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Landslide Detection of Hyperspectral Remote
Sensing Data Based on Deep Learning

With Constrains
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Abstract—Detecting and monitoring landslides are hot topics in
remote sensing community, particularly with the development of
remote sensing technologies and the significant progress of com-
puter vision. To the best of our knowledge, no study focused on deep
learning-based methods for landslide detection on hyperspectral
images. We proposes a deep learning framework with constraints to
detect landslides on hyperspectral image. The framework consists
of two steps. First, a deep belief network is employed to extract
the spectral–spatial features of a landslide. Second, we insert the
high-level features and constraints into a logistic regression classi-
fier for verifying the landslide. Experimental results demonstrated
that the framework can achieve higher overall accuracy when
compared to traditional hyperspectral image classification meth-
ods. The precision of the landslide detection on the whole image,
obtained by the proposed method, can reach 97.91%, whereas the
precision of the linear support vector machine, spectral information
divergence, and spectral angle match are 94.36%, 84.50%, and
86.44%, respectively. Also, this article reveals that the high-level
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feature extraction system has a significant potential for landslide
detection, especially in multi-source remote sensing.

Index Terms—Deep belief network (DBN), deep learning, feature
extraction, hyperspectral data, landslide.

I. INTRODUCTION

B ECAUSE of casualties and loss of goods, landslides se-
riously affect the social and economic order [1]–[4]. In

China, 7403 landslides occurred in 2016 (an ever-increasing
number) with 405 people killed or missing and 209 injured
[5]. With complex geological conditions and human activi-
ties (including deforestation, mining of minerals, and intensive
exploitation of land for construction), landslides were easily
induced by extreme natural events in large-scale area. Quickly
and accurately extracting landslide information can increase
the efficiency of disaster mitigation, especially in response to
emergency situations [3], [6]–[9]. Nevertheless, because of the
risks in a field survey and the vastness of a disaster area,
it is impossible to extract landslide information by means of
a man-made investigation requiring a large number of hu-
man and financial resources [10]–[13]. Therefore, remote sens-
ing, with its characteristics of macro-scale, rapidity, and non-
contact detection, is widely used to landslide mapping [14]–[16].
Over the last three decades, landslide detection and mapping
by remote sensing have been categorized into three general
classes.

1) Analysis of the image features of a landslide with optical
image data (including space-borne and air-borne remote
sensing data), to recognize the extent and location of the
landslide by visual interpretation or by automatic extrac-
tion method [17]–[21].

2) Detection of surface deformation and deposition resulted
from landslides using radar data (such as synthetic aper-
ture radar (SAR), InSAR, LiDAR, DInSAR) [22]–[26].

3) Mapping of landslides combining radar and optical image
data [27]–[30]. Significant progress has been made in radar
remote sensing [31]–[34].

On the other hand, because of the less bands leading to short-
age of image features in optical remote sensing, automatic inter-
pretation of landslides fails to provide high detection accuracy
[35], [36]. To promote the accurate mapping of landslides, we
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applied hyperspectral remote sensing to detect a weak spectral
change after a landslide.

By combining imaging and spectroscopy technology, hyper-
spectral remote sensing provides spatially and spectrally contin-
uous data for earth objects [37]. Therefore, hyperspectral imag-
ing is widely applied in many fields such as precision agriculture,
mineralogy, environmental science, and forestry [38]–[41]. A
fundamental aspect of research in these applications is the clas-
sification of objects in an image. Many conventional supervised
machine learning methods (such as k-nearest neighbors, spec-
tral angle mapper, target detection, spectral un-mixing, neural
networks and multiple kernel learning) have been introduced to
improve accuracy of classification [42]–[49]. However, Hughes
phenomenon effect, caused by the high-dimensional datasets
and the limited training samples, restrict the classification of
hyperspectral data [50]. Support vector machine (SVM) which
can solve the problem of classifying high-dimensional data was
introduced to improve hyperspectral image classification [51].
In addition, derived algorithms based on SVM, which consider
spatial information, composite kernels, or active learning, out-
perform it [52], [53]. Therefore, SVM has been a long-time
state-of-the-art method. As the other traditional machine learn-
ing algorithms, SVM is a single-layer classifier, which interprets
hyperspectral image data by extracting the targets shallow fea-
tures, but ignores the invariant deep features of the data [54].

Previous study focused in the detection of landslide in mul-
tispectral images using machine learning and deep learning
methods [55].

To the best of our knowledge, no study focused thus far on
deep learning-based methods for landslide detection on hyper-
spectral images. In this study, with hyperspectral remote sensing
data, a deep learning framework with constraints (DLWC) is
used to detect a landslide. Possessing the ability to extract the
deep features of complex data, a deep belief network (DBN)
obtains the spectral–spatial features of the data, which play an
important role in landslide detection. [57]. Then, by logistic
regression (LR), the extracted image features and imposed con-
straints [including the digital elevation model (DEM), fault zone,
earthquake, soil, river, road, rainfall, and vegetation coverage]
are combined input to improve the detection result.

II. DEEP LEARNING, RBM, DBN, AND LANDSLIDE

DETECTION FRAMEWORKS

A. Advantages of Deep Learning

A key procedure in the early stage of image classification is
feature extraction (FE), whose performance greatly affects clas-
sification precision [57]. Consequently, to improve the efficiency
of classification, an immense amount of effort has been made
to extract features from an image. However, the conventional
option is to design model architecture exclusively based on
engineering skills and domain expertise, which could be easily
affected by artificial factors [58]. And the features extracted by
the “shallow” machine learning method, which has only one
nonlinear feature transformation, are hard to apply to reveal the
intricate structures of large datasets [59].

Fig. 1. Illustration of RBM. h, θ, v represent hidden units, parameter, and
visible units, respectively.

As a subfield of machine learning, deep learning with more
than two mapping layers has gained wide attention, because
it can hierarchically extract features from an original dataset.
By learning high-level semantic features from low-level visual
features layer by layer, the deep learning architecture yields more
abstract and useful representations which have fewer relation-
ships with domain expertise [60]. In processing of images clas-
sification, the higher layers of feature representation expand the
differences between categories, thereby improving classification
accuracy [61].

Basic deep learning models include DBN, stacked auto-
encoder (SAE), and deep convolutional neural networks (CNNs)
[62]–[68]. Many derivative models have been proposed to im-
prove the performance in various applications. For example,
de-noising auto-encoder and contractive auto-encoder can learn
robust and useful representations for a dataset [69], which
improve the SAE by adding some restrictions. On the other
hand, many modified CNNs are applied to image recognition.
Among these modified architectures, AlexNet is regarded as the
beginning of the deep convolution network, which famously
won the ILSVRC-2012 competition [70], [71]. Then, many
research teams also structure deep convolution network models
that mainly include Network in Network, GoogLeNet, ResNet
[72], [73]. Although the CNN nets previously mentioned have
excellent performance in image recognition, they require mas-
sive training data to trigger their powers.

DBN overcomes overfitting resulted from small-sized sam-
ples, especially in the classification of hyperspectral remote
sensing [74]. In this study, a framework based on DBN is applied
to detect landslides caused by the earthquake.

B. Restricted Boltzmann Machine (RBM)

The restricted Boltzmann machine (RBM) is a basic compo-
sition of DBN, adapted from the Boltzmann machine. As shown
in Fig. 1, the standard type of RBM has two units, hidden and
visible (h, v). With a sufficient number of hidden units, any kinds
of discrete distributions can be simulated.

Thus, RBM is used heavily to extract data features. A joint
configuration of the units has an energy given by the following
equation:

E (v, h; θ) = −
n∑

i=1

ai.vi −
m∑

j=1

bj .hj −
n∑

i=1

m∑

j=1

wij .vi.hj (1)

where θ = {ai, bj , wij} is a model parameter; vi = {1 or 2} and
hj = {1 or 2} represent the states of visible unit, i, and hidden
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unit, j respectively; ai, bj are the biases for visible and hidden
units; wij is the weight between visible units i, and hidden units
j.

The probability of a configuration over both visible and hidden
units is given by the following equation:

p (v, h; θ) =
1

Z (θ)
exp (−E (v, h;ϑ))

Z (θ) =
∑

v

∑

h

E (v, h; θ) (2)

where Z(θ) is the “partition function” that sums all the possible
pairs of visible and hidden vectors. When visible and hidden
units have low energy, their probability of distribution is high.
The probability of a training vector can be enhanced by adjusting
θ to a lower energy of the units.

We pay more attention to distribution of the observed data (v)
in a practical issue. So the aim of learning process is to raise the
probability of the training data (v), which is given as follows:

P (v|θ) = 1

Z (θ)

∑

h

e−E(v,h|θ). (3)

To obtain the optimalwij of θ, the log probability of a training
vector is derived as follows:

∂logp (v)

∂wij
= 〈vihj〉data − 〈vih〉jmodel

(4)

where “data” and “model” denote the distribution of P (h|vt; θ)
and P (h, v|θ), respectively; 〈.〉p denotes the expectations under
the distribution of p; wij is updated by the following equation:

Δwij = ε
(〈vi.hj〉data − 〈vi.hj〉model

)
(5)

where ε is the learning rate.
〈vi.hj〉data is easily determined, while there are no direct

connections between hidden units in an RBM. The conditional
distributions of hidden unit (h) and input vector (v) are given
by logistic functions, as follows:

p (hj = 1|v) = σ

(
bj +

∑

i

viwij

)

p (vj = 1|h) = σ

(
aj +

∑

i

hiwij

)

g (x) =
1

1 + exp (−x)
. (6)

However, it is much more difficult to determine 〈vi.hj〉model.
In this study, a contrastive divergence (CD) method is used. The
change in weight is finally given by the following equation:

Δwij = ε
(〈vi.hj〉data − 〈vi.hj〉reconstruction

)
(7)

where the reconstruction uses only the information in hidden
units that is learned as features from the input. If the input data
is recovered perfectly, the weights and biases are deemed as
good measures of the input data.

C. Deep Belief Network (DBN)

Although some shallow features can be extracted from hy-
perspectral images (HIS) by a single hidden layer RBM, it is
insufficient for the user to obtain high accuracy when those fea-
tures are applied to classification. Accordingly, DBN is proposed
and it is usually applied to speech and pattern recognition. After
training the RBM, the output value regarded as a feature of the
HIS is used as the input data for the second RBM. In this way,
the RBM composes the DBN layer by layer. On the other hand,
the final output of the DBN contains all the shallow features that
the RBM extracts from the HIS. That is to say, the deep features
are extracted gradually.

However, the deep feature extraction from the DBN is not the
final step. When it comes to target detection or classification,
using the differences of learned features between targets is the
ultimate goal. Therefore, an LR layer regarded as a classifier is
added to the end of a typical DBN. With the features extracted
by the DBN and labeled data, the LR layer fine-tunes all the
pretrained parameters with a back-propagation algorithm. In
the fine-tune step, a likelihood function is used to construct a
cost function, thereby calculating a membership value of the
unlabeled data.

D. Landslide Feature and Detection Frameworks
Based on DBN

A landslide, as showed on the remote sensing images, is
generally divided into three areas: source area, transition area,
and deposition area [75]. Fragments peeled off the source area
are distributed across the transition and deposition areas from
coarse to fine. As a result, a gradual texture structure in the
remote sensing image is formed. Fig. 2 depicts two landslides
in high-resolution images. After short air drying and sedimenta-
tion, the humidity and looseness of the fragments affect spectral
reflectance which is an important characteristic for distinguish-
ing landslides, bare soil, bench-land and other land cover, etc.
Furthermore, as for the shape of a plane in a remote sensing
image, a landslide is shaped like a tongue, an ellipse, or a
horseshoe. Taken together, the abovementioned characteristics
based on remote sensing information constitute the foundational
condition for landslide monitoring.

Conventional machine-learning techniques for hyperspectral
data classification are limited by the feature extractor, which
requires abundant domain expertise to design, such as SVM,
artificial neural network, and K-means. Although these shallow
approaches require less time to be trained and have excellent
performance in large-scale classification, they are ineffective for
small and dim target detection owing to their lack of multi-scale
representations [47], [49]. To take advantage of the high-level
and intricate structure of landslides in a hyperspectral image, we
propose a deep architecture for landslide detection. As far as we
know, this is the first application of deep learning to landslide
detection with hyperspectral images.

Deep architecture consists of DBN and LR. DBN with some
prior knowledge is used to transform raw data into high-level
representation. LR, using features learned from the raw data and
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Fig. 2. Landslides on image. (a)–(e) huge landslide in Maoxian. (h) Madaling landslide in Guizhou province. (g) Source area of Madaling landslide.

fine-tuning of the whole architecture, is responsible for classi-
fying the unlabeled pixels. To represent complicated features
of a landslide, our framework considers spectral and spatial
information that are widely used for classification with the
development of remote sensing technology.

As shown in Fig. 3, the first step is to transform the raw
data into the input format of DBN. A hyperspectral sensor
detects the reflection or radiation intensity of hundreds spectral
bands in different wavelengths from the target, which consists
of a three-dimensional data cube, including spectral and spatial
dimensions. Therefore, the pixel value obtained from the same
spatial position in a cube constitutes a one-dimensional (1 × N)
vector as the input data of the first layer that denotes the initial
spectral features. In terms of spatial information, a neighboring
region of the pixel is extracted as a sub-data cube (H × H × N)
of the image and stretched into a one-dimensional vector with
(1 × H × H × N) elements. However, what requires explaining
is that principal component analysis (PCA) is always applied
to reduce the data dimension before the transformation of the
sub-data cube [76]. First, PCA reduces the high-dimensional raw
data into several principal components without loss of spatial
information. Thus, PCA prevents subsequent processes from
training numerous parameters of the FE system (DBN) and
over-fitting

Second, after being normalized, the visible units of the first
layer are replaced by the real-valued vector, which is added
Gaussian noise [77]. Then, following the CD method proposed

by Hinton, the DBN starts training the parameters of every layer
in an unsupervised manner. After this process, the output data
of the top layer are regarded as a high-level feature vector that is
inserted into a classifier to discriminate among different objects.

Finally, our framework, with features extracted by the DBN,
employs LR to detect landslides. In addition, the LR layer
attached to the top layer of the DBN is responsible for another
function: fine-tuning the whole framework with labeled pixels.

To improve the accuracy of landslide detection, the framework
adds some constraints to the LR layer, which include soil erodi-
bility, fault, river, road, rainfall erosivity, vegetation coverage,
DEM, and slope. To keep the structure consistent, the LR method
is also used to analyze the relationship between constrains and
landslides. It should be noted that the regression coefficients of
constraints would be trained by historical landslides before being
input to the top layer of framework. Thus, those constrains could
induce a probability of the landslide. Ultimately, a landslide
would be identified when the probabilities decided by the image
features and predisposing factors reach thresholds respectively.

III. STUDY AREA AND EXPERIMENTAL DATA

A. Study Area

For the study area in our experiments, we selected a part of
Yinxing country, Wenchuan County, Central Sichuan, China,
located between longitudes 103.378–103.557oE, and latitudes
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Fig. 3. Landslide detection using the DLWC framework.

Fig. 4. Map of study area with general regional location.

30.983–31.293oN (see Fig. 4). This area is a typical steep moun-
tain region with elevations from 861 to 3676 m and an area of
∼274 km2 [78]. Also, the Longmenshan (LMS) fault belt crosses
the study area with a strike direction at about N40° E, which is
located at the eastern margin of the Tibetan Plateau [79]. Based
on GPS measurements, it has been proved that the central Tibetan
Plateau is moving eastward into the eastern plateau at a rate
of 15–20 mm/yr, because of the continental collision between
India and Eurasia in the Cenozoic Era. The extrusion of crustal

material from the Tibetan Plateau against the rigid blocks of
the Sichuan Basin induces deformation at about 1 mm/yr and
accumulates stress in the Longmenshan regions. Consequently,
the study area is one of the most tectonically active regions on
Earth and seriously threatened by secondary geological disasters
triggered by earthquakes.

On May 12, 2008, a catastrophic earthquake with Ms 8.0
struck the LMS region [80]–[82]. The earthquake was triggered
by a sudden massive crust displacement along the Yingxiu–
Beichuan Fault which is one of the three most active fault zones
in LMS, including Wenchaun–Maowen and Pengguan faults. As
of January 5, 2009, more than 15 000 geo-hazards were detected
by using high-resolution color aerial photographs, satellites,
and field investigation [83]–[86]. Among these geohazards,
landslides are clustered along two rupture zones. One extending
about 250 km along the Yingxiu-Beichuan fault, the other for
about 72 km along the Pengguan fault.

B. Experimental Data

A Hyperion sensor carried on an Earth Observing-1 (EO-1)
satellite collected images in 242 contiguous bands sampled at
approximately 10 nm intervals in a 356–2577 nm range. The
spatial resolution is 30 m. Until now, this set of hyperspectral
remote sensing data has been one of the most widely used. The
data set used in this article was acquired on July 7, 2008, after
the Wenchuan Earthquake (see Fig. 5). For our experiments, to
avoid zero-value and low signal-to-noise ratio bands, we selected
180 bands as available data in the 436–2405 nm spectral region,
from which 4641 pixels were labeled as samples based on field
investigation and high-resolution images and, then, divided into
training and testing sets in a ratio of 2:8. Detailed information
is depicted in Table I.
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Fig. 5. Hyperion data of study area.

TABLE I
LAND-COVER CLASSES AND NUMBERS OF LABELED PIXELS IN HYPERION

Landslides are affected by predisposing factors that are com-
monly divided into natural and human factors. Therefore, be-
sides the Hyperion data, a total of nine landslide predisposing
factors for Sichuan province were used as constraints for the
detection accuracy of landslides [87]–[90]. These data were
extracted from different spatial databases (see Table II).

IV. EXPERIMENTS AND ANALYSES

A. Predisposing Data and Regression Parameters of LR

In this study, raw data of predisposing factors consist of vector
and raster data with different ranges. We converted discrete
points, lines, and polygons to a computable raster, based on
correlation with landslides before being used as constraints
of the classifier. Meanwhile, we collected historical landslide
data to analyze predisposing factors contributing to landslide
occurrence (see Fig. 6).

TABLE II
LIST OF DATA SOURCES USED AS CONSTRAINS IN THE STUDY

Fig. 6. Landslide Inventory Map of Sichuan Province.

Because it is easily destroyed by heavy rainfall and earth-
quakes, soil is the main source of landslides. Soil erodibility is
calculated as follows [91]:

KEPIC = (−0.01383 + 0.51575×K0)× 0.1317

K0 = {0.2 + 0.3× exp [−0.0256×ms (1−msilt/100)]}
× [msilt/ (mc +msilt)]

0.3

×{1−0.25×orgC/[orgC+exp (3.72−2.95orgC)]}

×

⎧
⎪⎨

⎪⎩
1− 0.7 (1−ms/100) /

⎧
⎪⎨

⎪⎩

(1−ms/100)+

exp[−5.51 + 22.9

(1−ms/100)]

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭

(8)

where KEPIC is the soil erodibility; K0 is the uncorrected soil
erodibility;ms,msilt,mc, and orgC are the percentages of sand,
silt, clay, and organic matter in soil, respectively.



YE et al.: LANDSLIDE DETECTION OF HYPERSPECTRAL REMOTE SENSING DATA BASED ON DEEP LEARNING WITH CONSTRAINS 5053

Fig. 7. Induced-factors data processing flowchart based on fault zone.

A fault zone, where crustal movement is very active, affects
the stability of the geological environment. To acquire the range
and intensity of the fault zone for an unstable geological body
and to confirm the main impact zone of every fault in the study
area, equidistant points on the fault zone were used to build a
Thiessen polygon. Then, based on fault length and difference
of direction between slop and fault, the results of the Kriging
interpolation were multiplied. Ultimately, we use the result to
reflect the impact of faults. Details of this step are illustrated in
Fig. 7.

As one of the main predisposing factors for landslides, the in-
fluence of the earthquake is evaluated from the results of density
analysis and interpolations based on historical earthquake data.

Geological structures adjacent to rivers or roads are easily
destroyed. Besides, along with rivers and roads, landslides and
other geological disasters are easily triggered when the slopes
of rivers and roads two sides are too sharp. Therefore, Kriging
interpolation is used to generate a river factor based on river
width. Same as the river, the road factor is based on road level.

In term of rain factor, the intensity of erosion caused by rain
on a surface is represented by rainfall erosivity and is calculated
as follows [92], [93]:

R =
12∑

i=1

{
1.735× 10

(
1.5× lg(P 2

i /P
)− 0.818

}
(9)

wherePi stands for monthly average rainfall;P stands for yearly
average rainfall; the unit of rainfall erosivity is the metric unit
(MJ.mm/(hm2.ha)).

Vegetation has an anchoring effect to unstable geological
bodies. In this study, we represented vegetation coverage by

an empirical equation with a vegetation factor as follows [94]:

NDVI = (NIR− RED) / (NIR + RED)

C = [(1−NDVI) /2]1+NDVI (10)

where C stands for vegetation coverage; NDVI stands for nor-
malized vegetation index; RED and NIR stand for the spectral
reflectance measurements acquired in the red (visible) and near-
infrared regions respectively.

Predisposing factors for landslides are shown in Fig. 8. To
guarantee that data from a diverse database can be used to overlap
the analysis, we converted all data into a raster format with a
resolution of 30 m and transformed in the WGS-84 coordinate
system.

In this article, the LR approach is used to analyze the relation-
ship between landslide-occurrence and the predisposing factors.
In this step, 3683 large-scale landslides, collected by the Land
and Resources Department of Sichuan Province, were used as
positive examples. To maintain an equal proportion between
landslides and non-landslides, the same number (3683) of points
were randomly selected from the non-landslide area as negative
examples. Then, the feature data of the examples, obtained
from the predisposing factors in the grid format, were put into
LR to calculate regression coefficients. The parameters of the
optimization problem are estimated by the maximum-likelihood
estimation and the gradient descent method. The results (see
Table III) show that all the predisposing factors have a P-value
less than 0.1, indicating a statistical correlation between factors
and the susceptibility of landslides at the 90% confidence level.
And, those coefficients demonstrate that landslides in Sichuan
province are more sensitive to the river and slope factors, less
sensitive to the vegetation factor. On the other hand, the standard
error of vegetation also indicates that the vegetation indexes
extracted from the landslides area are spread out in a distribution.
In the model proposed in this paper, the product of predisposing
factors and regression coefficients, which serve as constraints,
is input to the last layer-LR classifier to improve the accuracy
of landslide detection.

B. Detection Frameworks: Characteristic and Analysis

After proposing a deep learning framework with constrains
which are conducted from predisposing factors of landslides, we
repeat the training process to analyze the landslides detection
efficiency with different framework setting. In this article, five
factors including the number of hidden units, the depth of layers,
the number of principle components and the size of input cubes,
are considered. For finding the optimal setting, we used the grid
search method with 500 and 200 epochs for pretraining and
fine-tunes, respectively. In the end, we applied the framework
with the best performance in classification to validate its effect
in landslides detection.

1) Number of Hidden Units in RBM: Although the RBM
can extract the spectral feature, which is the key factor for
classification. There is unavoidable information loss between
original data and output data of RBM. As a basic composition
of DBN, RBM further decides the representation ability of the
whole framework. Therefore, determining the optimal number
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Fig. 8. Landslide-predisposing factors. (a) Soil erodibility. (b) Earthquake factor. (c) Fault zone factor. (d) River density. (e) Road density. (f) Slope angle.
(g) Rainfall erosion intensity. (h) Vegetation coverage factor. (i) DEM.

TABLE III
COEFFICIENTS AND STATISTICS OF THE PREDISPOSING FACTORS USED IN THE

LOGISTIC REGRESSION EQUATION

of hidden units in RBM will not only control the information
loss, but also improve the accuracy of landslide detection. First,
with the same conditions, the RBM is set with different numbers
of hidden units ranged from 2 to 200 at 2 interval, and trained

with training dataset. Next, based on the parameters, the square
error between four original spectral curves [see Fig. 9(a)] and
its reconstruction is calculated.

In Fig. 9(b), the total square error between original spectral
curves and reconstruction become smaller with increase of the
number of hidden units. On the other hand, the overall accu-
racy (OA) of classification increases then decreases. Although,
in Fig. 9(c), the spectral curves reconstructed by RBM with
40 hidden units can represent the approximate shape of original
curves, there exist relatively large square errors on some bands
whose reflectance value have significant changes from adjacent
bands, as shown in Fig. 9(d). Therefore, considering the square
errors and OA, we selected 40 as the optimal number of hidden
units for the remote sensing dataset used in this article.

2) Depths of DBN: Depth which has a great influence on the
performance of classification is directly related to the availability
and feature levels of objects. Based on an RBM with 40 hidden
neurons, the depth of the framework is increased layer by layer.
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Fig. 9. Reconstruction and error of RBM. (a) Original curve. (b) Total error obtained by RBM with different hidden units ranged from 2 to 200. (c) Reconstruction
by RBM with 40 hidden units. (d) Error in every band resulted from RBM with different hidden units.

Fig. 10. Influence of depths.

In this process, the DBN is pretrained in 2000 epochs, and
the whole framework is fine-tuned in 4000 epochs. Fig. 10
demonstrates the influence of hidden layers by the classification
accuracy. As shown in Fig. 10, for the data in this article, the
optimal depth is three.

TABLE IV
OA (%) OF DLWC WITH DIFFERENT NUMBER OF PRINCIPLE COMPONENTS

3) Principle Components: The spatial-dominated feature is
one of the most important role in landslide detection based on
remote sensing, because it could represent the shape and texture
information of the landslide. But, the redundancies in hyper-
spectral remote sensing which make the spatial information
extraction more difficult will decrease the accuracy of landslide
detection.

Therefore, before applying to data cubes, the image is pro-
cessed by PCA which is efficient dimensionality reduction
method. Then, we analyze the overall accuracy of classification
based on different input data cubes which are generated from
selected principle components. In Table IV, the results, from
the same framework setting except for number of principle of
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TABLE V
OA (%) OF DLWC WITH DIFFERENT INPUT SIZE OF DATA CUBE

components, reveal that the two is optimal number of principle
components.

4) Input Size of Data Cube: The resolution of remote sensing
image decides the target’s spatial detail information and how
much pixels the objective contains on the image. Therefore,
the spatial feature extraction procedure is directly influenced
by the input size of data cube. In Table V, the overall accuracy
as well as the accuracy of landslide detection are obtained in
different input spatial size, while other framework setting stays
the same. It is concluded the results increase with the input size
of data cube, which is a consequence of the more discriminative
spatial features extracted from a data cube. On the other hand, the
spatial feature becomes more complicated coupled with the size
of input data, resulting in the decrease of both kinds of accuracy.
Considering the consequence of classification, we decide 7 × 7
as the optimal input size of data cube.

5) Comparison With Other Conventional Methods: In this
article, three conventional methods for hyperspectral remote
sensing classification [Spectral Angle Match (SAM), Spectral
Information Divergence (SID), and linear support vector ma-
chine (linear-SVM)] were compared with DLWC for OA, Kappa
coefficient, and the accuracy of detecting landslides [95]–[99].
To make a fair comparison, we set input vectors to the same
size for all methods and tune methods to their optimal settings.
For instance, the penalty parameter of linear-SVM is set to 0.1,
and the threshold of SAM and SID are 0.4 and 0.3, respectively.
Then, we randomly select 20% samples as training groups to
validate different methods.

The results for the four methods are shown in Fig. 11. Overall,
because the DLWC method uses spatial information, it elimi-
nates “salt and pepper” phenomena, which is characterized by
isolated and spurious pixels in the object boundaries leading to
increased noise on resulting map.

Currently, the method based on spatial information is an
advanced method that is used to classify remote sensing images,
especially in high-resolution remote sensing fields. Furthermore,
a landslide predisposing factor is used in the DLWC method to
add constraints to landslide detection, thus making DLWC as an
effective method for identifying images of wash and bare lands.

Additionally, constraints reduce the error rate of landslide de-
tection. Therefore, as seen from Table VI, overall classification
based on the DLWC has the highest OA, which illustrates that the
deep features extracted by the deep learning framework benefit
for the improvement of classification accuracy.

C. Performance of Landslide Detection on the Whole Image

To validate the capability of the DLWC method to detect
landslides in a whole image, the landslide areas were analyzed

Fig. 11. Classification Maps Obtained by SAM, AID, linear SVM, and DLWC.

TABLE VI
CLASSIFICATION BY DLWC, LINEAR SVM, SID, SAM

separately. Fig. 12(b) and (c) display two landslides adjacent to
a river; Fig. 12(a) shows the landslide detection results for the
entire image.

As shown in Fig. 12, our proposed method not only detects
landslides, but also effectively reduces noise disturbance, while
simultaneously maintaining the basic shapes of the landslides.
From high-resolution images and field surveys made after the
disasters, 142 landslides were randomly selected to verify our
proposed method, indicating that our method missed six land-
slides and made eight detection errors. In general, detection
precision reached 94.4%. Statistics for the landslides are listed in
Table VII. Furthermore, we use fragmentation index ranged from
0 to 1 to evaluate fragmentation of results. It presents the more
fragmentized when the value of index is closer to 1 [100], [101].
Compared with the three methods mentioned above (SVM, SID,
and SAM), the DLWC method achieves a minimal fragmentation
index for the extracted results, which is of great help in judging
the number of landslides. Thus, the DLWC method effectively
avoids error detection caused by the problem of salt and pepper
classification, resulting in a reduction of the error rate.
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Fig. 12. Comparison of landslide mapping. (a) Distribution diagram of land-
slide obtained by DLWC and conventional method. (a) and (b) Zoom in the two
landslides (the high-resolution images come from airborne remote sensing).

TABLE VII
STATISTICS OF LANDSLIDES DETECTED BY DLWC, SVM, SID, SAM

V. CONCLUSION

A DLWC was proposed for landslide detection in HIS. Then,
we assessed the DLWC performance using HSI data acquired
after the M8.0 Wenchuan Earthquake. The experiment results
demonstrated that the designed DLWC exhibited better per-
formance in landslide detection, when compared to other con-
ventional methods. Furthermore, the DLWC has the ability to
retain morphological information of landslide on the resulting
map, especially for giant landslides. It is worth remarking that
the proposed framework not only utilizes the image features
but also considers the predisposing factors of landslides, which
substantially lower the false alarm rate in landslide detection.
And, because the uniformity of the input data and the variability
of output results, DLWC can be easily applied to other kinds of
remote sensing data.

The basic deep learning model is known as its feature extrac-
tion which could represent the complex information of original
data and enhance performance in target detection compared

to other conventional method. However, the result of target
detection heavily depend on the framework setting, such as the
number of hidden units, the depth of the DBN and the data cube
input size. Based on the result of experiments with HIS, it is
conducted that the optimal size of data cube and the number of
hidden units are 7 × 7 and 40, respectively. On the other hand,
it is not wise to set too many hidden layers in the framework,
if the framework is without the ability to compensate the loss
information after every hidden layer. Therefore, in DLWC, we
set three hidden layers to guarantee the best accuracy of landslide
detection.

Generally, in past two decades, many studies focused on how
to improve the accuracy of landslide interpretation based on
remote sensing, because it is a key role for disaster management
and emergency response. But, due to the diversity and regionally
of landslides, it is extremely difficult to design the handcrafted
features for the representation of landslides. To get the better
performance of landslides detection, the DLWC utilizes the deep
leaning model to extract the high-level features on hyperspectral
images, and detect the landslide combining the predisposing
factors. Finally, the experimental results prove that deep learning
model could extract the discriminative features of landslide and
be successfully applied for landslide detection. Considering the
regionally of landslides, we believe the DLWC can make better
performance in landslide detection with developments of re-
mote sensing technology. In the future, using other multi-source
remote sensing (including high-resolution, SAR, and LiDAR),
we will explore more effective deep architectures to detect
landslides.
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