges in an existing street graph or the network of a digital map.
The HMM-based method, which finds the hidden sequence that pro-
duces this observation sequence for a given observation sequence, is
highly accurate for map matching under certain conditions. In our
method, we introduce the HMM-based matching method to solve the
matching problem between 3D road boundaries and taxi GPS trajectory
points. The observation sequence represents a series of taxi GPS tra-
jectory points; the hidden sequence represents the proper road seg-
ments to which these points belong.

The key to applying map matching to 3D boundaries is to generate
the same form of 2D road line segments from 3D boundaries. We first
partition the obtained 3D road boundary into a set of boundary seg-
ments having inner and outer boundary lines. Considering the con-
sistency of the boundaries after completion, the inner and outer
boundary lines for each boundary segment are separated by distance
clustering. Then, every 20m on a longer boundary line, we select a
point and find its nearest point in a shorter boundary line. Based on the
number of road lanes, which is calculated by the road width (calculated
as the distance between a point in a longer boundary line and the
nearest point in a shorter boundary line) and each lane width (about
7.5 m in our selected roads), the number of centerlines is determined.
Each centerline endpoint is obtained from the coordinate values of the
pair points. With these points, we generate a 2D centerline shapefile for
each 3D road boundary segment. The shapefile is a data format used as
road segments for map matching. After generating the centerline sha-
pefile from 3D road boundaries, our road matching problem is trans-
formed into a map matching problem.

Given a taxi GPS trajectory point gpt, for road matching, there may
be more than one road segment candidate within a certain distance. The
candidate points, which are the projection points of gpt on these can-
didate segments, are regarded as vertices in Markov chains. For each
road segment si, there is a measurement probability that the point

Images of 
boundary line 
with centerline

cGAN for
irregular completion 

structures

cGAN for
gaps without 
completion

Class 1 
images

Class 2 
images

Refined 2D boundary 
lines

Fig. 6. Flow chart of 2D boundary line refinement.

Fig. 7. (a) Measurement of horizontal alignment parameters. (b) Measurement of vertical alignment parameters.
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would likely be observed if it is on the road segment. The weights be-
tween adjacent GPS candidate points, which are represented by tran-
sition probability, are regarded as edges in a Markov chain. We in-
troduce measurement and transition probabilities (Newson and Krumm,
2009) to infer the correct road segment of each taxi GPS trajectory
point.

Measurement probabilities, modeled as zero-mean Gaussian, take
the following form:

=p gp s e( | ) 1
2t i

pt

gp x( )

2
t t i gc

pt

, 2

2

(5)

where xt i, represents the candidate point of the measured point gpt on
road segment i; gc indicates great circle distance (the shortest surface
path between gpt, and xt i, ); pt is the standard deviation of the GPS
measurements (set at 20m in the paper).

Transition probabilities, which assume that the transitions, whose
driving distance is about the same as the great circle distance between
the measured points gpt and +gpt 1, are modeled according to the fol-
lowing formula:

= + +dis gp gp x x| |t t t greatcircle t i t j route1 , 1, (6)

where +x xt i t j route, 1, is the driving distance between the pair of
candidate points xt i, and +xt j1, . According to Formula (7), the smaller
the difference in distance between the great circle and the route, the
more likely the results will be matched correctly.

With the measurement and transition probabilities mentioned
above, the Viterbi algorithm (Viterbi, 1967) is used to compute the best
path through the HMM lattice and infer the correct road segment for
each taxi GPS trajectory point. The dynamic characteristics of the
correct taxi GPS trajectory points on each road are obtained, e.g., traffic
flow and traffic density are calculated as follows:

=Tf Q A timeRange roadAreanum(p ( ) p(t) p(lgt, lat)p p

(7)

=Td Tf
Length road( ) (8)

where Tf (traffic flow) refers to the total number of cars on a specified
road area within a certain period, and Td (traffic density) refers to the
number of cars in the unit length (usually one km) of a road within a
certain period. In addition, from the direction the taxis are traveling,
the stream direction of the road is also ascertained.

5. Results and discussion

5.1. Dataset

The data in this study include MLS point clouds, spatial trajectory
data, and remote sensing images. The MLS point clouds used were
obtained, by a RIEGL VMX-450 MLS system, from the International
Conference and Exhibition Center (ICEC) area and a part of the Coastal
Ring Road (CRR), Xiamen, China. The ICEC contains a complicated

road environment and structure; the CRR has a lot of vegetation and
busy traffic, which leads to incomplete boundaries extracted, making
both urban datasets appropriate for road boundary recovery evaluation.
From January to May 2018, spatial trajectory data (GPS trajectory data
of taxis), was collected along five main roads in the ICEC. For the ICEC,
remote sensing images, with a pixel resolution of 0.5 m, were obtained
from Google Map.

5.2. Parameter sensitivity analysis

In the proposed method, the configurations of the grid spacing R 1
and R 2 of a projection image are important factors for road boundary
recovery performance. To find an optimal grid spacing R 1, we tested
the performance of the configuration of the parameter on the erroneous
boundary removal results. Also, to find an optimal grid spacing R 2, we
tested the performance of the configuration of the parameter on the
boundary completion results. We tested the following ten grid spacing:
0.2–1.1m, at intervals of 0.1m. The erroneous boundary removal and
boundary completion results were both obtained using completeness-
grid spacing, correctness-grid spacing, and quality-grid spacing (see
Fig. 8). Three metrics used for evaluation are defined as follows:

=cp TP
L

Completeness:
gt (9)

=cr TP
L

Correctness:
fc (10)

=
+

=
+ +

q TP
L FN

TP
TP FP FN

Quality:
fc (11)

whereTP is the length of the correct final boundaries, FP is the length of
the boundaries that do not exist in the ground truth boundaries, and FN
is the length of the ground truth boundaries that do not exist in the final
complete boundaries.Lgt is the total length of the ground truth road
boundaries, and Lfc is the total length of the final complete road
boundaries.

As shown in the first row of Fig. 8, different grid spacing R 1
achieved different erroneous boundary removal performance. The first
row of Fig. 8(a) shows that the three metrics are all better than the
others when grid spacing R 1 is equal to 0.2m. Though the time cost is
highest, it is still short and acceptable. Thus, we set R 1 at 0.2 m. The
second row of Fig. 8(a) shows the completeness of the boundaries in-
creases slightly at first and then decreases with an increase in grid
spacing R 2. This is because the road boundary gap is smaller if the grid
spacing is larger. The completion model performs better on smaller
gaps. However, if the grid spacing is set too large, the acquired low-
quality boundary line image causes the gap detection and completion to
fail. As grid spacing increases, correctness decreases. This is because
larger grid spacing means the lines in an image are thicker and rougher,
resulting in loss of boundary detail. For some gaps in curves with small
curvature, it is easy to directly draw straight lines for these gaps. In
addition, in this case, wrong line connections occur between some inner
and outer boundaries that are in close proximity. As shown in the

Table 2
Formulae for inherent road characteristics calculation.

Inherent road characteristics Formulae Parameter name

Horizontal alignment parameters =f x y( , ) 0h1 Horizontal projection outer boundary
=f x y( , ) 0h2 Horizontal projection inner boundary

=C s
Curvature of horizontal curve

Vertical alignment parameters =f x z( , ) 0v Vertical curve (Vertical projection boundary curve of a hilly road)

=VCL f x z ds( , )v Vertical curve length

=K VCL
g

Flatness of vertical curve
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second row of Fig. 8(a), when grid spacing R 2 is equal to 0.2 m and
0.3 m, completion quality is almost the same. However, the time cost
for model completion is much less when R 2 is set at 0.3m, rather than
at 0.2m. Thus, considering the trade-off between boundary quality and
time efficiency, we set R 2 at 0.3 m. In practice, to achieve optimal
performance, we first project the extracted road boundary point clouds
onto the image with grid spacing 0.2 m and perform erroneous
boundary removal. Then, the correct road boundary point clouds are
restored from the 3D points stored in each image segmented pixel and
re-projected onto the image with grid spacing 0.3m for CNN-based
completion.

5.3. Road boundary completion results

5.3.1. Quantitative evaluation
To quantitatively evaluate our method, we first manually extracted

ground truth road boundary points on two test datasets. For occluded
road boundaries, according to the actual road situation, points were
manually added between two endpoints of the occluded road bound-
aries. To verify the robustness of our method for 3D boundary com-
pletion with different incompleteness, road boundaries with different
degrees of completeness were derived using several road boundary
extraction methods, including projection-based (Serna and Marcotegui,

2013), characteristic-based (Fang et al., 2015) and supervolex-based
(Zai et al., 2017). The extraction results are shown in Fig. 9. We com-
pared the complete road boundaries with the ground truth boundaries
and adopted the previously mentioned three metrics: completeness,
correctness, and quality.

Part of the road boundary completion results in the ICEC and CRR
are shown in Figs. 10 and 11, respectively. Enlarged for visualization
are several parts of typical road scenes: road intersections in Fig. 10(a)
and (b); road curves in Figs. 10(c), (d) and 11(b)–(d); and straight roads
in Figs. 10(e), (f), and 11(a). Table 3 shows the meta completion results
of the evaluation metrics based on three initial road boundaries with
different degrees of completeness extracted by three methods. Table 4
gives corresponding quantitative evaluation results. For the proposed
completion method achieved using the two datasets (ICEC and CRR),
based on boundaries from the method of Zai et al. (2017), the com-
pleteness, correctness, and quality achieved on ICEC and CRR are as
follows: completeness: 91.34% and 92.14%, respectively; correctness:
89.87% and 95.91%, respectively; quality: 82.81% and 88.65%, re-
spectively. Table 4 indicates that the erroneous boundary removal step
positively contributed to the boundary completion results. It also in-
dicates that the quality of the initial boundaries has a strong effect on
the completion results. The lower completeness of the initial boundaries
indicates a more serious loss in the structure of the boundaries,

Fig. 8. Illustrations of the performance of erroneous boundary removal and CNN-based completion under different grid spacing: (a) Completeness, correctness, and
quality results. (b) Time cost.
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resulting in an increase of uncertain factors for boundary completion.
Thus, when the initial boundary completeness is lower, the final length
of the boundaries that do not exist in the ground truth boundaries (FP)
and the length of the ground truth boundaries that do not exist in the
final complete boundaries (FN) are longer. However, even based on

road boundaries with a degree of completeness lower than 60%, our
completion method still obtains satisfactory TP and substantially im-
prove completeness. Thus, our proposed method performs well in 3D
road boundary completion and is robust to different degrees of road
boundary completeness.

(a) (b)
Fig. 9. The extraction results of a part of the road boundary in CRR dataset. (a) Raw point clouds with ground truth boundaries (in red). (b) Road boundaries
obtained using the methods of Serna and Marcotegui (2013) (green), Fang et al. (2015) (blue), and Zai et al. (2017) (pink), respectively. From top to bottom, the
completeness is 58.33%, 70.23%, and 91.80%, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Road boundary completion examples in the ICEC. (a), (b) Road intersection. (c), (d) Road curves. (e), (f) Straight road. The second row of Figs. (a–f) is the
extracted road boundary parts by the method of Zai et al. (2017), the third row is road boundary parts after erroneous boundary removal, and the last row is the
completion results.
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In addition, we used different allowable error distances to obtain
different evaluation results with ICEC and CRR datasets. Error distance
is defined as the average distance between added points and their
nearest points on ground truth boundaries. The error distance used in
the results shown in Tables 3 and 4 is 0.1 m. As shown in Table 5, with
an error distance increase in the two datasets, the three metrics increase
only slightly, indicating the newly added points coincide well with the
ground truth boundaries.

5.3.2. Test on lower quality dataset
To further test the feasibility of our method in point clouds with

different quality, we tested the proposed method using the KITTI da-
taset (Geiger et al., 2012). Using a series of single frames and ground
truth poses from the KITTI-odometry benchmark, which was collected
by a Velodyne laser scanner, we reconstructed point clouds for a road
section. A part of the road point clouds that include curbs was used for
testing. The accuracy of the acquired KITTI point clouds is about
5–10 cm, which is much smaller than the millimeter-level accuracy of
the MLS point clouds. Considering the lower density of the KITTI point
clouds, to correctly estimate the tangent plane, at least 1000 neigh-
boring points for each point were used, causing a heavy cost in time for
this step. To reduce the time cost, the original point clouds were first
down-sampled by a VoxelGrid filter (Rusu and Cousins, 2011) with a
size of 0.1 m. Then, according to a practical test, the parameters in the
experiment were modified as follows: the number of nearest points (K)
from 15 to 40; angle threshold to determine if two vectors are parallel
( ) from 22.5° to 8.0°; outlier clustering threshold (N) from 50 to 15.
The other parameters remained the same as given in the paper of Zai
et al. (2017). Fig. 12 shows the initial road extraction, completion, and
ground truth boundaries for this KITTI test dataset. As shown in
Table 4, the completeness, correctness, and quality in the KITTI dataset

are 89.90%, 83.91%, and 76.68%, respectively. Remarkably, com-
pleteness increases from 52.65% to 89.90%. Thus, our boundary com-
pletion method also achieves satisfying results for the KITTI dataset.

5.3.3. Computational efficiency
Boundary extraction and completion in 3D form in our proposed

framework, coded with C++, were run on a personal computer con-
figured with an Intel(R) Core (TM) i7-6700 CPU 3.4 GHz and a RAM of
16 GB. Erroneous boundary removal and 2D boundary completion were
run on a Linux PC with an Intel Core (TM) i5-4460 CPU and two
NVIDIA Titan Z GPUs with 12 GB memory. The initial road boundary
extraction was discussed in detail by Zai et al. (2017). Therefore, we
focused only on the time to compute erroneous boundary removal and
boundary completion. As shown in Table 6, 2D boundary completion
based on image inpainting model, using the CPU, requires most of the
total processing time. Here, the computational cost depends only on the
size of the input image. The sizes of the three boundary images (ICEC,
CRR, and KITTI) are 4288× 4080, 1984×6480, and 6112× 3920,
respectively. Thus, the computational cost of gap completion in KITTI is
maximum. However, under the acceleration of the GPU, this step can be
60 times faster. Total time costs in datasets ICEC, CRR, and KITTI are
about 192.52 s, 107.87 s, and 188.93 s, respectively.

5.4. Road boundary refinement results

To refine a road boundary after completion, the road centerline, first
extracted from the taxi GPS trajectories, was improved by remote
sensing images. An example of road centerline extraction is shown in
Fig. 13. The following items: (1) Taxi GPS trajectory points clustered to
each separated road lane, (2) fitted road centerlines, (3) remote sensing
image of the roads, (4) extracted roads from images (in black), and (5)

Fig. 11. Road boundary completion examples in the CRR. (a) Straight road. (b), (c), (d) Road curves. The second row of Figs. (a–f) is the extracted road boundary
parts by the method of Zai et al. (2017), the third row is road boundary parts after erroneous boundary removal, and the last row is the completion results.

C. Wen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 156 (2019) 184–201

194



Ta
bl
e
3

Ro
ad
bo
un
da
ry
co
m
pl
et
io
n
re
su
lts
w
ith

di
ffe
re
nt
de
gr
ee
of
in
co
m
pl
et
en
es
s
in
th
re
e
da
ta
se
ts
(I
CE
C/
CR
R/
KI
TT
I)
.

D
at
as
et

L g
t(
m
)

Bo
un
da
ry
ex
tr
ac
tio
n
m
et
ho
d

Ex
tr
ac
tio
n
re
su
lts

Ex
tr
ac
tio
n
+
er
ro
ne
ou
s
bo
un
da
ry
re
m
ov
al

Ex
tr
ac
tio
n
+
er
ro
ne
ou
s
bo
un
da
ry
re
m
ov
al
+
CN
N
-b
as
ed
co
m
pl
et
io
n

L f
c(
m
)

TP
(m
)

FP
(m
)

FN
(m
)

L f
c(
m
)

TP
(m
)

FP
(m
)

FN
(m
)

L f
c(
m
)

TP
(m
)

FP
(m
)

FN
(m
)

IC
EC

20
00
3.
96

Pr
oj
ec
tio
n-
ba
se
d
(S
er
na
an
d
M
ar
co
te
gu
i,

20
13
)

13
06
0.
61

11
39
0.
16

16
70
.4
5

86
13
.8
0

11
33
0.
55

10
97
8.
17

35
2.
38

90
25
.7
9

19
79
7.
46

17
63
5.
49

21
61
.9
7

23
68
.4
7

Ch
ar
ac
te
ri
st
ic
-b
as
ed
(F
an
g
et
al
.,
20
15
)

18
28
2.
83

15
01
5.
69

32
67
.1
4

49
88
.2
7

15
28
5.
63

14
52
2.
87

76
2.
76

54
81
.0
9

20
13
0.
66

17
79
7.
52

23
33
.1
4

22
06
.4
4

Su
pe
rv
ol
ex
-b
as
ed
(Z
ai
et
al
.,
20
17
)

22
03
8.
56

17
33
3.
84

47
04
.7
2

26
70
.1
2

17
53
9.
70

16
56
6.
25

97
3.
45

34
37
.7
1

20
33
0.
61

18
27
1.
12

20
59
.4
9

17
32
.8
4

CR
R

69
41
.6
9

Pr
oj
ec
tio
n-
ba
se
d
(S
er
na
an
d
M
ar
co
te
gu
i,

20
13
)

38
28
.7
8

36
22
.4
1

20
6.
37

33
19
.2
8

36
11
.5
3

35
72
.8
9

38
.6
4

33
68
.8

65
68
.5
9

58
90
.7
1

67
7.
88

10
50
.9
8

Ch
ar
ac
te
ri
st
ic
-b
as
ed
(F
an
g
et
al
.,
20
15
)

51
13
.3
1

49
35
.8
7

17
7.
44

20
05
.8
2

48
44
.7
5

48
00
.1
8

44
.5
7

21
41
.5
1

67
77
.1
4

61
75
.3
2

60
1.
82

76
6.
37

Su
pe
rv
ol
ex
-b
as
ed
(Z
ai
et
al
.,
20
17
)

66
12
.4
3

62
87
.2
3

32
5.
20

65
4.
46

60
45
.8
9

59
46
.9
5

98
.9
4

99
4.
74

66
68
.8
3

63
95
.8
9

27
2.
94

54
5.
80

KI
TT
I

41
40
.7
0

Su
pe
rv
ol
ex
-b
as
ed
(Z
ai
et
al
.,
20
17
)

25
30
.6
8

21
80
.1
4

19
60
.5
6

35
0.
54

21
22
.6
9

20
15
.8
5

10
6.
84

51
4.
83

44
36
.4
7

37
22
.4
4

71
4.
03

41
8.
26

Ta
bl
e
4

Q
ua
nt
ita
tiv
e
ev
al
ua
tio
n
re
su
lts
of
ro
ad
bo
un
da
ry
co
m
pl
et
io
n
in
th
re
e
da
ta
se
ts
(I
CE
C/
CR
R/
KI
TT
I)
.

D
at
as
et

M
et
ho
d
fo
r
in
iti
al
bo
un
da
ry
ex
tr
ac
tio
n

Ex
tr
ac
tio
n
re
su
lts

Ex
tr
ac
tio
n
+
er
ro
ne
ou
s
bo
un
da
ry
re
m
ov
al

Ex
tr
ac
tio
n
+
er
ro
ne
ou
s
bo
un
da
ry
re
m
ov
al
+
CN
N
-b
as
ed
co
m
pl
et
io
n

Co
m
pl
et
en
es
s
(%
)

Co
rr
ec
tn
es
s
(%
)

Q
ua
lit
y
(%
)

Co
m
pl
et
en
es
s
(%
)

Co
rr
ec
tn
es
s
(%
)

Q
ua
lit
y
(%
)

Co
m
pl
et
en
es
s
(%
)

Co
rr
ec
tn
es
s
(%
)

Q
ua
lit
y
(%
)

IC
EC

Pr
oj
ec
tio
n-
ba
se
d
(S
er
na
an
d
M
ar
co
te
gu
i,
20
13
)

56
.9
4

87
.2
1

52
.5
5

54
.8
8

96
.8
9

53
.9
3

88
.1
6

89
.0
8

79
.5
6

Ch
ar
ac
te
ri
st
ic
-b
as
ed
(F
an
g
et
al
.,
20
15
)

75
.0
6

82
.1
3

64
.5
3

72
.6
0

95
.0
1

69
.9
3

88
.9
7

88
.4
1

79
.6
8

Su
pe
rv
ol
ex
-b
as
ed
(Z
ai
et
al
.,
20
17
)

86
.6
5

78
.6
5

70
.1
5

82
.8
1

94
.4
5

78
.9
7

91
.3
4

89
.8
7

82
.8
1

CR
R

Pr
oj
ec
tio
n-
ba
se
d
(S
er
na
an
d
M
ar
co
te
gu
i,
20
13
)

52
.1
8

94
.6
1

50
.6
8

51
.4
7

98
.9
3

51
.1
9

84
.8
6

89
.6
8

77
.3
1

Ch
ar
ac
te
ri
st
ic
-b
as
ed
(F
an
g
et
al
.,
20
15
)

71
.1
0

96
.5
3

69
.3
3

69
.1
5

99
.0
8

68
.7
1

88
.9
6

91
.1
2

81
.8
6

Su
pe
rv
ol
ex
-b
as
ed
(Z
ai
et
al
.,
20
17
)

90
.5
7

95
.0
8

86
.5
2

85
.6
7

98
.3
6

84
.4
7

92
.1
4

95
.9
1

88
.6
5

KI
TT
I

Su
pe
rv
ol
ex
-b
as
ed
(Z
ai
et
al
.,
20
17
)

52
.6
5

86
.1
5

48
.5
4

48
.6
8

94
.9
7

76
.4
3

89
.9
0

83
.9
1

76
.6
8

C. Wen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 156 (2019) 184–201

195



road centerlines by combining (2) and (4) are given in Fig. 13(a), (b),
(c), (d), and (e), respectively.

Then, according to the two imperfect completion results summar-
ized above, we built 2000 training samples based on road boundaries
and road centerlines. Each imperfect completion category has 500
correct samples and 500 imperfect samples. Some examples of training
samples are shown in Fig. 14. For the expectation of the network
training input, we combined target sample images with input sample
images as side-by-side images. During the training process, the batch
size and epoch of the cGAN model were set at 2 and 300, respectively.

To test the performance of the road boundary refinement, 500 ne-
gative samples (250 samples for each category) were used for test. We
compared the generated refinement lines with the target lines and
calculated the distance between each point of the refinement lines and
the nearest point in the target lines. Average error distance was used to
evaluate the performance of the proposed cGAN-based boundary line
refinement method. Time cost and average error distance for each im-
perfect completion category with 250 testing samples are given in
Table 7. Time costs for the refinement of gaps without completion and
irregular completion structures are about 7.23 s and 3.61 s, respec-
tively. The refinement modules for gaps without completion and irre-
gular completion structures achieved results with an average error
distance of 0.48m and 0.56m, respectively. Remarkably, the average
error distance of the refinement modules, with irregular completion
structures, decreases from the original 3.44m to 0.56m. The results

show that the refinement for straight lines is very accurate. The main
errors occur in the curves, which are difficult to obtain the ground
truth. A small difference in the curvature between the refinement and
target curves causes a large error distance. In addition, error distances
were divided into many intervals and the proportion of each interval is
shown in Fig. 15. In general, the average error distance of the testing
results from the two modules with a centerline is less than 0.6m. The
greatest number of testing samples has an error distance within 0.2 m,
which indicates the effectiveness of the proposed road boundary re-
finement.

To further demonstrate the effect of the road centerline on road
boundary refinement, we also trained a network using training samples
without a road centerline. Fig. 16 shows some comparative testing re-
sults for each category of imperfect completion. Without centerline
guidance, for some curves with gaps, it is difficult to determine the way
of connection, resulting in random line connections (pink lines in
Fig. 16(a)). With centerline guidance, the refinement model modifies
curves with gaps or with irregular structures based on the rough cur-
vature of the centerline. The average error distance listed in Table 7
indicates that the refinement model with a centerline achieves a smaller
error distance and provides better refinement, especially for gaps
without completion. The average error distance of the refinement
module without a centerline for gaps without completion has the
greatest error distance (2.87m), and the largest proportion of error
distances greater than 1.0 m, which are much worse than the error
distances with a centerline. Results indicate that the road centerlines
obtained from taxi GPS trajectories effectively assist road boundary
refinement.

To assess each step of road boundary recovery, including erroneous

Table 5
Quantitative evaluation results of different error distances in ICEC and CRR
dataset.

Dataset Error distance (m) Completeness (%) Correctness (%) Quality (%)

ICEC 0.1 91.34 89.87 82.81
0.2 91.89 90.11 83.47
0.3 92.26 90.29 83.93
0.4 92.40 90.58 84.30
0.5 92.52 90.79 84.58

CRR 0.1 92.14 95.91 88.65
0.2 92.33 96.09 88.99
0.3 92.75 96.32 89.58
0.4 92.90 96.47 89.85
0.5 93.11 96.68 90.22

Fig. 12. From left to right, raw KITTI point clouds with ground truth (in red), extracted road boundaries by the method of Zai et al. (2017), road boundaries after
erroneous boundary removal, and completed road boundaries, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 6
Time cost of each processing step at the road boundary completion stage.

Dataset Steps Total time
cost (s)

Erroneous
boundary
removal (s)

2D boundary
completion (s)

Completion in 3D
form (s)

ICEC 29.85 129.11 33.56 192.52
CRR 5.18 94.91 7.78 107.87
KITTI 2.72 181.19 5.02 188.93
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boundary removal, CNN-based boundary completion and cGAN-based
boundary refinement (with/without a centerline), a section of the ICEC
road, which has corresponding taxi GPS trajectory data and remote
sensing images to obtain road centerlines, was selected for testing.
Table 8 indicates that the erroneous boundary removal step improves

correctness with only a small decrease in completeness, and CNN-based
completion significantly improves completeness and quality, but de-
creases correctness. The two steps were taken jointly to achieve better
completion quality. Also, boundary refinement without a centerline
slightly affects the results, but boundary refinement with a centerline

(a) (b)

(c) (d)

(e)

Fig. 13. Road centerline extraction. (a) Taxi GPS trajectory points. (b) Road centerlines obtained from taxi GPS trajectory points. (c) Remote sensing image. (d) Roads
extracted from image (c). (e) Final road centerlines merged from (b) and (d).

Correct input

Imperfect input

Target

Fig. 14. Training sample examples of gaps
without completion (first two columns) and ir-
regular completion structures (last two col-
umns). Black lines are road boundaries and red
lines are road centerlines. From top to bottom
are correct input samples, imperfect input sam-
ples, and target samples. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

Table 7
Testing sample size, time cost, and average error distance.

Problem category Time cost (s) Original error distance (m) Average error distance (with centerline) (m) Average error distance (without centerline) (m)

Gaps without completion 3.62+ 3.61 – 0.48 2.87
Irregular completion structures 3.61 3.44 0.56 1.11
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Fig. 15. Error distance according to the proportion of testing samples.

Fig. 16. Examples of testing results. (a) Gaps without completion. (b) Irregular completion structures.

Table 8
Quantitative evaluation results of each boundary recovery step on a section of ICEC dataset.

Steps Completeness (%) Correctness (%) Quality (%)

Extraction by the method of Zai et al. (2017) 80.90 91.49 75.24
Extraction+ erroneous boundary removal 76.20 97.93 74.99
Extraction+ erroneous boundary removal+CNN-based completion 91.39 86.01 79.56
Extraction+ erroneous boundary removal+CNN-based completion+ cGAN-based refinement (without centerline) 92.46 86.59 80.88
Extraction+ erroneous boundary removal+CNN-based completion+ cGAN-based refinement (with centerline) 93.11 88.76 83.29

Table 9
Horizontal alignment parameter results for sample roads.

Sample number
(Curve)

(degrees-minutes-seconds) s(m) C Sample number
(Road)

dr (m)

Ground Truth Result Error Ground
Truth

Result Error Ground
Truth

Result Error Ground
Truth

Result Error

1 58°24′46″ 59°04′32″ 39′46″ 166.15 166.01 −0.13 0.0061 0.0062 0.0001 1 (Curve) 7.13 7.05 −0.08
2 65°30′38″ 66°18′39″ 48′1″ 214.01 213.90 −0.12 0.0053 0.0054 0.0001 2 (Curve) 25.81 25.85 0.04
3 75°45′06″ 75°34′05″ −11′1″ 26.69 26.80 0.12 0.0495 0.0492 0.0003 3 (Straight) 8.04 8.01 −0.03
4 83°59′24″ 83°57′25″ −1′59″ 28.77 28.70 −0.07 0.0510 0.0511 0.0001 4 (Straight) 15.04 14.98 −0.06
5 87°30′49″ 86°44′24″ 46′24″ 31.03 30.92 −0.11 0.0492 0.0490 0.0003 5 (Straight) 14.98 14.91 −0.07

Accuracy ± 48′01″ ± 0.13 ± 0.0003 ±0.08
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shows increased performance on all three metrics. With these steps
combined, both final completeness and quality achieve an increase of
more than 8% at the cost of a decrease in correctness of nearly 3%.

5.5. Road characteristics analysis

5.5.1. Inherent road characteristic evaluation
To quantitatively evaluate the accuracy of the proposed method for

(c)

(a) (b)

Fig. 17. (a) Road surface point clouds with boundary in red. (b) Scattered taxi GPS trajectory points around road boundary. (c) Taxi GPS trajectory points within road
boundary after road matching. Yellow arrows represent the direction of the traffic flow. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 18. Three road scenes with matched GPS trajectory points. The first row is a two-way separated road, the second row is a two-way road without isolation belt,
and the last row is ring road with seven lanes. (a) Road surface point clouds with boundary in red. (b) GPS trajectory point flow of each lane (in different colors). (c)
Traffic density result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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inspecting inherent road characteristics, a Leica total station TS 15i-1
and a Leica RTK GS15, which can provide millimeter level measure-
ments, were used to collect on-site measurement data as the ground
truth. Given the lack of intuitive vertical road curves and most of our
road data are almost horizontal, we collected only horizontal alignment
parameters to evaluate. For illustration, five roads, including inner and
outer boundary, were selected for calculating road width. Detailed re-
sults are shown in Table 9. Calculating , s, C , and dr on these road
parts, our proposed method achieved an accuracy of± 48′01″,± 0.15
m,±0.0003, and±0.08m, respectively.

5.5.2. Dynamic road characteristic evaluation
To explore the dynamic road information extraction, a typical road

with two lanes was selected. Here, we only visualized road matching
result of the taxi GPS trajectory points and the direction of the traffic
flow. The distribution of taxi GPS trajectory points on the road with two
lanes separated by an isolation belt, located at the lower right of ICEC
(see Fig. 10), are shown for before and after road matching in Fig. 17(b)
and (c), respectively. Offset taxi GPS trajectory points, inside the iso-
lation belt and outside the road boundary, were matched within the
road boundary. Different colors represent different direction values.
The average direction values of points in green and light blue are about
31 and 214, respectively. According to these values, the direction of the
taxi flow, represented by the light-yellow arrows in Fig. 17(c), can also
be determined. The results indicate that our proposed method performs
well in matching taxi GPS recorded trajectory points to the correct road
lane of the underlying road boundary.

In addition, shown in Fig. 18 are the following other three road
scenes with matched taxi GPS trajectory points: a two-way separated
road located atop the ICEC (see Fig. 10), a two-way road without an
isolation belt, and a ring road with seven traffic lanes located at the
lower left of the ICEC (see Fig. 10). Fig. 18(b) shows a good division of
traffic flow in the two-way lanes (pink and blue). The traffic density,
based on the matched taxi GPS trajectory points, is shown in Fig. 18(c).
The red points in Fig. 18(c) represent the highest traffic density areas,
which are usually on road intersections, turnings or the openings of
narrow trails. This indicates the feasibility and great potential of
combining dynamic road information with static road structures to
achieve dynamic visualization of a road boundary.

6. Conclusions and future work

In this paper, we have presented a novel framework for 3D road
boundary recovery using MLS point clouds, spatial trajectory data, and
remote sensing images. The proposed framework successfully recovers
the road boundaries by integrating an erroneous boundary removal, a
CNN-based completion model, and a cGAN-based boundary refinement
model guided by road centerlines obtained from taxi GPS trajectory
points and remote sensing images. Using recovered road boundary
point clouds and taxi GPS recorded trajectory points associated with the
proper road, inherent and dynamic road information can be extracted,
accordingly. The ability to recover the 3D road boundary that are in
poor conditions (e.g., incomplete raw data and uncertainties of gaps) is
an impressive achievement, as it has been tested on point clouds da-
tasets with different qualities. For two MLS datasets (ICEC and CRR)
and a Velodyne dataset (KITTI), the completeness, correctness, and
quality achieved on ICEC, CRR, and KITTI are as follows: completeness:
91.34%, 92.14%, and 89.90%, respectively; correctness: 89.87%,
95.91%, and 83.91%, respectively; quality: 82.81%, 88.65%, and
76.68%, respectively. The trained models are made available at https://
github.com/youcb/Road_boundary_recovery. Future work will focus on
designing end-to-end algorithms for 3D road boundary recovery and
exploring the integration and visualization of a road network using
multi-source data.
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