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ABSTRACT
With the development of urbanization and industrialization, megacities have experienced
more severe surface urban heat island (SUHI) effects. Land surface temperatures (LSTs) are
retrieved; spatial distribution of temperature is characterized, and the relationship among
temperatures or SUHIs and land-use and land cover (LULC) in Beijing City are discussed. The
changing LSTs in Beijing, from 1990 to 2017, were calculated by a radiative transfer equa-
tion and mono-window algorithm. To estimate the effect of SUHI, Landsat-8 Thermal
Infrared Sensor (TRIS) and Landsat-5 Thematic Mapper (TM) data were selected. There is an
increasing trend toward high LSTs for different LULC types. The connection with building
and vegetation density is analyzed. Results indicate that for every 1% increase in the density
of buildings, the increase in amplitude of temperature in 2017 was twice as large as it was
in 1995 for the study area. In terms of normalized difference vegetation index (NDVI) values,
the decrease in amplitude of LST was 10 times that of the year 1995, where there is only a
slight increase in the NDVI values of the area.

R�ESUM�E

Avec le d�eveloppement de l’urbanisation et de l’industrialisation, les m�egapoles subissent
des effets d’̂ılot de chaleur assez s�ev�eres. L’article d�ecrit la temp�erature de surface (LST) de
Beijing et discute la relation entre la distribution de la temp�erature et la couverture du sol
(LULC) sur la base d’�etude de r�epartition spatiale de la temp�erature de surface. Les varia-
tions de temp�erature au niveau de la surface de la ville de Beijing de 1990 �a 2017 ont �et�e
calcul�ees au moyen d’une �equation de transfert de rayonnement et d’un algorithme �a
fenêtre unique. Pour se faire, les donn�ees du capteur infrarouge thermique Landsat-8 (TRIS)
et TM de Landsat-5 ont �et�e trait�ees. La tendance g�en�erale est une augmentation des
temp�eratures de surface. La relation entre la temp�erature de surface et la densit�e des con-
structions et de la v�eg�etation a aussi �et�e analys�ee. Pour chaque augmentation de 1% de la
densit�e des constructions, l’amplitude de l’augmentation de la temp�erature en 2017 double
par rapport �a celle de 1995. L’amplitude de la temp�erature de surface (LST) diminue par un
facteur de 10 en 2017 bien que l’augmentation de l’indice NDVI est faible.

ARTICLE HISTORY
Received 8 October 2018
Accepted 12 July 2019

Introduction

Over the past few decades, the rapid urbanization and
industrialization of cities has produced an effect,
defined as urban heat island (UHI) (Ogashawara and
Bastos 2012; Ye et al. 2017), where, during the day,
compared to the surrounding suburban or rural areas
(Jones and Lister 2010), the central districts of cities
are almost always warmer and tend to remain so
throughout the night. According to Hu et al. (2008),
the UHI phenomenon, with its long-lasting urban
thermal climate, imperceptibly influences our

ecological environment and human living and health
conditions. For instance, UHI engenders a reduction
in a fraction of vegetation (Kaufmann et al. 2003) and
the transpiration of water from plants (Bounoua et al.
2015). Furthermore, UHIs have had a severe impact
on local weather and climate, altering local precipita-
tion patterns, influencing air temperature and humid-
ity, and increasing the rate of formation of high-
temperature areas (Liu and Zhang 2011).

In general, the effect consists of 2 types: surface
UHI and atmospheric UHI. Whereas a surface UHI
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can be reflected by land surface temperature (LST), a
surface UHI is worse than an atmospheric UHI
(Estoque et al. 2017). LST is one of the key metrics in
global climatology and other research fields (Bechtel
2015). In research, the estimation of LST derived by
thermal infrared remote sensing is widely used as a
kind of auxiliary data to model air temperature (Şahin
2012; Crist�obal et al. 2008), characterize drought con-
ditions and developments (Abbas et al. 2014; Orhan
et al. 2014), and analyze the surface urban heat island
(SUHI) (Melaas et al. 2016; Zipper et al. 2016). Also,
it seems that changes from LST result from conditions
leading to the formation of UHIs. Therefore, to assess
the impact on SUHI effects, it is meaningful to derive
the LST of a UHI, monitor the LST changes, and dis-
cuss the reasons for those changes.

Over the long term, research has shown there is a
warming trend in LSTs, and the areas of high-tem-
perature zones in cities are expanding annually
(Ranagalage et al. 2017; Chen et al. 2016; Zhou et al.
2017; Knutson et al. 1999). Compared with the con-
ventional method for collecting LSTs in situ using
data from meteorological stations, satellite-based tem-
perature measurements are more advantageous for
global climate change studies and dynamic long-term
observations over vast areas (Urban et al. 2013;
Alavipanah et al. 2015). In addition, the technique is
important for macroscopically analyzing the spatial
distribution characteristics of LSTs. Sometimes,
because of the low spatial resolution in image data,
thermal remote sensing cannot be derived accurately.
Orbital satellite data might be limited by image acqui-
sition time and factors, such as nighttime and cloudy
weather (Tomlinson et al. 2011).

Many previous studies focused on researching the
factors affecting SUHI and the relationships between
those factors. Latitude, relative position of land and
sea, elevation, and seasons influence the differences in
LSTs and SUHIs. However, only a few studies paid
attention to the effect of SUHI or the new, more
accurate and reasonable, method for the retrieval of
LST. Regarding influencing factors, some researchers
primarily found that although the relationship
between a SUHI and LST is positive (Huang and Ye
2015; Ranagalage et al. 2017; Rinner and Hussain
2011; Chen et al. 2016), there is a positive exponential
correlation with expansions of impervious surfaces
(Xu et al. 2013). In addition, a few investigators,
exploring the SUHI effect based on an analysis of
land use and land cover (LULC), pointed out that the
intensity of a SUHI depends on the spatial feature of
the land cover (Wang et al. 2017; Zhou et al. 2017).

Besides climate, vegetation phenology, rainfall,
solar radiation, and the other natural factors men-
tioned above, the human factors of socioeconomic
development, such as the increase in the number of
buildings, roads, gardens, and other surface-built
objects, also influence changes in LST (Bechtel
2015). The main change in land cover, increased
surface building, absorbs more heat from solar radi-
ation, resulting in higher LSTs and eventually
expanding the intensity of SUHIs. Urban and socioe-
conomic developments, as major factors influencing
LULC changes, illustrate the spatial patterns of
impervious surface and green spaces (Van and Bao
2010; Estoque et al. 2017). Martin et al. (2014) pro-
posed a new alternative method, a thermal reference,
surface intra-urban heat islands (SIUHIs), to charac-
terize the effect of surface urban heat islands. To
analyze the spatial distribution of UHIs, they selected
seven different SIUHI categories based on the above-
average LST for each pixel in a satellite image.
Theoretically, LSTs extend continuously from urban
centers to rural areas. Compared with SUHI, the
new method eliminates the difficulty in distinguish-
ing between urban and rural boundaries.

In fact, the characteristics of LSTs depend mainly
on the distribution of urban vegetation and build-
ings. Many academic studies have used the normal-
ized difference vegetation index (NDVI) and
normalized difference building index (NDBI) to indi-
cate vegetation density and building density, respect-
ively. Moreover, the statistical analysis of the
spatiotemporal variability of NDVI, NDBI, LST, and
the relationships among them is essential in UHI
studies (Zareie et al. 2016; Kumar and Shekhar
2015). Using satellite remote sensing data, all the
retrievals of NDVI, NDBI, and LST can be calculated
quickly (Tomlinson et al. 2011).

However, a single analysis of the trend in urban
space development, population density, or other eco-
nomic factors cannot reveal the complex relationship
between urbanization and LST (Cui et al. 2016). The
evaluation of urbanization dynamics and SUHI is very
time-consuming (Chen et al. 2017). Furthermore, such
studies comprehensively investigate the change com-
bined with the energy policy, emission reduction
plans, etc. (Choi et al. 2014). Nevertheless, instead of
a simple linear relationship, it is difficult to describe
quantitatively the changes in LST and explain the
intrinsic connection. Still worthy of research is the
establishment of a reasonable evaluation system for
the impact of SUHI. A scientific system must be able
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to quantify the effect of SUHI and the change in
land-use types.

Based on the retrieval of LSTs, we propose dividing
Beijing (our study area) into the following five levels
according to relative temperature: very high, high,
medium, low, and very low. Results show that each
category will eventually have a certain ratio. The LSTs
derived from remote sensing data for Beijing were
determined 5 times (about once every 5 years)
between 1990 and 2015 and, as an exception, in 2017.
Likewise, using the remote sensing classification
method, the study characterized the changes in LULC
simultaneously with the LST. In this paper, for
approximately the same level areas of temperature, we
mainly discuss the LULC changes and the reasons for
temperature change. On the contrary, significant
research has been conducted regarding the protracted
changes in LST that are influenced by the change in
the land cover type for similar regions of interest.
Finally, regarding changes in LULC, LST, and other
changes, such as road conditions, water systems, and
forest cover, our study focuses on the variety and rela-
tionships among these factors.

Study area and data

Study area

Beijing, the political and cultural center of China,
whose center is located at 39�5402000N and
116�2502900E with a total area of 16,410.54 km2, has
developed into a modern international metropolis.
With the climate belonging to the North Temperate
Zone, Beijing has a typical semi-humid continental
monsoon climate, with a hot and rainy summer, cold
and dry winter, brief spring and autumn, and uneven
distribution of precipitation.

The megacity is located at the northwestern edge of
the North China Plain, backed by Mt. Yanshan, adja-
cent to Tianjin, and surrounded by Hebei Province.
The north-western section of Beijing City, at a mean
altitude of 43.5m, where the altitude ranges from
20m to 60m in the plain area, but varies from
1,000m to 2,000m in other areas, is higher than the
south-eastern section. The locations and elevations of
different districts are shown in Figure 1, where the
elevation data, reflected by digital elevation model
(DEM) data, were acquired from ASTER GDEM, with
a resolution of 30m pixel.

In the past half century, as the capital of China,
Beijing has undergone extensive urbanization to meet
the needs of urban growth and sustainability (Wei and
Ye 2014). In the past year, the city has been construct-
ing a large number of buildings, roads, and piazzas,
replacing the original land or soil with an urban built-
up area of 1,401 km2 (2016). The urbanization rate for
Beijing, about 86.5% by the end of 2017, far exceeds
that of other cities in China. As the city develops, it
also incurs environmental problems, including the
SUHI effect (Chen et al. 2017), water shortages, urban
rainfall, and air pollution. Statistically, according to
data from meteorological stations, from 1985 to 2010,
the temperature in Beijing rose slowly with a down-
ward trend in precipitation.

Rapid urbanization, which changes urban LULC
and the spatial distribution of vegetation, exacerbates
the increase in LST (Purwanto et al. 2016) and even-
tually changes the SUHI effect. LST is strongly influ-
enced by urbanization characteristics (Song et al.
2017); consequently, the spatial characteristics of
urbanization reflect the distribution of the SUHI
effect. Therefore, to analyze the relationship between
LST and the development of a city, it is essential to
characterize the urbanization.

Figure 1. Location of the study area and elevation map of Beijing.
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Satellite data

Our study used the thermal image satellite data pro-
vided by the USGS EROS Center and selected from
Landsat-5 TM between 1990 and 2005 and Landsat-8
TRIS between 2014 and 2017 (see Table 1).

To avoid seasonal disturbances, the raster images
for only the warmer seasons were acquired from the
USGS website about once every 5 years. Only a small
amount of image data is available under the experi-
mental requirements that cloudless is essential in
long-term sequence images for the same season. The
longer the time of the image data spans, the more dif-
ficult it is to find available images for this research.
While images with intervals of 5 years were collected
as much as possible in the study, there were still some
absences of images in 2000 and 2010, and only 1
image from Landsat 5 was obtained in May 2005,
whereas the others were acquired in September.

Each image from Landsat-5 TM includes 7 bands,
in which the sixth (thermal) band reflects the ground
temperature with 120-m pixel resolution; resolution
for the other bands is 30-m pixels. Standard Landsat-8
image data have bands from 2 sensors: OLI and TRIS.
In the study, the selected band images with a reso-
lution of 100-m pixel from TRIS are generally used
for the retrieval of LST.

Method

Data preprocessing

Whereas the level 1 image data of Landsat has been
geometrically corrected when acquired from the USGS,
with a resolution of 30m pixel for each band, before
retrieving LSTs using satellite image data, it is essential
to preprocess the data, including geometric correction,
radiation calibration, and atmospheric correction. The
original DN brightness values of all images were con-
verted to atmospheric outer surface reflectance or
brightness values reflecting absolute radiance.

Finally, to estimate LSTs, our study required the
image data be converted into actual surface reflectance
from radiance or surface reflectance by atmos-
pheric correction.

LST estimation

The most commonly used algorithms to retrieve LSTs
from satellite data are of three types: radiative transfer
equation (RTE), single-channel algorithm, and split-
window algorithm. Taking into consideration the
comparison of the above three algorithms conducted
by Yu et al. (2014) and using Landsat-8 TRIS data, we
selected the RTE algorithm to derive the LSTs because
RTE has the highest accuracy compared with other
methods. However, accurate LSTs, derived from
Landsat-5 TM data, were achieved by the mono-win-
dow algorithm proposed by Qin et al. (2001, 2004).

It is worth noting that the radiative transfer equa-
tion algorithm was selected for Landsat 8, while the
mono-window algorithm was selected for Landsat 5 to
estimate LST, with the result that the inconsistent esti-
mation with reality appeared possible. Meanwhile, to
make the estimations using the 2 algorithms compar-
able, the relative LST was proposed to evaluate SUHI
intensity and reduce the differences between results
from 2 algorithms (see next section).

Radiative transfer equation
First, the influence of the atmosphere on the surface
thermal radiation must be estimated. Then, to obtain
the surface thermal radiation intensity, the estimated
atmospheric influence is subtracted from the total
amount of thermal radiation observed by the satellite
sensor. Finally, the thermal radiation intensity is con-
verted to the corresponding LST.

The thermal infrared radiation brightness value, Lk;
observed by the satellite sensor, consists of 3 parts: (1)
the upward radiance, L"; from the atmosphere, (2) the
real radiance from the ground to the satellite sensor
after absorption by the atmosphere, and (3) the radi-
ation reflected by the ground from the atmospheric
downward radiation, L#: The thermal infrared radi-
ation brightness, Lk; is expressed as follows:

Lk ¼ eB Tsð Þ þ 1�eð ÞL#
� �

sþ L" [1]

where e is the surface emissivity derived by the NDVI
threshold method proposed by Sobrino, and s is the
atmospheric transmission for the thermal infrared
band acquired from the NASA website as the same as
the other parameters, such as L" and L#: BðTsÞ is the
reference radiation brightness of the blackbody with a
temperature of T: Ts represents the real surface tem-
perature, where BðTsÞ is calculated by the following:

B Tsð Þ ¼ Lk� L" � s 1� eð ÞL#
� �

=se [2]

The next step is to calculate, using the Planck radi-
ation formula, Ts as the LST value expressed in the

Table 1. Landsat-5 TM and Landsat-8 TRIS thermal images.
Satellite data Time (GMT) Date Resolution (m)

Landsat-5 TM 02:13 18 September 1990 120� 120
Landsat-5 TM 01:55 16 September 1995
Landsat-5 TM 02:40 6 May 2005
Landsat-8 TRIS 02:53 4 September 2014 100� 100
Landsat-8 TRIS 02:53 28 September 2017
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following equation:

Ts ¼ K2

ln K1
B Tsð Þ þ 1

� � [3]

where K1 and K2 are calibration constants.

Mono-window algorithm
Based on the characteristics of surface thermal radi-
ation conduction for the TM6 band, Qin et al. (2001)
proposed a simple and feasible mono-window algo-
rithm for the inversion of LST only from TM6 data.
The mono-window algorithm requires the following 3
basic parameters: surface emissivity, atmospheric
transmission, and average atmospheric temperature.

Before calculating LST, the DN value of the images
recorded by the satellite sensor are converted to the
surface radiation value as follows:

L kð Þ ¼ Lmin kð Þ þ Lmax kð Þ � Lmin kð Þ
� �

Qdn=Qmax [4]

where LmaxðkÞ and LminðkÞ are the radiation extremums
that represent the maximum radiation intensity and
the minimum radiation intensity, respectively,
received by the sensor. LðkÞ is the real intensity of
radiation. Qmax is the maximum value of the pixel
gray value. Qdn is the sampled pixel gray value of the
image data. For Landsat-5 TM, the DN value is
recorded by an 8-bit binary number, which means
that Qmax ¼ 255:

In the next step, the pixel brightness temperature is
calculated by the Planck function:

T6 ¼ K2

ln K1
L kð Þ

þ 1
� � [5]

where K1 and K2 are the calibration constants, and T6

is the brightness temperature of the image data.
The brightness temperature retrieved from the

images is not the true surface temperature. Affecting
the brightness temperature are the atmospheric and
surface effects of thermal radiation, from which
atmospheric radiation and absorption must be elimi-
nated to calculate the true surface temperature.

Finally, Ts is calculated by the mono-window algo-
rithm consisting mainly of the following:

Ts ¼f67:3554ðC þ D� 1Þ þ ½0:4414ðC þ DÞ
þ 0:4586�T6 �DTag=C

[6]

where C ¼ es and D ¼ ð1� eÞ½1þ ð1� eÞs�: e is the
surface emissivity, which is calculated by the same
method. Ta is the average atmospheric, and s is the
atmospheric transmission. Both Ta and s are esti-
mated based on atmospheric water content (or

humidity) and the average temperature near the
ground (Qin et al. 2003).

Classification of LST intensity levels

Referring to similar denotations used by Kaufmann
et al. (2003), to better analyze the change in the SUHI
intensities in Beijing, we classified the estimated LSTs
into 5 levels according to the deviation showing the
different SUHI intensities. In our study, it was diffi-
cult to select remote sensing images less affected by
the seasons. To ensure that the LSTs acquired from
different years are comparable, we proposed graded
surface temperatures, which eliminate the effects of
some environmental factors, such as weather
and seasons.

The 5 levels, in which the temperature of the area
in each level changes within a certain range, are very
high, high, medium, low, and very low. Each level
occupies 20% of the total temperature domain, with
the first level having the highest 20% of the tempera-
tures and the other levels following suit. The relative
LST intensity levels were selected to solve the problem
for the effects on the difference between the estima-
tions from 2 algorithms and the different atmospheric
conditions in May and September.

After the estimation of LST, as for the same image,
the frequency histogram of the LST was calculated to
determine the change interval every time the LST val-
ues belonging to the highest outlier or the lowest out-
lier were removed. The change interval of LST for
each image was divided uniformly into 5 inter-cells,
and in the 5 cells of the LST interval, the first cell
with the maximum LST is defined as very high tem-
perature, and the others are high, medium, low and
very low temperature in order.

Classification of LULC types

According to the characteristics of LULC in Beijing,
and using the original Landsat data with the reso-
lution of 30m, we classified LULC, with the trad-
itional maximum likelihood classification method,
into the following 5 types: vegetation, building sites,
workshop buildings, water areas, and bare land. Based
on the sample and reference data, the best classifica-
tion result was selected. There is some difference
between building sites and workshop buildings; the
former refers to concrete buildings, such as roads,
high-rise buildings and other pavements, whereas the
latter refers to factory buildings, such as houses with
steel tiles, of which the roof materials are generally
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steel structures. Different LULCs respond to tempera-
ture differently. Apparently, vegetation and water
areas often have relatively lower surface temperatures
than the other types.

Here, a term was defined as ratio of the ecological
configuration which refers to the proportion of the
area with a certain type of LULC to the total area.
More reasonable proportions of vegetation and build-
ings cannot only alleviate city’s SUHI effect, but also
promote the green development of urbanization.

In addition, in this study, to find the best ratio for
the ecological configuration for medium-temperature
areas, over time we monitored changes in land cover
in areas with the same temperature levels. The change
characteristics of LULC types in the same temperature
level reflect the driving factors of the SUHI phenom-
enon. Different SUHI intensities have corresponding
driving factors and have been affected by the different
LULC types. Namely, when the LULC types of some
area have changed, the change trend of SUHI could
be forecast based on the driving factors and rea-
sons known.

Urban areas with much vegetation often have low
temperatures and weak SUHI intensities, thereby
restricting the development of the city, whereas urban
areas usually have strong SUHIs. LSTs in areas with
the same land type change slowly, indicating that the
ratio of different temperature levels changes as the
vegetation and urbanization densities change.
Increased building density and reduced vegetation
coverage result in higher surface temperatures, causing
more serious SUHIs.

Division of building and vegetation density

Building density is denoted as the ratio of buildings
per unit area. Areas of high building intensity may
have higher LSTs, causing intense SUHIs, whereas the
vegetation, represented by the average NDVI, usually
has a negative effect on LST. NDVI, indicating the
density of vegetation coverage, is expressed as follows:

NDVI ¼ NIR�R
NIRþ R

[7]

where NIR and R are the spectral reflectance of the
near infrared (NIR) band and the red (R) band,
respectively. When a region’s NDVI> 0:05; it is con-
sidered that the vegetation areas and areas of high
vegetation densities have higher NDVI values than
building or water areas.

Results and discussion

Classification of LST and change trends of
SUHI intensity

Figure 2 shows the spatial distribution of LSTs in
Beijing from 1990 to 2017. The SUHI intensity in
2005 was more severe than that of 2014 and 2017
because there were more areas with bare land in 2005,
resulting in high LSTs, where the spatial distribution
characteristics of bare land are similar to those of the
regions with high SUHI. Just as with building area,
bare land also has a positive impact on high SUHI.

The spatial distribution of the areas with high ele-
vations is similar to that of the areas with low LSTs.
As seen in Figures 1 and 2, there is an obvious trend
that some of the LSTs are negatively related to their
elevation, reflecting that areas with very low LSTs
mainly occur in mountains with high elevations.

Notably, a central urban area has a higher LST. As
the areas with high LSTs expand, there is a greater
temperature gap between urban and rural districts,
where a threshold of building density was selected to
divide the city into central urban areas and rural dis-
tricts according to the sample statistics. Over the past
27 years, the percentage of areas with high LSTs
increased from 7.95% to 17.35%. Especially, the build-
ing areas of Beijing experienced a greater increase in
growth of 20.27%.

The image acquired in 2005 from Landsat-5 was
selected to estimate LST for comparing the differences
between the results from 2 algorithms. For Beijing
city, the LST differences ranged from 0 to 3 �C, and
the average difference value reached 1.16 �C
(Figure 3). The spatial distribution characteristics of
LST differences are closely related to the LULC types.
The LST difference in the building area is mainly
above 3 �C, while that in vegetation is maintained at
1 �C–2 �C. The LST estimations of the 2 algorithms
are not much different, and the differences under dif-
ferent LULCs are consistent, which indicates that the
relative LST may solve this problem that the different
algorithms cause LST estimation differences.

LST differences between LULCs

To illustrate the effect of different types of LULC on
SUHI, we analyzed the spatial temperature distribu-
tion of buildings and vegetation for 1995, 2005, and
2017 (see Figure 4). An analysis over a 3-year period
indicated rapid urbanization and overall rising urban
temperatures.
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Figure 4 reveals that the areas with high LSTs, dis-
tributed in the urban areas of Beijing city, have
expanded, primarily to the southeastern plain area
with low altitude. The area of buildings in Beijing has
expanded rapidly with the increase in the high tem-
perature ratio, while the area of vegetation has
changed little and in 2017 had a lower temperature
ratio than it did in 1995. Obviously, the spatial distri-
bution characteristics of SUHI are similar for 1995,
2005, and 2017. From 1995 to 2017, building areas
increased with rapid urbanization, where the area of

high SUHI increased, but the proportion was reduced.
However, vegetation areas did not change significantly
in these 3 years, with a decrease in the trend of the
area with low SUHI.

According to our statistics for the temperature dis-
tribution of different LULCs, there was an increasing
trend in the high temperature ratio of buildings.
Figure 5 shows the changes in the ratios of high,
medium, and low temperatures among 4 land use
types. The expansion of buildings and bare land is the
main reason for high LSTs and UHIs. Therefore,

Figure 2. Change of building and the spatial distribution of LST in Beijing from 1990 to 2017.
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buildings and bare land always maintain a high or
medium temperature, but only a small proportion of
low temperatures.

On the contrary, vegetation and water areas have a
low high-temperature ratio. In 1990, Beijing was
4.51% buildings, of which 61.41% were of high tem-
perature with strong SUHI intensity. However, in
2017, only 22.40% of the buildings had 52.43% of the
high-temperature areas. For vegetation, mainly distrib-
uted over the north-west of Beijing, the ratio of low-
temperature areas increased from 30.27% to 64.40%.
Notably, a mere 1.33% of water areas are areas of
high temperature; the remainder are of medium and
low temperatures.

LULC differences between LST intensity levels

To explore the potential relationship between LULC
types and LST, an analysis based on the distribution
of land use types in areas with identical LST levels
was also conducted. Figure 6 shows the distribution in
1995 and 2017 of LULC types in areas with high,
medium, and low temperature. Between 1995 and
2017 in Beijing city, there was not much difference in
the distribution characteristics of the high-temperature
areas. In the same year of 1995 or 2017, high SUHI
was driven by building area, whereas vegetation and
water area have been leading low SUHI, reflecting the
driving factors of the SUHI phenomenon with differ-
ent levels. In the area with the same SUHI level, the
area with high, medium, and low LST have changed
slightly from 1995 to 2017.

However, with the development and expansion of
the city from 1995 to 2017, building sites became the
primary type of land use for the area, with their ratio
increasing from 27.41% to 67.91%, replacing much of
the vegetation, whose ratio dropped by 14.93%. The

area of medium temperature, where vegetation occu-
pied 75.38% of the proportion of 2017, increased sig-
nificantly. Similarly, between 1995 and 2017, there
was little change in the low-temperature areas, indi-
cating that vegetation plays a prominent role in those
areas. Sometimes, urban vegetation has a positive
inhibitory effect on the UHI.

The type of land use that contributes most to a
LST level is readily seen from the changes in the
ratios of buildings, bare land, vegetation, and water
areas at different LST levels shown in Figure 7. In the
very high or high temperature areas, from 1990 to
2017, there was a large proportion of buildings and
bare land and a slowly increasing trend in the ratio of
buildings. Conversely, no matter what the year, vege-
tation is the main type of land use in the medium,
low, and very low temperature areas.

Relationship between LST and building and
vegetation density

For Beijing city, building density and the ratio of
building (1995, 2005, and 2017) were calculated from
the training data selected from our land use classifica-
tion results. Likewise, the spatial average LSTs were
counted in the same areas as the training data.
Regression analysis, with a high R-square correlation
coefficient from 1995 to 2017 (see Figure 7a, 7c, and
7e) reveals that there is a positive linear relationship
between building density and LST. The R-square coef-
ficient increased significantly from 0.4910 in 1995 to
0.7406 in 2017, indicating that building density and
LST are more closely related. Furthermore, the slope
of their regression curves also increased significantly
from 0.1635 to 0.3329, suggesting that building dens-
ity has a stronger impact on LST and SUHI than
rapid urbanization.

Figure 3. The LST differences between 2 algorithms (the LST estimation from the radiative transfer equation minus that from the
mono-window algorithm) and the LULC types for 2005.
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Notably, on the condition there is a small ratio of
buildings in an area, building has little effect on LST.
As the city develops, with increasing building density,
high-density buildings significantly affect LST, espe-
cially in downtown areas.

However, there is a minor phenomenon where the
degree of influence of the building density on tem-
perature ceases to increase when the ratio of buildings
reaches a certain value, estimated at roughly 25% (see
Figure 8). This indicates that there are other factors
that affect the changes in surface temperature. The

vegetation density of Beijing is characterized by the
average NDVI derived from Landsat data by band cal-
culation. A linear regression analysis, conducted
between NDVI and LST (see Figure 7b, 7d, and 7f)
revealed a negative correlation, indicating vegetation
has a relieving effect on SUHI. The regression has a
higher R-square coefficient of 0.7991 and 0.6459 for
2005 and 2017, respectively.

Likewise, the same as for building density, there is
also an important phenomenon: from 1995 to 2017,
the regression for NDVI has a steeper slope. The

Figure 4. Spatial distribution of LST between building and vegetation for 1995, 2005, and 2017.
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slowly increasing regular pattern shows that vegetation
for the city played a more significant role in reducing
the urban thermal effect. The high degree of vegeta-
tion, reflected by the mean NDVI values within a unit
area, has a greater effect in reducing UHI, whereas
there is only minimal impact on LST where the area
has lower vegetation density or NDVI values ranging
from 0 to 0.1.

As seen in Figures 4 and 6, the changes of SUHI
intensity and spatial distribution are mainly caused by
the change of LULC types, and the SUHI phenom-
enon with different levels is driven by different fac-
tors. The high SUHI is driven by building area, bare
land, and workshop building, whereas the low SUHI
is driven by vegetation and water area. In the area
with high temperature, the proportion of building
area has increased while there is little change on the
LULC types for the area with medium or low tem-
perature. From 1990 to 2017, the amount of increased
building areas leads to high SUHI and the stable
amount of vegetation or water areas played a role in
reducing and mitigating the SUHI.

In the past few decades, Beijing has experienced
rapid urbanization and growth of the urban popula-
tion, causing an increase in building areas but a
decrease in vegetation. With the development of the
economy, a large number of factories, buildings, and
roads were built, leading to the high SUHI.
Meanwhile, the greenhouse effect, resulting from
human activities with the emission of greenhouse
gases, must be paid attention to. Many measures can
be taken to alleviate the growing SUHI effect and the
greenhouse effect. A good choice is to consider adjust-
ing the urban ecological structure, such as adding wet-
lands and green parks, and saving energy and
reducing emissions.

Temperature profile curves of the regions
of interest

Simply compared with the LSTs in the same area at
different times, the changing characteristics and trends
are obvious, but it is difficult to explore the interrela-
tionships among adjacent areas. Temperature profiles

Figure 5. Changes in the ratio of high, medium, and low temperature in different land use for building (a), vegetation (b), bare
land (c), and water area (d) from 1990 to 2017.
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on the interested path at different times not only
include the changing of LSTs, but also reflect the rela-
tionship and different change mode between the near
areas with the same LST. Spatially, from urban to sub-
urban and rural areas of a megacity, the changes in
LSTs indicate the characteristics of development.
Figure 9 shows temperature profile curves for one
path selected across Beijing from Miyun to Fangshan
for 1995 and 2017. In the north-east area of Beijing,

LST is significantly lower than in the other regions.
The LSTs of some areas, such as Fangshan, increased
significantly from 1995 to 2017, creating more serious
SUHIs as reflected in Figure 9.

After the water area, from Miyun to Shunyi, the
temperature rose sharply, implying a larger transition
to the rural area and marking of the boundary of the
urban area. Water areas have a lower temperature
than the surrounding areas, thereby weakening the

Figure 6. Changes in the distribution of LULC type in the area with high, medium, and low temperature in 1995 and 2017.
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urban heat island effect in the same way as vegeta-
tion does.

The evaluation of the quality of the results

The cloudless Landsat-5 and Landsat-8 images,
acquired at about AM 10 o’clock Beijing time, were

selected to estimate the LSTs. The acquisition season
and time of image reflects the height of the sun,
which can also affect LST. However, using the relative
LST, here the acquisition time of all images is close
(see Table 1) and the difference is negligible. In terms
of data quality, the images from 2 satellites are differ-
ent. TM6 from Landsat-5 and TRIS10 from Landsat-8

Figure 7. Changes in the ratio of building, bare land, vegetation and water areas in different LST levels for very high (a), high (b),
medium (c), low (d), and very low (e) from 1990 to 2017.
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are mainly used for the retrieval of LST. However,
they are also different in resolution and spectral range;
the former has a resolution of 120-m pixel with the
spectral range from 10.40 lm to 12.50lm. The latter
has a resolution of 100-m pixel with the spectral range
from 10.60 lm to 11.19lm, whereas the level 1 image
data of Landsat acquired from the USGS was selected
in the study, with a resolution of 30-m pixel for each
band. The same processing method, cubic convolution
resampling, does not affect the results of LST.

The 2 LST retrieval methods were selected for dif-
ferent satellite images, with different results for the
LST estimations. Meanwhile, the relative LST was
adopted to evaluate SUHI intensity and reduce the
differences between results from two algorithms. As
mentioned in Section 4.1, the differences between
results from 2 algorithms, under different LULC, are
consistent, which indicates that the similar regression
analysis results between LST and NDVI are acquired
by 2 methods.

Figure 8. Regression analysis curve between building density (a, c and e) or NDVI (b, d and f) and LST for 1995, 2005, and 2017.
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The maximum likelihood classification method has
been used for the extraction of LULC types. Based on
the sample and reference data, the best classification
result of each image was selected. Generally, building
and vegetation density of images were calculated with
high accuracy. In the regression analysis between LST
and building or vegetation density, many training
sample points were selected to reduce errors due to
classification accuracy.

Conclusion

The LSTs of Beijing were derived from Landsat data.
The selected LST data were used to estimate the
intensities of SUHI and analyze their spatial distribu-
tion and evolution from 1990 to 2017. The LSTs of
Beijing are classified into 5 levels, which represent dif-
ferent SUHI intensities. The general trend of changes
in LSTs and SUHIs were analyzed and the relation-
ship between LULC and LST were discussed by study-
ing the distribution of LST in the area with the same
land use type and characterizing the changing trend
of land use type in the area with the same LST.

Building sites, workshop buildings, and bare land
were found to be the main reasons for the urban heat
island effect, in which building, as inferred by the lin-
ear regression analysis between building density and
LST, has an increasing trend toward UHI.

For every 1% increase in building density, the
increase in the temperature amplitude in 2017 was
twice as large as it was in 1995. In terms of NDVI val-
ues, the decrease in amplitude of LST in 2017 was 10
times that of the year where there is only a slight
increase in the NDVI values of the area. Furthermore,
compared to other LULC types, both vegetation and

water areas reduce the effect of UHI. Finally, the tem-
perature profile curves for 1995 and 2017 were used
to reveal the spatial distribution characteristics of the
LSTs and analyze the trend of LST as the result of
changing LULC based on the interested regions
selected by this study.
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