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Abstract— This paper recognizes the research gaps and diffi-
culties in generating transition lines (the paths that pass through
a road intersection) in road intersections from mobile laser
scanning (MLS) point clouds. The proposed method contains
three modules: road surface detection, lane marking extraction,
and transition line generation. First, the points covering the road
surface are extracted using the voxel-based upward growing
and the improved region growing. Then, lane markings are
extracted and identified according to the multi-thresholding and
the geometric filtering. Finally, transition lines are generated
through a combination of the lane node structure generation
algorithm and the cubic Catmull–Rom spline algorithm. The
experimental results demonstrate that transition lines can be
successfully generated for both T- and cross-intersections with
promising accuracy. In the validation of lane marking extraction
using the manually interpreted lane marking points, the method
can achieve average precision, recall, and F1-score of 90.80%,
92.07%, and 91.43%, respectively. The success rate of transi-
tion line generation is 96.5%. Furthermore, the buffer-overlay-
statistics (BOS) method validates that the proposed method can
generate lane centerlines and transition lines within 20-cm-level
localization accuracy from the MLS point clouds.

Index Terms— Mobile laser scanning (MLS), road transi-
tion line, high-definition road map (HDRM), unmanned aerial
vehicle (UAV).

I. INTRODUCTION

THE development of Autonomous Vehicles (AVs) starts in
the 1980s, when Carnegie Mellon University introduced

the Navlab vehicles that operated autonomously in a variety
of road environments [1]. The range of vehicular automation
can be described by the Levels of Vehicle Automation, which
is put forward by the U.S. Department of Transportation’s
National Highway Traffic Safety Administration. The agency
separates vehicle automation into five levels: no automation
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(Level 0), function-specific automation (Level 1), combined
function automation (Level 2), limited self-driving automation
(Level 3), and full self-driving automation (Level 4) [2].
To help full self-driving automation, extra platforms including
motion planning systems, perception systems, mission plan-
ners, and behavioral systems, should be set on board [3].

The platforms control the behaviors of an autonomous
vehicle based on two kinds of data: real-time perception results
from onboard sensors and pre-loaded navigation maps [4]. The
onboard sensors, such as optical cameras, Radio Detection and
Ranging (RADAR) and Light Detection and Ranging (LiDAR)
systems, are essential parts to support the autonomous vehicles
driving in road environments. However, urban scenes could
be too complex to be completely detected by the sensors.
Moreover, some critical road information might not be cap-
tured due to the range limits of the sensors. In such cases,
road maps, which are used to generate routing trajectories
for autonomous driving in well-structured environments, can
support real-time motion planning if detailed road information
is precomputed [5].

A classical road map for navigation is created from a
Geographic Information System (GIS) through information
filtering, organizing, and visualizing. The road information
stored in a GIS database is mostly gathered by surveying
and remote sensing techniques. Aerial photogrammetry, one
remote sensing data source, is commonly used for road and
road feature extraction. These methods work very well along
the main road network in study areas. However, simultane-
ously, they can be seriously impacted by blocking features
along the road, such as high-rise buildings and trees. Moreover,
when taking a further step toward road surface information
extraction or branch road extraction, the small disconnects
in picturing road details caused by blocking objects and
missing elevation information makes the reconstruction of
roads difficult [6]. In summary, due to the high complexity
and diversity of road environments, the generation of HDRMs
from aerial images is problematic.

Compared with aerial images, laser scanning, as a continu-
ously promoted remote sensing technique, can provide quick
acquisition of high-quality Three-dimensional (3D) informa-
tion of road scenes when integrated with positioning technol-
ogy [7]. MLS platforms are useful for providing point clouds
for roads within a city. Moreover, in terms of point density,
MLS point clouds commonly have more than 10,000 pts/m2,
which provides greater than 1 cm in resolution, while it is
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hard for Airborne Laser Scanning (ALS) point clouds to reach
that precision [8]. As a result, road features such as lane
markings are only distinguishable on MLS point clouds. Due
to its higher flexibility and acquisition rate in large-scaled road
scenes, MLS point clouds is more applicable than the other
remote sensing techniques for transition line generation in this
study.

However, there are still some challenges in generating
transition lines from MLS point clouds. The complex patterns
of road markings in road intersections make the acquisition
of road markings challenging. Outliers, such as road side
building facades, road pavements, and other points on the
road surface, should also be distinguished and removed [9].
Another challenge comes from conducting human knowledge
(traffic rules) in lane centerline and transition line generation.
In addition to the complex patterns of road environments,
challenges also arise from MLS point clouds. Such point
clouds contain a mass of dense points with 3D geographic
information, reflection information, return information, and so
on. Organizing these features would be a key pre-condition in
developing efficient algorithms.

The transition line generation method proposed in this
study mainly contributes to the construction of HDRMs using
MLS point clouds. The detailed contributions are, namely,
an improved curb-based region growing algorithm for road
surface detection and a semi-automated node structure gen-
eration algorithm: (1) The curb-based region growing algo-
rithm detects road surface points by using trajectory points
as seeds and then iteratively searching nearby areas. This
algorithm is feasible for different types of curbed urban roads,
including straight roads, curved roads, and road intersections.
Furthermore, it reduces accuracy loss by detecting road surface
points directly from point clouds. (2) A semi-automated node
structure generation algorithm is presented. The generated
lane centerline nodes facilitate the construction of transition
lines. By utilizing lane marking point clouds as input data,
it does not require Global Navigation Satellite System (GNSS)
trajectory covers all lanes, and that improves the efficiency of
the data collection in road intersections. This study makes
a considerable contribution to the research on generating
transition lines for HDRMs, which further contributes to the
research of AVs and Vehicle-to-Everything (V2X) technology.

II. BACKGROUND AND RELATED WORK

A. Introduction to High-Definition Road Maps

HDRMs describe the road geometry as linked lane seg-
ments. They characterize roads, on the one hand, with more
recall and, on the other hand, with higher accuracy than
standard digital maps to fulfill the requirements of driving
assistance systems [10]. Fig. 1 clarifies the definition of
transition lines in a cross-intersection (Fig. 1 (a)) and a
T-intersection (Fig. 1(b)). Three constraints are involved in
the generation of transition lines for an HDRM database.
First, each road is decomposed into a sequence of analytic
lane centerline curves, which represent the centerlines of road
lanes. Second, lane centerlines are directed line segments that
have start and end nodes. Third, lane centerlines are connected

Fig. 1. Definition of transition lines. (a) Cross-intersection. (b) T-intersection.

by transition lines that are represented as curved or straight
line segments. The acceptable vehicle positioning errors for
lane-level navigation are based on a total error that combines
the expected error of the road map database with vehicle
positioning error. For three-meter-wide lanes, the lane-level
accuracy is specified to be 30 cm in the road map database,
with less than 20 cm vehicle positioning error [11].

Transition lines in the HDRM database approximate real
vehicle turning paths and describe the geometric details of
a road intersection. They present all the possible paths that
autonomous vehicles may take to pass the road intersection.
Moreover, the connectivity description provides a coordinate
description to the inner attributes of the road intersection.
Therefore, the vehicle positioning results from onboard sensors
can be matched and constrained more continuously and pre-
cisely [12]. Transition lines can support smooth switch among
a road intersection and provide more benefits to map-based
vehicle positioning solutions [13].

B. Road Surface Detection

Several methods have been developed to detect road sur-
faces from MLS point clouds, and these algorithms can be
categorized into three types based on data structure: scan line,
road patch, and voxel.

Scan lines are commonly generated using the scanning angle
field or the GNSS time stamp field in MLS point clouds if
points are time-wise sorted. With a few points in a single scan
line, computation can be conducted efficiently. In [14], road
curbs (the boundaries of roads) were detected to extract road
surface points from scan lines. Elevation jump and slope of two
adjacent points were computed and labeled as road curb points
if both were greater than the thresholds. In [15], road curbs
were detected from a scan line through constructing a moving
window operator. Instead of searching for road boundaries,
some methods directly extract road surface points from a scan
line. In [16], elevation jump between trajectory points and road
surfaces was utilized to extract seed points, then road surface
points were detected by moving least squares line fitting.
Similarly, in [17], Principal Component Analysis (PCA) was
performed to the local neighborhood of seed points for road
surface detection. Although dividing a point cloud into scan
lines makes complex computation and algorithm applicable,
information contained in a scan line is still not enough to detect
road curbs in complex road environments [18]. Furthermore,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YE et al.: SEMI-AUTOMATED GENERATION OF ROAD TRANSITION LINES 3

when MLS point clouds are not sorted by the time stamp field,
or they are mosaicked from several datasets, scan line based
algorithms need extra time for sorting of point clouds.

Road patches can be generated by segmenting MLS point
clouds into blocks with the assistance of trajectory data at
a specified time or distance interval. Compared with scan
lines, road patches not only have high computational effi-
ciency but also contain more geometric information on road
surfaces. Many road surface detection methods are based on
road patches. In [7] and [19], road patches were transversely
sectioned into corresponding profiles, and then the profiles
were gridded to form a pseudo scan-line with a given width.
Road curbs in each road patch were detected based on slope
and elevation jump between two consecutive points. In [20]
and [21], the saliency of points within each patch were mea-
sured, and then salient points were clustered to compute the
characteristics of road scenes and detect road curbs. Although
road patch based methods provide promising results in road
surface detection, the accuracy is influenced by the trajectory
data. In T-intersections, the curved trajectories might cause
false segmentation of MLS point clouds.

Voxels are cuboid-shaped space with a given length, width,
and height. Point clouds can be gridded using voxels. Some
experts have tried to detect road surfaces and road curbs in
voxels. In [22], the dynamic Digital Elevation Models (DEMs)
were constructed with the average height of points in voxels to
diminish the impact of moving vehicles around the scanners
and to capture the complete geometric features of the road
surfaces. Dynamic DEMs can present complete road curbs
and road surfaces; however, they are built from 2D sequential
laser range finder data and vehicle state data, which are not
available in most MLS point cloud datasets. In [23], multi-
category labeling was conducted based on the voxelization of
MLS point clouds. Furthermore, in [24], density gradients of
adjacent voxels were calculated to extract road curb voxels
and removing noise. The method achieves promising results;
however, it mainly focused on detecting road curbs. Road
surface points should be further extracted with the detected
curbs. Moreover, the computational time of applying this
method could be lengthy when processing high-density and
high-volume MLS point clouds in road intersections.

C. Road Marking Detection

Extracting road marking points from MLS point clouds
contains two typical steps: candidate road marking point
extraction and post-refinement. Although road markings are
highly reflective objects painted on road surfaces, the reflected
laser pulse intensities also depend on the incident angle of
the emitted laser beams and the range between measured
road markings and laser scanners. Generally, the laser pulse
intensity value decreases with the increase of range and
incident angle [7]. The extraction methods can be classified
into two categories: geo-referenced feature (GRF) image-based
methods and point-based methods.

The generation of GRF images was mainly based on the
Inverse Distance Weighting (IDW) interpolation [19]. To solve
the uneven distribution and fluctuation of intensities, the

multi-threshold segmentation method was conducted for road
marking extraction using GRF images [19]. Moreover, in [25]
and [26], estimated transverse range was used to divide GRF
images into blocks and then determined an intensity threshold
for each block based on its range from laser scanners. The
accuracy of GRF image based methods can be over 90%;
however, road markings were projected to a 2D plane, which
inevitably led to some accuracy loss. The refinement of can-
didate road marking points in GRF images based methods is
directly applied to the extracted pixels. False positive and false
negative errors can be efficiently eliminated by the median
filtering [27] or the multi-scale tensor voting [28]. To fill
the incomplete road markings, labeled GRF images were
converted to binary images in [25]. A linear shaped structuring
operator was then used to enlarge the road marking areas and
refine the extraction results.

Unlike GRF image based methods, point based road mark-
ing extraction methods directly analyze 3D road surface point
clouds and detect candidate road marking points. In [16], road
surface points were segmented into scan lines according to
the scanning angle and detected road marking edge points
through a dynamic window median filter. In [29], the multi-
thresholding strategy was adopted to road surface point clouds
to solve the uneven distribution of intensities and to extract
road marking points. This method offers a promising approach
in road marking extraction and it can achieve high accuracy.
The refinement of candidate road marking points extracted by
point based methods is also critical since small elements on the
road surface might have a high reflective level and cause false
extraction noise. False positive and false negative errors can be
removed by dividing the candidate road marking points into
scan lines [16]. In [29], the spatial density filter was developed
to eliminate false positive and false negative errors.

D. Lane Centerline and Transition Line Generation

In recent studies, lane centerline generation was widely
conducted by analyzing GNSS trajectories. Lane centerlines
were extracted using an analytical equation that best fits the
trajectories, with the constant curve as circles and null curve
as straight lines [30]. The method was promising if road
pattern was simple. In [31], the node structure was gener-
ated to represent planar roadways for macro-scale navigation.
However, GNSS trajectory based lane centerline generation
methods required the survey to each lane and driving as close
as possible to its center, which is not applicable for large urban
areas.

Road intersections are defined as the places where two or
more road sections across [12]. In road environments, there
is no marked transition path from a lane to another in road
intersections; however, it does not indicate that vehicles can
drive freely in these areas. Therefore, generating a “virtual”
line that connects one lane to another while maintaining
the continuity between these two lanes is a great solution
for HDRM construction. To generate transition lines, it was
assumed that vehicles traveled at the road intersection with
a constant steering angle in [12] and [13]. A lane centerline
was firstly simplified as a line segment with a pair of ‘entry’
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Fig. 2. Study area in Xiamen, Fujian, China. (a) Location of the study area.
(b) Trajectory (red) overlaid on Google imagery.

and ‘exit’ node, and then direction symbols were calculated
by the vectors of the start lane and the end lane. Finally,
an arc section was calculated to represent the transition line.
This method provided a solution to link ‘exit’ nodes and
‘entry’ nodes; however, it cannot preserve the continuity at
joint points. A promising method for transition line generation
was presented in [32]. They employed the cubic Catmull-Rom
spline with five control points to generate line segments from
an ‘exit’ node to an ‘entry’ node and to keep the continuity
at joint points. The Central point of a road intersection,
the ‘exit’ lane, and the ‘entry’ lane were utilized to determine
the five control points. The success rate reached 90% in the
experiment.

III. METHODOLOGY FOR TRANSITION LINE GENERATION

A. Study Area and Datasets

The study area is in Xiamen City, southeastern Fujian, China
(longitude 24◦ 28’47.41”N, 118◦ 05’ 21.91”E) (see Fig. 2. (a)).
It is a tropical city that has a monsoonal humid subtropical
climate. This kind of climate is characterized by mild and dry
winter and hot and humid summer. The vegetation in Xiamen
City is year-long green. Since there is less rainfall during
the winter season and it is more suitable for data collection,
the point clouds were collected on December 20, 2013. The
surveyed area, called International Conference and Exhibition
Center Block, is an urban area where traffic is free-flowing (see
Fig. 2 (b)). As a result, most road markings and road curbs in
this area are complete, and cracks are rare on road surfaces.
Moreover, roads with two lanes (one lane in each direction)
or four lanes (two lanes in each direction) are intersected in
this area. T-intersections and cross-intersections are formed.
In addition, the intersections are characterized by numerous
roadside trees, vehicles, light poles, and traffic poles. Diverse
types of road intersections with the various numbers of lanes
makes this area ideal for testing the proposed method.

A total of 2.961 billion points with the size of 19.7 GB
were collected and stored in 17 LAS files. The MLS point
clouds were collected by a RIEGL VMX-450 MLS system.
The gray-scale values of the MLS intensity were transformed
to 0 to 255. About 0.78 billion trajectory points were gen-
erated and provided as ancillary data. Four test datasets,

Fig. 3. Four test datasets. (a) Test Dataset 1. (b) Test Dataset 2. (c) Test
Dataset 3. (d) Test Dataset 4.

including two T-intersections (Test Datasets 1 and 2) and two
cross-intersections (Test Datasets 3 and 4) are selected from
the original point clouds (see Fig. 3.). Test Dataset 1 is a
T-intersection where two four-lane roads and one two-lane
road intersected, and Test Dataset 2 is a T-intersection where
three four-lane roads intersected. Test Datasets 3 and 4 are
cross- intersections where four four-lane roads intersected.
Since they cover all road intersection types and road marking
types in the study area, these four datasets are selected. All
the four road intersections are characterized by detectable road
curbs, standard road markings, and complex roadside objects.

B. Overview of Workflow

The proposed methodology contains three modules: road
surface detection, lane marking extraction, and transition line
generation. Fig. 4 presents the workflow of the proposed
methodology. In Module I, the voxel-based upward-growing
algorithm [7] is employed for ground point detection from
input point clouds. The region growing algorithm is improved
to enhance curb-based road surface detection. In Module II,
the multi-thresholding algorithm [29] is used for road marking
extraction. Geometric feature filtering [33] is implemented
to extract lane markings. In Module III, a node structure
generation algorithm is proposed to generate lane geometries
and lane centerlines from lane markings. The cubic Catmull-
Rom spline [34] is employed for transition line generation.

C. Module I: Road Surface Detection

The voxel-based upward-growing algorithm [7] is employed
to detect ground points. Since MLS point clouds have large
data volumes and high point density, the removal of non-
ground (such as traffic signs, traffic lights, light poles, and
tree crowns) can improve the computational efficiency and
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Fig. 4. Workflow of the proposed method.

accuracy of the following algorithms. Point clouds are firstly
partitioned into point blocks to alleviate the ground

undulation in each block and to decrease the process-
ing time. Points in each block are analyzed and processed
separately in the following steps. Then, points in a block
is voxelized with cube-shaped voxels. For each voxel, the
upward-growing process grows along with its adjacent voxels
recursively to form a voxel segment. Finally, a local ground
undulation threshold and a global ground undulation threshold
are used to label the non-ground voxels (voxels that contain
non-ground points) in the voxel segment. By filtering out the
non-ground voxels, ground points are detected.

The region growing algorithm is improved to enhance
road surface detection, mainly in two ways. Trajectory
points are important indicators of the road surface in seed
selection because they mostly exist above road surfaces.
Nevertheless, trajectory points cannot be directly used as
seed points, since they all have a higher elevation than
nearby road surface points. Thus, the processing unit should
contain trajectory points and ground points simultaneously.
To achieve this, the shape of voxels is modified. As shown
in Figs. 5 (a) and (b), the ground points (blue) and the trajec-
tory points (red) are gridded into cuboid-shaped voxels, which
have a height equal to the point cloud space. Constructing
these voxels generates the link between road surface points
and the trajectory points. Those voxels that contain at least
one trajectory point and one road surface point are selected as
the original seed voxels.

Fig. 5. Principle of the region growing. (a) Voxelization of ground points.
(b) Seed voxels in road surface detection. (c) Breadth-first searching.

Fig. 6. Close-up illustration of road curbs.

The Breath-first Searching (BFS) algorithm [35] is adopted
in the voxel growth step. As shown in Fig. 5. (c), a seed voxel
V0 has eight adjacent voxels, named V1, V2, . . . , V8. The BFS
algorithm exhaustedly searches V1 to V8 in sequence. If any of
these adjacent voxels does not contain a road curb segment,
it is pushed into a queue. Once V1 to V8 are all searched
and labeled, the BFS algorithm picks up the next voxel in the
queue as a new seed voxel and repeats the same searching
pattern.

Fig. 6 shows the close-up views of the road curbs and
demonstrates that the road curbs are vertical or mostly vertical
to road surfaces and have obvious elevation jumps. Therefore,
road curbs can be detected through elevation jump and slope
thresholds. Road curb voxels (voxels that contain road curb
points) are estimated based on the following two observations.

1) Elevation Jump: If part of a road curb is covered by
a voxel, the elevation jump in the voxel should meet the
following observation [28]:

Tcurb_min ≤ Ec ≤ Tcurbmax , (1)

where Ec denotes the elevation jump in the voxel, and
Tcurb_min and Tcurb_max is the threshold of the elevation jump.
According to [28], street design and construction manuals
in many countries document that the height of road curbs
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generally ranges from 10 cm to 25 cm, and Tcurb_min and
Tcurb_max is predefined as 8 cm and 30 cm, respectively.

2) Slope: The slope observation is defined as follow-
ing [28]:

arctan

⎡
⎣ (zi+1 − zi )√

(xi+1 − xi )
2 + (yi+1 − yi )

2

⎤
⎦ ≥ Tslope, (2)

where (xi , yi , zi ) and (xi+1, yi+1, zi+1) are the coordinates
of two adjacent points in a voxel, and Tslope is the slope
threshold. According to [28], the Tslope is predefined as 2π

/
3.

The growth stops when the following conditions occur: first,
there is no seed voxel in the queue; second, the distance from
a searched voxel to the original seed voxel is greater than
the pre-defined threshold. The first condition indicates that
the searching is completed. As an additional stop condition,
a distance is set to restrain the searching radius of the BFS
algorithm. Because of the ground’s undulation, if the growth
from an original seed with higher elevation is not limited, road
curbs located in lower positions might not be detected.

D. Module II: Lane Marking Extraction

Lane marking refers to road markings that indicate lane
edges. Typical lane markings include single lines, double lines,
and dashed lines. Since lane markings are critical information
for lane centerline generation, they are extracted from the road
surface points using four adapted algorithms. Generally, road
markings are painted by highly reflective material on the road
surfaces. Road marking points have higher intensities than sur-
rounding road surface points. Thus, the multi-thresholding [29]
and the Otsu’s thresholding [36] are employed for candidate
road marking point extraction. The candidate road marking
points might contain false extraction noise. The noise is
caused by small objects that have similar intensities as road
markings on road surfaces. To eliminate the noise, the spatial
density filtering is conducted [29]. Furthermore, the extracted
road marking points are isolated and have no topological
relationships. In other words, they have no semantic meanings.
To extract lane marking points from road marking points,
clustering should be applied. By assuming that nearby points
belong to the same road marking, the Conditional Euclidean
clustering is employed [7].

When road marking points are clustered, geometric features
of point segments can be calculated and utilized for lane
marking extraction. Generally, there are five types of road
marking in the test datasets: solid line, dashed line, zebra
crossing line, Chinese character, and turning arrow. The road
marking painting standards, which are documented in [37].
A minimum bounding rectangle is generated to extract the
shape features of each road marking cluster. According to the
length L and width W of the minimum bounding rectangles,
lane markings are extracted using the geometric parameters
listed in Table I.

E. Module III: Transition Line Generation

In this module, lane node structure, which represents lane
geometries in road intersections, is firstly constructed by

TABLE I

PARAMETERS FOR LANE MARKING EXTRACTION

Fig. 7. Lane node structure construction. (a) Lane marking partitioning.
(b) Node structure generation.

a combination of lane marking node structure generation
and ‘exit’ and ‘entrance’ node pairing. Moreover, the cubic
Catmull-Rom spline is employed to generate transition lines
for paired nodes according to [32] and [34].

The lane node structure construction algorithm utilizes
lane marking points and trajectory points as input data. The
trajectory points are resampled at an interval IT to generate
a point set Tj ( j = 0, 1, . . . , L). As shown in Fig. 7 (a), T
is used to partition the lane marking point cloud into blocks
(Blocki (i = 0, 1, . . . , N)). The length of blocks is restricted
by a threshold TB . For each block, a Cartesian coordinate
system is confirmed, with an X axis towards the front of the
vehicle, a Y axis towards the left of the vehicle, and a Z axis
towards the top of the vehicle. The coordinate origin is set at
the midpoint of the line segment that connects Tj and Tj+1.

Fig. 7 (b) presents the processing of a block Blocki .
Firstly, lane marking points (black) in Blocki are projected
onto the YOZ plane of the coordinate. Then, by exhaustedly
searching the projected lane marking points, central points
M Pk (1 ≤ k ≤ 4) (blue) of lane markings are computed. If the
width of a lane marking segment is greater than a threshold
TM , it is labeled as a stop line (the white line where vehicles
stop for traffic). Furthermore, candidate lane centerline nodes
(red) are generated by calculating the midpoint of M Pk and
M Pk+1. If the range between M Pk and M Pk+1 is less than
a threshold RT , the candidate lane centerline node calculated
from them is removed. In addition, by assuming that lanes
are straight near road intersections, the least square fitting is
employed to generate lane centerlines from generated nodes.
If a lane centerline has an intersection with a stop line, it is
labeled as ‘exit’ lane, and its vertex is labeled as ‘exit’ node.
Otherwise, the lane is labeled as ‘entry’ lane, and its vertex is
labeled as ‘entry’ node.
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Fig. 8. Pairing ‘entry’ and ‘exit’ nodes. (a) Pairing ‘entry’ and ‘exit’ nodes
in a cross-intersection. (b) Pairing ‘entry’ and ‘exit’ nodes in a T-intersection.

Fig. 9. Calculating a transition line.

When the node structure of a road intersection is generated,
all proper ‘entry’ nodes for an ‘exit’ node are then determined.
As shown in Fig. 8. (a), ‘entry’ nodes and ‘exit’ nodes
on four branch roads in a cross-intersection are grouped as
G1, G2G3, and G4. The convex hull (black lines) of the four
groups is firstly generated by the Gift Wrapping algorithm
to build topological relationships for them [38], [39]. Then,
the algorithm searches the ‘exit’ nodes (Ex Pi (1 ≤ i ≤ 3)) in
G1, and all the ‘entry’ nodes (En Pi (1 ≤ i ≤ 6)) in G2, G3
and G4. Corresponding ‘entry’ nodes En P3 and En P4 for
the ‘exit’ node Ex P3 and Ex P2, respectively, are in the non-
adjacent node group G2. Additional connections are generated
from the rightmost ‘exit’ node Ex P3 to the ‘entry’ node En P1
and from the leftmost ‘exit’ node Ex P1 to the ‘entry’ node
En P6. The algorithm processes the ‘exit’ nodes in G2, G3
and G4 in the same pattern.

In T-intersections, two branch roads that have the same
direction follow the same pairing rules as branch roads in
cross-intersections. However, pairing rules for the other branch
road should be additionally discussed, because vehicles cannot
go straight ahead on this branch road. As shown in Fig. 8 (b),
‘exit’ nodes of the branch road are labeled as solid points
Ex P j (1 ≤ j ≤ 2), and ‘entry’ nodes are labeled as points
En P j (1 ≤ j ≤ 4) s. Links are constructed

from the rightmost ‘exit’ Ex P2 to ‘entry’ node En P1
and from the leftmost ‘exit’ Ex P1 to ‘entry’ vertex En P4.
Through the Gift Wrapping algorithm, proper ‘entry’ lanes for
a ‘exit’ lane can be determined at T- and cross-intersections.

TABLE II

ACCURACY OF ROAD MARKING EXTRACTION WHEN
APPLYING DIFFERENT SEARCHING RANGES

To generate a safe path from an ‘exit’ node to an ‘entry’
node and to keep the continuity at the nodes, the cubic
Catmull-Rom spline is employed [34]. Five control points
Pab

k (0 ≤ k ≤ 4) on a transition line Lab (green curve line),
which connects lane centerline a (yellow line) and b (purple
line), are determined according to [32] (see Fig. 9). The ‘exit’
node Ex Pa (yellow dot) of a is set as Pab

1 , and the ‘entry’
node En Pb (purple dot) of b is set as Pab

3 . An intermediate
point mab (blue dot) is set as Pab

2 . Pab
0 is set to a location

that makes line ¯Pab
o Pab

2 (blue dashed line) parallel to a to
ensure the continuity at Pab

1 , because the tangent vector at a
control point on a cubic Catmull-Rom spline is determined
by the adjacent control points on two sides of it. The final
control point Pab

4 is set with the same pattern according to
b. When five control points Pab

k (0 ≤ k ≤ 4) are determined,
for ≤ Üt ≤ Ü1, the cubic Catmull-Rom spline curves can be
defined.

IV. RESULTS AND DISCUSSION

A. Results of Transition Line Generation

Ground points were detected through the voxel-based
upward-growing algorithm. Figs. 10 (a) to (d) presents the
ground point detection results. Road surface points were
detected by the improved region growing algorithm. According
to [27],Tcurb_min = 8 cm, Tcurb_max = 30 cm, and Tslope =
2π

/
3 were set. To determine the optimal parameters for WR

and TB , and to evaluate the sensitivity of each of them, two
experiments were carried out. The purpose of detecting road
surface points is to improve the accuracy of the road marking
extraction. Thus, road markings extracted by different parame-
ters were evaluated to determine the optimal parameters. Test
Dataset 1 was used for the experiments, since it has different
and exhaustive features.

Table II presents the F1-score, recall, and precision of road
marking extraction results using different searching ranges,
with recall and precision recorded as well. A fixed voxel size
WR = 10 cm was used to explore the influences of searching
ranges. Then, the road surface detection was carried out with
different searching ranges, which were from 5 m to 35 m
at an interval of 5 m. Generally, the F1-score exponentially
improved as the searching range increased from 5 m (86.20%)
to 25 m (94.46%), and then slightly dropped from 25 m
(94.46%) to 35 m (94.23%). The improvement of the F1-score
from 5 m to 25 m was caused by the increase of recall. Since
the BFS searching started from the trajectory, the road surface
was not completely detected when the searching range was
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Fig. 10. Transition line generation results from four test datasets. (a) to (d) are detected ground points. (a1) to (d1) are detected road surface points. (a2) to
(d2) are extracted road marking points. (a3) to (d3) are generated transition lines.

small, and road markings close to the boundaries of the road
surface were not extracted. However, when the searching range
was overlarge, outliers on the pavements might be involved in
road surface detection results. Accordingly, searching range
TB was set as 25 m for the BFS searching in road surface
extraction.

Table III presents the F1-score of road marking extraction
results using different voxel sizes, with recall and precision

recorded simultaneously. The searching range TB = 25 m
was fixed to explore the influences of the voxel size, which
was from 6 cm to 16 cm at an interval of 2 cm. Generally,
the F1-score slightly increased when the voxel size increased
from 6 cm (93.18%) to 10 cm (94.46%), and then significantly
decreased when the voxel size was larger than 10 cm. When
the voxel size was overlarge, road markings close to the
boundary of the road surface were involved in the same voxel
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TABLE III

ACCURACY OF ROAD MARKING EXTRACTION WHEN
APPLYING DIFFERENT VOXEL SIZES

as the road curb and removed, which caused a significant
loss in recall. However, more points were covered with larger
voxels, which made the calculation of elevation jump and slope
more accurate. Hence, WR = 10 cm was optimal for the road
surface detection in this study.

With the defined parameters, the detected road surface
points in Test Datasets 1 to 4 are presented in Fig. 10 (a1)
to (d1). The overall performance of the improved algorithm
was promising in the four test datasets. One false detection
occurred in Test Datasets 1 and 2 (Fig. 10. (a1) and (b1)),
as part of the road pavement was labeled as road surface. The
road surface detection method was sensitive to the condition of
road curbs; thus, the defects of road curbs might cause a large
area of false detection. Three features of the algorithm can
be concluded from the results. First, all road markings can be
detected on the extracted road surfaces. Second, the boundaries
of road surfaces are not smoothed due to the cubic shape of
voxels. Third, small holes might exist due to noise on road
surfaces.

Road marking points were extracted from road surface
points, using the multi-thresholding algorithm. Road marking
extraction results are shown in Fig. 10. (a2) to (d2). Generally,
road markings are painted using a material that has high
reflectance to laser pulses, and road marking points have
higher intensities than the surrounding road surface points.
However, due to the decay of road markings and obstacles on
roads, some road marking points might have low intensities,
and some road markings could be broken. In such cases, errors
might occur in road marking extraction. Fig. 11 presents a
critical error that occurred in the results for road marking
extraction in Test Dataset 2. Road features are indicated by
variations in color intensity. The road marking close to the road
boundary was covered by a material that had low reflectance
to laser pulses, or it might be completely decayed. Since its
intensity was lower than that of the road surface, the road
marking was not extracted from the road surface. Such defects
of the road marking could lead to a failure in lane structure
generation, thus causing errors in transition line generation.

Lane node structures were generated by the proposed
method. The resampling interval IT was determined by the
corresponding rate of the navigation system used in the MLS
system and the driving speed. In this study, the corresponding
rate of the GNSS was 0.01s, and the maximum driving speed
was 40 km/h. Thus, the interval of trajectory points was about
8.3 cm. Note that the over-segmentation of the lane markings
might aggravate the influence of noise; the resampling interval

Fig. 11. Defect of the road marking in Test Dataset 2.

Fig. 12. Lane node structure generation results in a road segment.

IT = 6 was defined for the test datasets. The width of a
point block was about 50 cm. Additionally, the following three
thresholds were used in this algorithm: TM , threshold to detect
stop lines; TRminandT Rmax , thresholds for node filtering. The
thresholds were defined according to the minimum lane width
in the study area, which was 3 m. When points in a data block
were projected onto the transformed coordinate system, if the
length of a clustered road marking was greater than TM = 2m,
the marking was labeled as a stop line. To eliminate false lane
centerline nodes, TRmin was set as 2 m and TRmax was set as
4 m. Fig. 12 presents lane node structures in a road segment,
with lane marking nodes in blue and lane centerline nodes in
red.

Transition lines were generated by the cubic Catmull-Rom
spline algorithm. As shown in Figs. 10 (a3) to (d3), test
datasets are overlapped by the generated lane centerlines
(green), lane markings (blue), and transition lines (purple).
‘Entry’ nodes of lane centerlines are square dots, and ‘exit’
nodes are triangle dots. In the four test datasets, most cor-
responding ‘entry’ and ‘exit’ nodes were correctly connected
by transition lines, except that two transition lines connected
wrong pairs of ‘exit’ and ‘entry’ nodes in Test Dataset 2
(see Fig. 10 (b3)). Due to the heavy defects of the leftmost
lane marking on the top branch of the T intersection in
Test Dataset 2, only three of four lanes on that branch were
extracted, and the leftmost lane was missing. As a result,
the second left lane on the top branch became the leftmost
lane, and then, it was wrongly connected to the leftmost lane
on the bottom branch. Simultaneously, the second left lane on
the bottom branch had no ‘entry’ lane. Thus, the success rate of
transition line generation was about 96.5%, again suggesting
that road marking defects had negative effects on transition
line generation.
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TABLE IV

COMPUTING TIME OF THE PROPOSED METHOD

B. Overall Performance Assessment

HDRM generation is a post-processing process. To speed it
up, automation of the process is critical. Therefore, the com-
puting time of the proposed method in four test datasets
is shown in Table IV. The consuming time was calculated
in each procedure and in total. The computer used in this
study had an AMD FX-8350 4.2 MHz CPU, and 16 GB
RAM. The proposed method performed very well considering
the large-volume point cloud data. The voxel-based upward-
growing and the improved region growing algorithms effi-
ciently removed outliers from the test datasets. Road mark-
ing extraction and refinement procedure contributed most of
the processing time because the multi-thresholding algorithm
exhaustively processed every single point of the input data.
By taking advantage of the Conditional Euclidean clustering
algorithm, the lane marking extraction procedure did not
consume much time. Furthermore, the lane marking node
structure generation algorithm and the cubic Catmull-Rom
spline algorithm were both efficient. Therefore, the overall
efficiency of the proposed method could be further improved
by modifying the multi-thresholding algorithm and the density
filtering algorithm.

C. Accuracy Assessment of Road Surface

The performance of the road surface extraction method is
assessed by thematic accuracy, which refers to the differences
between the labeled attributes of remotely sensed features and
the true attributes of reference features [40]. The thematic
accuracy is measured by three criteria: recall, precision, and
F1-score [41], [42]. The recall indicates the integrity of the
extracted road surfaces. The precision denotes the percentage
of valid road surfaces. The global score is evaluated by F1-
score. The indicators are expressed as follows:

Recall = T P/(T P + F N) (3)

Precision = T P/(T P + F P), and (4)

TABLE V

ACCURACY ASSESSMENT OF ROAD SURFACES USING
MANUALLY INTERPRETED POINT CLOUDS

TABLE VI

ACCURACY ASSESSMENT OF ROAD MARKINGS USING
MANUALLY INTERPRETED POINT CLOUDS

F1 − score = 2 × precision × recall/

(recall + precision), (5)

where TP represents true positive, F P indicates false positive,
and F N indicates false negative. In this part, T P is the number
of road surface points which are correctly classified, whereas
F P is the number of outliers that are falsely classified as road
surface points. F N refers to the number of road surface points
which are misclassified as outliers.

By using manually interpreted road surface points from
original MLS datasets as reference points, the quantitative
assessments were conducted based on the recall, precision and
F1-score. As illustrated in Table V, the proposed road surface
extraction algorithm is capable of obtaining 95.42% in recall,
91.25% in precision and 93.27% in F1-score, respectively. The
value of precision is less than that of recall for each sample,
which demonstrates that certain outliers are misclassified as
road surface points. Additionally, the number of manually
labeled reference points is less than that of extracted points
due to the defects of road curbs. Thus, the overall perfor-
mance of the proposed road surface extraction algorithm is
underestimated in the final results.

D. Accuracy Assessment of Road Markings

The quantitative assessment of road marking extraction was
also conducted based on the recall, precision and F1-score.
In this part, T P is the number of road marking points which
are correctly classified, whereas F P is the number of outliers
that are falsely classified as road marking points. F N refers
to the number of road marking points which are misclassified
as outliers.

The results of road marking accuracy assessment using
manually interpreted point clouds are listed in Table VI. The
average precision of the test datasets was 90.80%. Generally,
the loss in precision has two causes. On the one hand, false
clustering might occur when zebra crossing lines and lane lines
are connected. On the other hand, the density filter cannot
remove all noise from candidate road marking points. The
average recall of the four test datasets reached 92.07%.
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TABLE VII

COMPARISON WITH OTHER ROAD MARKING EXTRACTION METHODS

The loss in recall might be caused by the removal of small
road marking segments when conducting the geometric feature
filtering. The F1-score of the four test datasets were all over
86%, which implied that the road marking extraction method
can extract most of the road marking points in T- and cross-
intersections. The proposed method performed well in Test
Datasets 1, 3, and 4, whereas Test Datasets 2 contributed
more to the loss of accuracy due to the broken road markings.
Thus, the method should be improved in the future, to extract
complete road markings in complex road intersection scenes.

E. Comparative Study of Road Marking Extraction

Since road marking information was essential for transition
line generation, a comparative study was conducted to com-
pare the road marking extraction method used in this study
with three other methods: Yu et al. [29], Zhang [43], and Chen
et al. [44]. The methods were tested in Test Dataset 1 and Test
Dataset 3. The performance of the methods was evaluated with
precision, recall, and F1-score (see Table VII).

Chen’s method focused only on the lane markings along
the direction of the vehicle trajectory. Thus, road markings,
including turning arrows, stop lines, and Chinese characters,
were not extracted, and that caused a signification loss of
recall. Zhang’s method detected most of the road markings
in the two test datasets. However, road pavements that were
smooth and had large areas were not eliminated by the
high-pass filtering. As a result, road pavement points that
have high intensities were misclassified as road markings.
In addition, Zhang transformed MLS point clouds to geo-
referenced images and detected road marking pixels on the
images. Labeling road marking points through the images also
caused a loss of precision. Yu’s method had low F1-score in
Test Dataset 1, since its road surface detection method and
road marking extraction method are both based on the straight
trajectory. When the method was applied in Test Dataset 1,
road pavements that were close to the central part of the
intersection were misclassified as road surface, and the road
surface was not segmented correctly. That caused a loss of
F1-score in the result for Test Dataset 1.

The proposed method successfully extracted most of the
road marking points in Test Dataset 1 and 3.Unlike Chen’s
method, it had the ability to extract all types of road markings
on road surfaces. Unlike Zhang’s geo-referenced feature image

based method, it directly extracted road marking points from
MLS point clouds and did not cause accuracy losses due to
data transformation. Moreover, it performed better in road
surface detection; thus, noises caused by road pavement points
were rare. Compared with Yu’s method, the proposed method
made an over 10% improvement in F1-score when trajectories
were curved in Test Dataset 1. However, some errors still
occurred in the results. The errors in the extracted road
markings were mainly caused by road marking decay and
constant road marking extraction thresholds. Although road
marking extraction thresholds were separately determined in
each data block, intensity deduction still happened in the
data blocks. As a result, road marking points that had low
intensities due to the road marking decay might not be
extracted. Simultaneously, road surface points that had high
intensities could be falsely extracted as road marking points.
In addition, noises that were close to the road markings were
not eliminated by the density filtering, thus reducing precision.

In conclusion, the comparative study of the existing
road marking extraction methods indicates that the proposed
method can achieve a better performance than Chen’s Zhang’s,
and Yu’s methods in road intersection environments. More-
over, the proposed method does not require a certain distri-
bution of trajectory points, nor transformation of MLS point
clouds.

F. Accuracy Assessment of Transition Lines

The generated lane centerlines and transition lines are
assessed by the Buffer-overlay-statistics (BOS) method [45].
The method firstly generates buffers in various sizes around
test lines and reference lines and then compares them through
overlaying and statistics. To present a quantitative accuracy
assessment of lines features, buffering and overlaying is con-
ducted iteratively. For a number (n) of buffer sizes Bi , (1 ≤
i ≤ n), conduct the following four steps. Firstly, perform
buffering on the line features in the test dataset X and the
reference dataset R with Bi , and call the generated buffer
polygons X Bi and RBi , respectively. Secondly, overlay X
with RBi to generate a mixed dataset X RBi . Overlay R with
X Bi to generate a mixed dataset RX Bi . Thirdly, calculate the
sum length of the line segments from X outside RBi in X RBi

and the total length of line features in X . The recall Ci of X
is computed by [45]:

Ci = Length(RinsideX Bi )

Length(R)
. (6)

Finally, calculate the sum length of the line segments from R
inside X Bi in RX Bi and the total length of line features in
R. The miscoding Mi of X is computed by [45]:

Mi = Length(XoutsideRBi )

Length(X)
. (7)

GRF images that were generated from raw point clouds
were utilized as reference data. The gray values of pixels on
the GRF images were interpolated from the intensities of raw
point clouds using the IDW interpolation method [19]. The
resolution of the GRF images was set to be 2 cm. A detailed
description of GRF image generation can be found in [19].
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TABLE VIII

RECALL AND MISCODING OF TEST DATASETS 3 AND 4

Fig. 13. Generated transition lines and lane centerlines within reference
buffers. (a) Transition line validation using 15 cm buffer in Test Dataset 3.
(b) Transition line validation using 20 cm buffer in Test Dataset 3. (c) Tran-
sition line validation using 15 cm buffer in Test Dataset 4. (d) Transition line
validation using 20 cm buffer in Test Dataset 4.

Reference transition lines and lane centerlines were manu-
ally interpreted on the GRF images using ArcGIS v10.2.2.
Centered by the manually labeled transition lines and lane
centerlines, reference buffer zones with different widths, which
indicate the range between the buffer zone boundaries and the
manually interpreted transition lines and lane centerlines, were
created and overlapped with the generated transition lines and
lane centerlines.

The calculated values in both recall and miscoding of
the generated transition lines and lane centerlines from Test
Datasets 3 and 4 are listed in Table VIII. Reference buffers
with the width of 15 cm and 20 cm were created to evaluate the
performance of the proposed method. When conducting 15 cm
BOS to the lines, the recall of Test Datasets 3 and 4 achieved
91.83% and 90.98%, respectively, and the miscoding was
7.01% and 7.82%, respectively. When conducting 20 cm BOS
to the lines, the proposed method was capable of achieving
100% recall and 0% miscoding in Test Datasets 3 and 4. With
the increased width of reference buffers, the miscoding values
decreased, which demonstrated that most of the generated
transition lines and lane centerlines were located within the
precision allowable reference buffers. Therefore, the proposed

method can provide a 20 cm-level localization accuracy to
ensure the safety of autonomous vehicles and the precision of
HDRMs.

In addition, Fig. 13 presents the generated transition lines
and lane centerlines in Test Datasets 3 and 4 within 15 cm
and 20 cm width of reference buffers. The black rectangles
in Fig. 13 (a) and (c) indicate the miscoding parts in Test
Datasets 3 and 4 when the width of reference buffers was set
as 15 cm. Furthermore, it is identified that generated transition
lines and lane centerlines are completely located within the
reference buffers with 20 cm in width.

V. CONCLUSION

In this paper, we have presented a semi-automated method
for transition line generation in road intersections from MLS
point clouds. Four test datasets have been used in this study
to evaluate the performance of the proposed method. In the
validation of lane marking extraction using manually inter-
preted lane marking points, the method achieved average pre-
cision, recall, and F1-score of 90.80%, 92.07%, and 91.43%,
respectively. The success rate of transition line generation
was 96.5%. Moreover, the BOS method validated that the
proposed method can generate lane centerlines and transition
lines within a 20-cm range of reference path. In addition,
the comparative study demonstrated that the proposed algo-
rithm outperformed the other three existing methods in extract-
ing road marking from MLS point clouds in road intersections.

This paper concludes that the proposed stepwise method-
ology can generate transition lines and lane centerlines in
T-intersections and cross-intersections from MLS point clouds
to provide highly accurate navigation and localization services
for autonomous vehicles. It also provides a reliable solution
to overcome the challenges in the generation of HDRMs for
worldwide automotive manufacturers and mapping companies
such as HERE, Google, TomTom, and Baidu.
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