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A B S T R A C T

Road markings play a critical role in road traffic safety and are one of the most important elements for guiding
autonomous vehicles (AVs). High-Definition (HD) maps with accurate road marking information are very useful
for many applications ranging from road maintenance, improving navigation, and prediction of upcoming road
situations within AVs. This paper presents a deep learning-based framework for road marking extraction,
classification and completion from three-dimensional (3D) mobile laser scanning (MLS) point clouds. Compared
with existing road marking extraction methods, which are mostly based on intensity thresholds, our method is
less sensitive to data quality. We added the step of road marking completion to further optimize the results. At
the extraction stage, a modified U-net model was used to segment road marking pixels to overcome the intensity
variation, low contrast and other issues. At the classification stage, a hierarchical classification method by in-
tegrating multi-scale clustering with Convolutional Neural Networks (CNN) was developed to classify different
types of road markings with considerable differences. At the completion stage, a method based on a Generative
Adversarial Network (GAN) was developed to complete small-size road markings first, then followed by com-
pleting broken lane lines and adding missing markings using a context-based method. In addition, we built a
point cloud road marking dataset to train the deep network model and evaluate our method. The dataset con-
tains urban road and highway MLS data and underground parking lot data acquired by our own assembled
backpacked laser scanning system. Our experimental results obtained using the point clouds of different scenes
demonstrated that our method is very promising for road marking extraction, classification and completion.

1. Introduction

With the rapid development of advanced driver assistance systems
(ADAS) and autonomous vehicles (AVs), High Definition (HD) maps with
lane level information have attracted the attention of many researchers.
Such HD maps could provide highly detailed inventories of all stationary
physical assets related to roadways such as road lanes, road edges,
shoulders, dividers, traffic signals, signage, paint markings, poles, and all
other critical data needed for the safe navigation of roadways and in-
tersections by AVs. As one of the essential components in HD maps, road
markings are used for guiding AVs. For example, lane lines indicate the
driving area, arrows show the driving direction, and posted speed limits
indicate the maximum safe speed under favorable driving conditions.

Many researchers have addressed the extraction and classification of
road markings using both video and still images acquired by digital

cameras mounted on a vehicle. Wu and Ranganathan (2012) extracted
the maximally stable extremal regions (MSERs) from images and used
template matching for road marking extraction. Lee et al. (2017) pro-
posed a fully convolutional network for road marking detection and
recognition based on images. Pan et al. (2018) developed a new type of
convolutional network designed to detect lane lines. However, such
image-based methods are sensitive to lighting and weather conditions.

Mobile laser scanning (MLS) systems, insensitive to lighting condi-
tions, can acquire high-precision, 3D dense point clouds with intensity
or “reflectance” raster images. Several methods have been developed to
extract and classify road markings from MLS point clouds, which can be
found in a recently published review article (Ma et al., 2018). The
global threshold method has been widely used for road marking ex-
traction based on MLS infrared reflective intensity images (Yang et al.,
2012; Yan et al., 2016; Cheng et al., 2017). In practice, the MLS point
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density varies in space over the distances between the laser scanners
mounted on the vehicle and objects on a roadway. Cheng et al. (2017)
improved the robustness of the algorithm by adopting a normalized
method to reduce the influence of distance on the intensity value.
However, in these methods, the normalization parameters vary from
scene to scene. The global threshold-based method does not work well
on reflective intensity images with different point distributions. Multi-
threshold methods have been developed for road marking extraction by
segmenting raw road surface point clouds into many patches and cal-
culating a dynamic threshold in every patch (Guan et al., 2014; Yu
et al., 2015). The performance of these methods depends on suitable
patch size and requires patch location (including both road marking
and the road surface in each patch). Also, a Gaussian Mixture Model
(GMM) based method was used to determine whether a point belongs to
a road marking (Soilán et al., 2017) by estimating GMM parameters
with two single Gaussian distributions. Such a dynamic threshold
method has the same disadvantages as the methods presented in Guan
et al. (2014) and Yu et al. (2015).

The three main challenges of using MLS point clouds for road
marking extraction and classification (see Fig. 1) are summarized as
follows:

(1) Variations in reflective intensity and point density

Point clouds are usually collected by MLS systems that are driven
across different lanes. The density and intensity of MLS point clouds
typically vary in space over distances between the laser scanners
mounted on the vehicle and road markings. In general, road markings
closer to the trajectory of the vehicle have higher reflective intensities
and densities. With increasing distance, the incidence angle of a laser
beam becomes larger, while both the reflective intensity and the point
density decrease. As shown in Fig. 1(a), the intensity and density of two
lanes, which are approximately 3.5 m apart (one lane width), may differ

by up to 20% and 50%, respectively. In this case, most of the threshold-
based extraction methods based on assumption that the acquired MLS
point clouds having consistent and even reflective intensity and density,
do not perform well.

(2) Low contrast between road markings and surrounding road surface

Road wear is a very common situation. A worn road marking
usually shows a lower reflective intensity value than a normal marking.
This typically results in a low-intensity contrast between road markings
and its surrounding road surface, see Fig. 1(b), which makes the ex-
isting intensity-based methods (whether local or global) ineffective.

(3) Lack of consistency of road markings in point clouds

Lack of consistency in reflective intensity of road markings and low-
intensity contrast of the points result in the incomplete detection of
road markings. Furthermore, occlusion from the objects in complex
road environments also leads to the incomplete detection of road
markings. Complete road markings are generally required in some ap-
plications such as HD maps for AVs. In addition, incomplete road
marking data are often inevitable due to occlusions. To build a com-
plete map, manual inspection and editing are needed to complete the
road marking data. As such, we provide an auxiliary semi-automated/
automated approach to road marking completion to assist the manual
inspection and editing task. Thus, quality enhancement of the road
marking point clouds is required.

In this paper, a deep learning-based framework was developed for
automated extraction, classification and completion of road markings.
A pixel-level U-net segmentation network was developed to extract the
road markings. The road surface was segmented first into a series of
patches as training data. The Intersection over Union (IoU) loss in the
U-net model was used to guide training instead of cross-entropy in

Fig. 1. Examples of road markings: (a) intensity images with varied point densities, (b) road surface with low-intensity contrast between road markings and
surrounding road surface, and (c) road surface showing incomplete road markings acquired.
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order to obtain more complete road markings. The binary classification
was applied using a segmentation network to achieve road marking
extraction. A method based on clustering and convolutional neural
networks (CNN) was developed for road marking classification. At first,
the large-size road markings such as lane lines and pedestrian crossings
were classified by multi-scale clustering. Then, a CNN classifier was
trained to classify the small-size road markings. A conditional gen-
erative adversarial network (cGAN) was used for the small size road
marking completion. A context-based method was developed to com-
plete solid and dashed lane lines. The proposed framework produces
better road markings for offline HD map generation, further providing a
fundamental map dataset for road marking matching during the online
perception of an AV.

The main contributions of this paper can be summarized as follows:
First, a modified U-net segmentation network was developed to

extract road markings. The effect of varying intensity was considerable
reduced by learning the patches at different locations. Because each
patch presents a different intensity contrast, the model also performs
well on data with a low-intensity contrast ratio.

Second, a combined clustering and CNN model was used to classify
road markings. The hierarchical framework of the combined clustering
and CNN model made classification of road markings with different
sizes more effective.

Third, a cGAN-based model along with context information was
used to improve the quality of point clouds to reduce in completeness of
road markings. The cGAN model needs only a small amount of training
data to achieve small size road marking completion. Our context-based
method further improves completeness of lane lines by taking into ac-
count their continuity and regularity.

Last, a road marking dataset was built based on the proposed fra-
mework, which will be released to encourage further studies. The da-
taset contains three types of scene data: highways, urban roads, and
underground parking lots with both raw point clouds and labelled road
marking ground truths.

2. Related work

2.1. Extraction and classification of road markings in point clouds

Because road markings usually show higher intensities than road
surfaces, threshold-based methods have been commonly used for road
marking extraction. The multi-segment threshold strategy (Yu et al.,
2015) first divides point clouds into several blocks. Then, each block is
divided into multi-segment structures with a width value. Finally, to
extract road markings, the multi-segment structures are segmented se-
parately. Spatial Density Filtering (SDF) distinguishes road marking
points from noise by calculating the spatial density at every point. Guan
et al. (2015) proposed Weighted Neighboring Difference Histogram
(WNDH) and Multiscale Tensor Voting (MSTV) methods to segment and
extract road markings from noise corrupted Geo-Referenced Feature
(GRF) images. To segment road markings, WNDH first calculates the
intensity histogram of the point cloud and obtains a dynamic threshold.
To extract the correct road markings, the MSTV algorithm further filters
out some noise.

To extract road marking point clouds, Soilán et al. (2017) proposed
a method based on the Gaussian Mixture Model (GMM). In their
method, the intensity distribution of a road that contains road markings
can be separated into road surface and road markings that are ap-
proximated by Gaussian distributions, with the higher mean distribu-
tion representing the intensity distribution of the road marking points.
Their method calculates the probability of a point belonging to a road
marking by estimating the parameters of the two Gaussian distribu-
tions.

Following the extraction process, the road markings are classified
into different groups for further applications. Yu et al. (2015) proposed
to first use Euclidean distance clustering to group markings into clusters

based on the Euclidean distances to their neighbors. First, a voxel-based
normalized cut segmentation method was used to group road markings
into large and small size road markings. Then, a trajectory-curb line-
based method was proposed to classify large-size markings. A Deep
Boltzmann Machine (DBM) was used to classify small-size markings.
Cheng et al. (2017) proposed a road marking classification method,
using four geometric features including area, perimeter, estimated
width, and orientation. Because this method uses a simple segmentation
strategy, it is difficult to handle markings like text. In addition, it is
difficult for these four geometric features to correctly represent an in-
complete road marking.

2.2. Point cloud completion

To achieve point cloud completion, scattered data fitting methods,
such as Moving Least Squares (Alexa et al., 2003; Wang and Oliveira.,
2007), Multi-level Partition of Unity Implicits (Ohtake et al., 2003) or
Radial Basis Functions (Carr et al., 2001), etc. were used to smoothly fill
holes on surfaces reconstructed from point clouds. Context-based
methods (Sharf et al., 2004; Park et al., 2005; Xiao et al., 2007;
Savchenko and Kojekine, 2002) are beneficial to recover lost geometric
features. Context information is extracted as prior to fit the lost parts.
Regularity-based methods have been used to complete point clouds. A
missing point cloud is retrieved from other locations based on rules that
most objects are regular and symmetrical (Law and Aliaga, 2011;
Figueiredo et al., 2017; Thrun and Wegbreit, 2005; Kroemer et al.,
2012) and structurally repeated (Zheng et al., 2010; Friedman and
Stamos, 2012).

Additional information, such as images, can also be incorporated to
assist in the completion process (Li et al., 2011; Xu et al., 2006; Lai
et al., 2016; Doria and Radke, 2012). The method of Li et al. (2011)
recovered the missing parts by detecting repetitive patterns on each of
the depth layers, which are formed by mapping the point clouds to
different depth ranges. Transforming a 3D point cloud into a depth
image, Doria and Radke (2012) used an image in-painting method to
complete the depth image and then transform it back into the point
cloud. This method can also be used to complete texture and structure
in MLS scans.

Zelek and Lunscher (2017) proposed a deep learning-based method
to achieve point cloud completion of a human foot point cloud. The
depth map of a half foot is the input into the network, while the depth
map of another half is the output.

3. Method

The proposed method is comprised of three main steps for road
marking extraction, classification, and completion.

3.1. Modified U-net-based road marking extraction

The usability of current methods is dramatically affected by con-
sistent intensity, density variation and intensity contrast between the
road markings and road surface. In this paper, a deep learning-based
road marking extraction method, which overcomes the above issues, is
proposed to extract the road markings.

Previous studies (Guan et al., 2014; Cheng et al., 2017) have shown
that the elevation of a road point cloud contributes little to road
marking extraction. Here, elevation refers to the height of a 3D point in
the point cloud coordinate system (z-axis coordinates). The road surface
is assumed to be parallel to the xoy plane in the point cloud coordinate
system we established. Thus, the road is a typical 2D structure. In this
paper, the original point clouds have been filtered (Zai et al., 2018),
leaving only the road point cloud. In our method, 3D point clouds are
first projected onto a horizontal plane and gridded as a 2D image. This
projection step greatly reduces computational cost. The average in-
tensity of all points in each grid cell is calculated to represent this grid
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cell. Fig. 2 shows the intensity image generated by projection.
Because a grid cell either represents some road marking points or

represents some non-road marking points, we can consider the road
marking extraction task as a binary classification problem. A modified
segmentation network U-net (Ronneberger et al., 2015) is used to
classify every pixel. U-net (see structure in Fig. 3) is a special encoder-
decoder network, which sets the connection between the encoder and
decoder. For encoder-decoder networks, the downsampling of the en-
coder layers usually results in missing many details of the image,
especially edge information. It is difficult for the decoder layers to re-
store these details. The feature maps, which are saved and used in each
encoder layer of U-net, contain many details to better guide the de-
coder. Thus, the outputs of U-net are sharper and more accurate. We
consider introducing U-net into road marking extraction, because it can
learn not only the difference in intensity from a large number of labeled
samples, but also the shape of road markings.

In encoder layers, a ×3 3 convolution kernel and ReLU activation
function are used. When training, a batch normalization operator is
added. Each encoder layer performs two convolutions the second con-
volution result must be saved. After convolution, the feature maps are
down-sampled by ×2 2 size and ×2 2 stride max pooling. The results
are input into the next encoder layer. In each decoder layer, the feature
maps are up-sampled by deconvolution, where the size of the decon-
volution kernel is ×2 2 and the stride is also ×2 2. Then, the results of

deconvolution are connected with the saved convolution results in
corresponding encoder layers. The connected feature maps are run by
two convolutions. Finally, the feature maps are converted to a seg-
mentation result by a ×1 1 convolution, softmax activation function,
and an argmax function.

Compared with the original U-net model, we modified the model by
applying the intersection-over-union (IoU), instead of cross-entropy, as
a loss function to achieve better performance. In our task, we aim to
obtain complete road markings instead of classifying the road surface
and marking pixels more accurately. By maximizing IoU, the network
extracts more complete road markings in the output. The IoU loss
function is defined as follows:

=

=

IoU

loss IoU

RMPixel RMPixel
RMPixel RMPixel

IoU

predict gt

predict gt

(1)

where RMPixelpredict is the pixel that represents road markings in the
network output. RMPixelgt is the pixel that represents road markings in
the ground truth. The IoU segmentation result is closer to ground truth.
Thus, it is reasonable to use IoU as a loss function to guide network
updating parameters. To solve the intensity variation problem, images
with different intensity were used as training samples.

Fig. 2. Intensity image generated by projection.

Fig. 3. U-net structure.
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3.2. Hierarchical road marking classification

Road marking classification consists of two main steps: (1) a multi-
scale clustering algorithm classifies large size road markings; (2) a CNN
classifier is trained to classify small size road markings, including
straight arrows, turn arrows, and text. The flow chart for road marking
classification is shown in Fig. 4.

3.2.1. Multi-scale clustering
Large size road markings include lane lines and zebra crossings. A

distance-based Euclidean clustering method segments objects and
considers that a series of points, whose distance is less than a set
threshold, belong to the same object. First, a small-scale Euclidean
clustering is used to segment all extracted objects and to separate the
objects as much as possible by setting a small distance threshold (Ts).
Although some of the small markings can be incorrectly segmented into
multiple objects, lane lines can be effectively separated from other
markings. The most significant difference between lane lines and other
markings is length; therefore, we classify markings longer than a length
threshold, (L), into lane lines. After removing the lane lines, the

remaining road markings are classified into independent objects by a
large-scale Euclidean clustering, whose threshold is set as Tl. This step
correctly segments road markings except the zebra crossing, which is
divided into a series of rectangular markings. Finally, some small size
road markings are combined into zebra crossings. We compute the
center point coordinates and minimum bounding rectangle coordinates
for each marking and, using these coordinates, compute the relation-
ships of the positions among the markings. A series of rectangular
markings is considered to belong to the same zebra crossing if their
bounding boxes are parallel and the distance of their center points, D, is
in a particular range.

3.2.2. CNN classifier
After the previously described multi-scale clustering process, lane

lines and zebra crossings are removed. The remaining markings are
some small size road markings that are grouped into the following ten
classes: two classes of dashed lines, four classes of texts, two classes of
arrows, a class of diamond, and a class of triangle marking. A CNN
classifier (Fig. 5) is designed as follows: A four-layer convolution net-
work, with kernel size ×3 3 and stride of one, is used to extract the

Fig. 4. Flowchart of road marking classification.

Fig. 5. CNN classifier structure.
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features. During the training process, batch normalization is used after
each convolution operator. Then, the activation function, ReLU, is
added. After feature extraction, three-dimensional feature maps are
flattened to one-dimensional feature vectors. Then, the vectors are sent
to fully connected layers. The first two fully connected layers contain
1024 nodes, and the activation function is ReLU, also. To prevent over-
fitting, a dropout operation (ratio = 0.5) is used during training. The
last fully connected layer contains ten nodes, and the activation func-
tion is softmax, whose output is class score. The image is classified as
the category that gets the highest score.

A set of small size marking training samples is prepared manually as
templates. The templates are rotated at different angles, and some de-
fects are added to generate additional training samples. Finally, we
produced a total of 4000 training samples, with 400 samples in each
category.

3.3. Joint learning and context completion

In the past, most research on object completion was rule-based.
However, designing rules is complex, and manually designed rules are
limited to some specific applications. We propose to integrate a deep
learning-based method and a context-based method for road marking
completion.

3.3.1. Deep learning-based road marking completion
Deep learning-based image completion showed good performance

in some recent studies. Pathak et al. (2016) designed a context-encoder
network to achieve image completion. Isola et al. (2017) developed an
image translation network, based on an improved conditional gen-
erative adversarial network (cGAN). Road marking completion, which
translates an image with an incomplete road marking to an image with
a complete road marking, can be considered essentially an image
translation task. Fig. 6 shows the cGAN model structure on which our
road marking completion framework is based.

In this section, the training data here is the same data used to train
the CNN classifier. The generator is similar to the U-net encoder-de-
coder network, and feature connection is added between each encoder
and decoder layer. An encoder consists of eight convolution layers; the
size of each convolution kernel is ×4 4 and the stride is two. Especially,
the activation function of every encoder layer is Leaky ReLU. A decoder
is achieved by eight deconvolution layers; the parameters are the same
as those for the convolution layers. The last layer uses a tanh activation
function; the other layers use ReLU. When training, batch normal-
ization is used in every layer. The discriminator is a five-layer con-
volution network to regress the probability that indicates if the output
of the generator is real or fake.

During the training process, the generator and the discriminator are
successively trained to update their respective network weights. By

outputting a fake, realistic image as the input for the discriminator, the
generator attempts to cheat the discriminator as much as possible.
However, it is expected that the discriminator can distinguish whether
the discriminator input is real or generated. The generator and dis-
criminator losses are defined as follows:

=loss P Plog(1 ) log( )D fake real (2)

= +
=

loss P loss
loss y G x

log( )
| ( )|

G real L

L

1

1 (3)

where lossD is the loss function of the discriminator network, Pfake is the
probability that the discriminator determines if its input is fake, and Preal
is the probability that the discriminator determines if its input is real.
The generator loss function is lossG; lossL1 is the L1 distance bound term,
y is the ground truth (a completion road marking), x is the input of the
generator (an incomplete road marking), G is the generator network,
and is a hyperparameter. By minimizing lossD to update the dis-
criminator parameters, we aim to achieve larger Preal and smaller Pfake
values. If the generator tries to cheat the discriminator, small lossL1 and
large Preal should be achieved. Therefore, to update the generator
parameters, we minimize lossG.

3.3.2. Context-based completion
The cGAN network above is used to complete some small size road

markings, after which we complete other road markings based on
context information related to the road marking design rules (Fig. 7).
Usually, the lane lines on both sides of a road are continuous solid lines,
but, for reasons mentioned above, they are sometimes broken. If it is
broken, a lane line can be connected. In addition, the incremental
spaces in the dashed lines must be consistent, and the distance between
parallel dashed lines must be uniform. In this context, some missing
road markings are completed. We first calculate the center point of each
dash within the dashed line. Then, the distance between the center
points of adjacent dashes and the distance between the parallel dashed
lines are computed. Next, the average value and standard deviation of
distance are computed. Last, the position of the missing dashed line is
located if the standard deviation is unusual.

After completing the road markings on the images, to reduce un-
necessary loss of precision, we transform the images back into a 3D
point cloud. The images were obtained from a point cloud projection
process; therefore, we find the corresponding point cloud according to
the position of each pixel. When the road marking is complete, some
pixels without corresponding points were added. For these pixels, we
use the Inverse Distance Weighted (IDW) interpolation algorithm to
compute the coordinates of the points. The IDW algorithm uses an in-
verse of distance as a weight to calculate a new variable. If a pixel has
no corresponding points, we randomly generate the x, y coordinates of
several points at this position, then use their neighboring points to
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compute the z coordinates with IDW as follows:

=
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=
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w z
w

i x x y y
1

( ) ( )

i
n i i
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n i

i i

1

1

2 2 (4)

where x y z( , , )i i i is the coordinate of the ith neighbor point.

4. Dataset

The data in this study includes highway data, urban data and un-
derground garage data. The study area for the MLS data is located in
Xiamen, China. A section of highway data and urban data are measured
by a RIEGL VMX-450 system. In addition, using an own assembled
backpacked laser scanning system (Wang et al., 2018), we collected
some road surface point clouds of an underground garage. Some point
cloud data in the study data are of low-quality, such as intensity var-
iation, density variation and low-intensity contrasts in part of the data.

To create a 3D road marking dataset, we manually labeled some
data. At first, all road markings were manually annotated on the in-
tensity projection images. The ground truth data were saved as binary
matrices. Then, according to the position of each 2D grid cell, the 2D
ground truth was restored to 3D point cloud ground truth. Finally, all
the road markings were segmented as independent objects by a clus-
tering algorithm. The category of each marking and the 3D coordinates
of each point are given. The average point density of the MLS data is
about 5000 points/m2, and the precision is 8 mm. The average point
density of the underground garage data is about 1800 points/m2, and
the precision of the data is 3–5 cm. The number of different road
markings is listed in Table 1. Because of the small number of road
markings in certain categories, we merged some categories. When
classifying, the merged categories are still distinguished as different
categories.

5. Results and discussion

In this section, the whole framework is evaluated from the aspect of
the road marking extraction, classification, and completion steps and
then compared with other algorithms. The results of each aspect are
shown, and the reasons for errors are analyzed.

When gridding point clouds, we used a grid cell of 4 cm × 4 cm for
highway, urban, and underground garage data. This grid cell size ef-
fectively preserves the details of the road markings and greatly reduces
the amount of data that must be processed. The selection of the grid cell

size is related to the density of the data. In practice, a larger grid cell
size can be considered when applied to sparser data.

Two models were trained in the road marking extraction experiment.
One was trained with 3000 samples for processing highway and urban
data. The other was trained with 1000 samples for underground garage
data. In the classification experiment, 4000 samples were used to train one
model to classify the road markings in highway, urban, and underground
garage data. Because the categories are similar in these three scenes, the
same training data, as used for classification, was used in the completion
experiment. The complete road markings were the ground truth.

We used different hyper parameters for different models. The initial
learning rate, batch size and epochs are 0.001, 4, and 300, respectively
for the U-net model; 0.0001, 32, and 40, respectively for the small-size
road marking classifier; 0.0002, 4, and 300, respectively for the cGAN
model. These three models were trained by the Adam optimizer. The
momentum term is 0.5. The design of the network structure depends on
experience; therefore, the parameters were selected through multiple
experiments. For example, when selecting the size of the convolution
kernel, it is common to use a small size kernel (e.g. a 3×3 convolution
kernel) repeatedly to expand the receptive field (Szegedy et al., 2016).

5.1. Intensity-invariant road marking extraction

Road marking extraction is evaluated through the following per-
formance metrics:

=
+

Precision TP
TP FP (5)

=
+

Recall TP
TP FN (6)

= × ×
+

F Precision Recall
Precison Recall

1 2
score (7)

where TP, FP and FN are the number of true positives, false positives
and false negatives, respectively.

5.1.1. Highway scene
Because highways are regularly maintained, the roads are clean,

and the markings are in good condition. Thus, road surface point clouds
in a highway scene are of high-quality. In a highway scene, most road
markings are dashed lines and continuous lane lines; the number of
other types of road markings is very small, which indicates that the
distribution of different types of samples in the data is not uniform. In
the road marking extraction step, we only performed binary classifi-
cation in the hope of reducing the impact in the case where the data is
not uniform; however, the results of marking extraction in a highway
scene show that impact still exists. As seen in Fig. 8, some markings
(arrows) are incomplete; thus, marking extraction is not ideal. How-
ever, small incompletions do not affect the classification step. We deal
with them in the completion step.

5.1.2. Urban road scene
Urban road scenes are very different from highway scenes. Possibly,

some road surfaces have some dirt, and some road markings are badly
worn, which makes it extremely difficult to extract road markings in an
urban scene.

Fig. 7. Road marking completion based on road marking design rules.

Table 1
Number of road marking in dataset from MLS system and backpacked system.

Category Number from MLS system Number from backpacked system

Dashed line 719 65
Text 19 /
Straight arrow 8 27
Turn arrow 18 41
Diamond 14 /
Triangle 5 /
Lane line 262 200
Crossing 32 23
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We compared different algorithms using a low-intensity contrast
point cloud and analyzed the results. The efficiency was compared with
the methods of Cheng et al. (2017), Yang et al. (2012), and Soilán et al.
(2017). Fig. 9 shows the results on a straight road section with low-
intensity contrast. In this case, the method of Cheng et al. (2017) and
the method of Yang et al. (2012), which calculate a global intensity
threshold to extract road markings, do not yield a good result. Fig. 10(a)
presents the intensity distribution in this example. The intensity of the
road marking points on the side of the road is lower than the intensity
of the non-marking points in the center of the road. Therefore, it is
impossible to choose a suitable threshold range to distinguish between
marking points and non-marking points, causing the results of the
method of Yang et al. (2012) to miss part of the road markings. Simi-
larly, because the method of Soilán et al. (2017) uses a GMM with two
single Gaussian distributions, it is difficult to extract road marking

points with that method.
Fig. 10(b) shows the intensity histogram for this example. The red

curve is the intensity histogram for the marking point cloud. The blue
curve is the intensity histogram for the non-marking point cloud. As
shown in Fig. 10, the number of marking points is far smaller than the
number of non-marking points. In addition, the intensity ranges for the
marking and non-marking points are 30,000–48,000 and 23,000–40,000,
respectively. There is a large overlap between the ranges. However, in
this situation, commonly used binarization algorithms, the Otsu algo-
rithm (Otsu, 1979) for example, cannot calculate an effective threshold.
Thus, the method of Cheng et al. (2017), an Otsu-based method, does not
perform well. Table 2 presents the performance of the different methods
used in this example. The precision, recall and F1-score for the method of
Cheng et al. (2017) are 18.52%, 28.03%, and 22.30%, respectively.
There are many noises in these results; therefore, the precision and recall

Fig. 8. Extracted road markings in a highway section.

Fig. 9. Extracted road markings on a straight road section: obtained by the methods of (a) Cheng et al. (2017), (b) Yang et al. (2012), (c) Soilán et al. (2017), (d) ours,
and (e) ground truth data.

Fig. 10. (a) Intensity distribution of Fig. 9. (b) Intensity histogram of Fig. 9.
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rates are low. The methods of Soilán et al. (2017) and Yang et al. (2012)
achieve high precision (94.37% and 92.31%, respectively), but the recall
rates (40.24% and 33.45%, respectively) and F1-scores (56.42% and
49.11%, respectively) are insufficient. As shown in Fig. 9, a lane
marking, some dashed lines, and some text are missing in Fig. 9(b); a lane
is missing in Fig. 9(c). By achieving precision of 95.97%, recall of 87.52%
and F1-score of 91.55%, our method performs better than the other
methods.

Instead of a simple threshold segmentation algorithm, we used a
modified U-net to extract the road markings. For road marking ex-
traction, the shape of the marking is also an important information;
however, all threshold segmentation algorithms based on statistics ig-
nore shape information. A CNN-based segmentation network completes

road marking extraction through a series of convolution kernels. During
the learning of the convolution kernels, changes in intensity informa-
tion and the shape of the road markings are both considered. Because
our method is less sensitive to intensity distribution, it outperformed
other methods.

In addition, we developed a cGAN-based method for road marking
extraction (see Table 2). To extract road markings, a cGAN model was
trained to achieve the transform from the original images to labeled
images. The cGAN model was trained over 300 epochs. Loss gradually
decreased and eventually stabilized over a small range of changes. The
average precision, recall, and F1-score of the cGAN model is 90.15%,
82.33%, and 86.06%, respectively. The U-net model performed better
than the cGAN model on this task. It was mainly manifested in

Table 2
Extraction result comparison with other methods.

Method Our dataset TUM-MLS dataset

Precision Recall F1-score Precision Recall F1-score

Cheng et al. (2017) 18.52% 28.03% 22.30% 58.39% 42.52% 49.21%
Yang et al. (2012) 92.31% 33.45% 49.11% 68.22% 82.60% 74.72%
Soilán et al. (2017) 94.37% 40.24% 56.42% 70.79% 64.22% 67.35%
Ours (cGAN-based) 90.15% 82.33% 86.06% 82.56% 76.48% 79.40%
Ours (U-net-based) 95.97% 87.52% 91.55% 89.12% 81.31% 85.04%

Fig. 11. Intensity image of a road intersection surface (a) and the extracted road markings using the methods of (b) Cheng et al. (2017), (c) Yang et al. (2012), (d)
Soilán et al. (2017), (e) ours, and (f) ground truth.

C. Wen et al. ISPRS Journal of Photogrammetry and Remote Sensing 147 (2019) 178–192

186



incomplete extraction of road marking details. The reason for the lower
accuracy of cGAN model may be that the discriminator is redundant in
this task, and the loss function cannot directly guide the extraction.

Fig. 11 shows the road marking extraction results at a crossroad. In
this data, it contains both old (uneven and worn) road surface and
newly constructed (even) road surface. The intensity characteristics of
these two road surfaces are quite different. We manually labeled the
ground truth of this region based on image and point cloud. Other al-
gorithms have obvious noise in the extraction results for this special
part. In particular, the results of the method of Soilán et al. (2017) show
that two Gaussian models do not fit such data distributions. However,
our method achieves very good results, even on an uneven road surface.
Fig. 12 shows more urban road extraction results.

In addition, we compared our method with the methods of Cheng
et al. (2017), Yang et al. (2012), and Soilán et al. (2017) using the TUM-
MLS point cloud dataset of an urban scene (Gehrung et al., 2017). We
selected a 400 m long road section from this dataset for testing. Table 2
lists the road marking extraction results using the extraction model

Fig. 12. More extraction results in an urban road section.

Fig. 13. Road marking extraction from underground garage data. (a) The raw data. (b) Black pixels are extraction results and red pixels are ground truth.

Table 3
Parameters in multi-scale clustering.

Name Definition Value (m)

Ts Small-scale Euclidean clustering threshold 0.12
Tl Large-scale Euclidean clustering threshold 0.5
L The minimum length of lane line 7.5
D The distance of rectangular marking centers 0.8–1.2

Table 4
Error rate of road marking classification.

Road scene scenes Average rate

Urban road Highway Underground

Error rate 2.41% 6.01% 3.79% 4.07%
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trained with our dataset on TUM-MLS. The results in Table 2 for pre-
cision, recall, and F1-score, using our U-net-based method with the
TUM-MLS dataset (89.12%, 81.31% and 85.04%, respectively) clearly
show that our method outperforms the other methods on the TUM-MLS
dataset. The TUM-MLS data was collected in Germany, where the road
marking standard is different from the Chinese standard. Because the
extraction model was not retrained with the TUM-MLS dataset, a de-
cline in the precision and recall rates was observed.

5.1.3. Underground road scene
We tested our method on an underground garage scene of about

2000 m2. The quality of the data, attained from a backpack system, is
lower than the quality of the data from the RIEGL VMX-450 system. The
point density of the garage data from the backpacked system is lower
than the density of the MLS data. However, the issue of lower density
can be ignored by gridding point clouds. We calculate the average in-
tensity value within each grid cell to represent the intensity value of the
grid cell. CNN considers not only intensity contrast, but also shape in-
formation. The results in Fig. 13 indicate the proposed method performs
well on the underground garage scene. In Fig. 13 right, red pixels are
ground truth and black pixels are extraction results. Although a few
zebra crossings and arrow markings are missing, most road markings
were extracted correctly.

5.2. Hierarchical road marking classification

Listed in Table 3 are several parameters with values used in multi-
scale clustering. These parameters are selected according to the actual
situation of the road markings. We obtained the appropriate thresholds,
Ts, Tl and D, by measuring the distance between different road markings
and observed the minimum length of the lane line to determine
L. Because road marking standards vary from country to country, these
parameters, when applied to different data, must be adjusted, and the
network must be retrained.

The results of the proposed hierarchical road marking classification
are evaluated by an error rate, defined as follows:

=Error rate N
N

error

marking (8)

where Nerror is the number of error pixels and Nmarking is the number of
road marking pixels. We tested our method using urban road, highway,
and underground road data. As shown in Table 4, the average error rate
of road marking classification is 4.07% for three test scenes.

5.2.1. Urban road scene and highway scene
Road marking classification for an urban road scene is shown in

Fig. 14. This example is a typical urban road, containing lane lines,
dashed lines, text, and arrow markings, etc. Different road markings
are labelled with different colors. Erroneous results are enclosed in red
boxes. Most road markings can be correctly classified from the clas-
sification results. Incorrect results are mainly some lane lines and
arrow markings. The continuous lane lines, broken during the pre-
vious road marking extraction, look very similar to dashed lines. Thus,
some lane lines are incorrectly classified as dashed lines. Similarly,
because of errors in the extraction process, the arrow markings are
classified as dashed lines. However, this problem can be alleviated by
road marking completion. In addition, Fig. 15 shows a highway scene.
The error rate of road marking classification is 2.14% and 6.01% for
urban road and highway test scenes, respectively. In Fig. 14 and
Fig. 15, different road markings are labeled with different colors.
Dashed lines 1 and 2 have different lengths. Texts 1, 2, 3 and 4 are
different Chinese characters. Road arrows “1” are straight arrows.
Road arrows “2” are turn arrows.

We also tested our classification algorithm on the TUM-MLS dataset.
Because this dataset does not provide any road marking labels, the
classification model was not trained by the TUM-MLS dataset. Also, the
shape of the road markings varies greatly from country to country.
Large-size road markings are classified correctly by the multi-scale

Fig. 14. Road marking classification on an urban road. (a) Classification results. (b) Ground truth.
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clustering algorithm. However, the CNN classifier, which is used for
small-size road marking classification, does not perform well.

5.2.2. Underground road scene
Fig. 16 shows the classification results with underground data. In

general, our method, although also performing well with the under-
ground data example, produces incorrect results when classifying some
incomplete road markings. Shown as errors enclosed by red boxes in
Fig. 16, a group of zebra crossings, an arrow marking and some parking
lines are classified as dashed lines, because while extracting road
markings, these were not completely extracted. They were judged as
some small-size road markings by the multi-scale clustering algorithm
and were sent to the CNN classifier. The classifier considered them all
independent dashed lines. The error rate of road marking classification
is 3.79% for underground garage scene.

5.3. Road marking completion result

In the road marking completion step, some incomplete road mark-
ings are completed. First, some small markings (e.g. arrow markings)
are handled by cGAN. Then, based on their continuity, the broken lane
lines are connected. Last, some missing markings (e.g. dashed lines) are
added into a road, based on the regularity of the positional relationship
between road markings. Fig. 17 shows the results of the completion
experiment on scenes A and B. We evaluated this experiment by cal-
culating the precision and recall of extraction and the error rate of
classification after completion. The performance is shown in Table 5.

As indicated in Table 5, the performance metrics have changed. For
the example in Fig. 17(a), extraction precision increased from 92.23%
to 93.38%; recall increased from 82.60% to 83.87%; the error rate of
classification dropped from 2.41% to 0. For the example in Fig. 17(b),
the precision of road marking extraction increased from 90.30% to
90.77%; the error rate of classification dropped from 6.01% to 4.31%;
but the recall of extraction dropped from 87.56% to 86.04%. As seen in
Fig. 17(b), some incorrectly classified lane lines were filtered out during
the completion process. The recall of road marking extraction re-
presents the completeness of the extraction result. Therefore, in the
example in Fig. 17(b), the completeness of the extraction result is re-
duced because of the decrease in the number of road markings. Also,
the completion results, using only the cGAN model, are given in
Table 5. For both scene A and B, the precisions are improved by in-
troducing the context-based completion. The recall values drop slightly
because more points are introduced into the results.

5.4. Computational efficiency

We ran our programs on a desktop PC with an Intel® E5-2683 CPU
@ 2.00 GHz and Nvidia Titan X GPU. We divided all the data into 300-
meter segments. The average extraction, classification, and completion
time per data segment are 3.25 s, 132.12 s, and 2.47 s, respectively.
More than 90% of the runtime is consumed on the multi-clustering
algorithm. However, under the acceleration of the GPU, the networks
are quickly executed.

Fig. 15. Road marking classification on a highway road. (a) Classification results. (b) Ground truth.
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Fig. 16. Road marking classification on underground road. (a) Classification results. (b) Ground truth.

Fig. 17. Results of road marking completion. (a) Scene A. (b) Scene B.
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6. Conclusions

This paper deals with the problems associated with the threshold-
based road marking extraction algorithms. Such problems lead to lack
of robustness when handling 3D dense point clouds acquired by MLS
systems, most notably because of its varying reflective intensity and
point density as well as low intensity contrast between road markings
and its surrounding road surface. In this paper, we have proposed a
three-stage approach to automated extraction, classification, and com-
pletion of road markings in noisy, unstructured, 3D dense MLS point
clouds. At the extraction stage, we developed a neural network-based
algorithm for automated extraction of road markings. Our experiments
demonstrated that our method was able to extract hidden features (e.g.
intensity changes, marking shape information) automatically with
considerably improved performance in road marking extraction. The
precision, recall, and F1-score obtained using the low-quality point
cloud datasets achieved 95.97%, 87.52% and 91.55%, respectively.

At the classification stage, we have developed a hierarchical algo-
rithm to handle road markings with different sizes. Unlike those
methods mainly based on manually designed classification rules, we
have taken advantage of unsupervised multi-scale clustering to obtain
large-size road markings (e.g., lane lines, pedestrian crossings), while
distinguish small-size road markings using a novel supervised CNN-
based classifier. The average error rate of road marking classification
that we obtained was 4.07%.

At the completion stage, we have developed a conditional GAN-
based algorithm to reduce the effect of the incompleteness of road
markings in point clouds. Our results have shown that the reconstruc-
tion of even small-size road markings looks very promising.
Furthermore, we have also developed a context-based algorithm to
handle lane lines and missing road markings. Our results indicated that
the recall was increased, while the precision was decreased slightly.
Overall, our experimental results demonstrated very promising perfor-
mance in extraction, classification, and completion of road markings in
point clouds. The focus of our future work will be placed on the de-
velopment of end-to-end algorithms for road marking extraction, clas-
sification, and completion.
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