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Abstract— This paper presents a framework to build a joint
2-D–3-D traffic sign landmark data set for geo-localization using
mobile laser scanning (MLS) data. The MLS data include
3-D point clouds and corresponding multi-view images. First,
an integrated method, based on a deep learning network and
the retro-reflective properties of traffic signs, is developed to
accurately extract traffic signs from MLS point clouds. Next,
the semantic and spatial properties of the traffic signs (type,
location, position, and geometric characteristics) are obtained.
Then, a joint 2-D–3-D traffic sign landmark data set is built, and a
semantic-spatial organization graph is used to organize the traffic
sign data set. Last, based on the traffic sign landmark data set,
a geo-localization method for a driving car is proposed to estimate
the driving trajectory. It can be used for auxiliary positioning
of autonomous vehicles. Experimental results demonstrate the
reliability of our proposed method for traffic sign detection and
the potential of building 2-D–3-D traffic sign landmark data set
for driving trajectory estimation from MLS data.

Index Terms— Point cloud, multi-view images, mobile laser
scanning (MLS), traffic sign, joint 2-D-3-D, geo-localization.

I. INTRODUCTION

IN MODERN cities, as a part of road transportation systems,
traffic signs provide important information about the road

and the environment to guide, warn, or regulate the behavior
of drivers for safer and easier driving. Also, the information on
the traffic signs may provide important cues for understanding
complex road environments.
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Geo-localization is a problem of determining the geographic
location of each query image. It has a wide range of real-world
applications such as target tracking, trajectory estimation,
navigation, and provides a potential way for auxiliary position-
ing of autonomous vehicles, etc. Traditional geo-localization
approach is to predict the geo-location of a query image by
finding its matching ground-level images with known loca-
tion [1]. However, most of the places do not have ground-level
reference images available. Another alternative [2]–[4] is to
utilize 3-D objects or model information for more efficient and
accurate localization. Following this thread, we aim to explore
the possibility to use 3-D objects as landmarks on the street
for geo-localization. Compared with other 3-D objects on the
street, traffic sign has some good features which are suitable
for this application. First, traffic sign is stably located and is
always in a fixed location for a long time. Second, traffic sign
is distributed with spatial uniformity. For traffic safety, traffic
sign should be distributed evenly in geographical position.
Last, traffic sign is built discretely and isolated without severe
occlusion to ensure to be discerned and cognized exactly
by drivers. Thus, there is a potential, with great challenge,
to apply traffic sign as landmark for geo-localization.

Several groups have established traffic sign image bench-
marks, such as GTSDB/RB [5], [6], BelgiumTSD/TSC [7]
and Tsinghua-tencent [8]. These datasets contain tens of
thousands of labeled traffic sign images captured in various
environments. With access to these huge benchmarks, many
researchers have achieved excellent performance in detecting
traffic signs and classifying them based on a deep learning net-
work [9]–[11]. Shapenet [12] provides a certain number of 3-D
traffic sign models in CAD form. However, there is rarely
found real-world traffic sign datasets that provide 3-D data in
point cloud form and 2-D data in images. A 2-D-3-D dataset
that contains both point cloud and image data of traffic sign
can be provided for supervised learning or further exploring
the correspondent description of traffic sign in data feature.
Thus, detecting traffic signs in MLS point cloud/image data for
building a joint 2-D-3-D traffic sign dataset is very demanded.

To build such traffic sign dataset for geo-localization,
not only the 3-D point clouds with multi-view images
but also object sematic and spatial information should be
collected. Traditionally, semantic (sign type) and spatial
information (geometric feature) of traffic signs is mainly
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Fig. 1. Illustration of (a) RIEGL VMX-450 system. (b) Large-scale MLS
point cloud acquired by RIEGL VMX-450 system. (c) Traffic sign in 3-D
point clouds region. (d) Multi-view images of a traffic sign.

collected manually. Because of the resulting huge workload,
ensuring real-time and accuracy is difficult. In recent years,
more (semi-)automated methods have been developed to obtain
sign type [8], [13], [14] and geometric information [15], [16]
from traffic signs based on image. However, image is sensitive
to lighting conditions, angle of view, etc. Furthermore, accu-
rate spatial geometric information, an important component of
traffic sign characteristics, is difficult to calculate from images.
In addition, accurate spatial position and geospatial relations
among the same or different types of traffic signs cannot be
obtained from images.

Light Detection and Ranging (LiDAR) data have been
used for applications and research in many ITS applica-
tions [17]–[20]. Among the LiDAR systems, Mobile Laser
Scanning (MLS), used for 3-D city modeling, provides a
cost-effective solution to capture geospatial point clouds
with high precision. Because of the high-density, long-range,
and high-efficiency of the data acquired by MLS, the sys-
tem is used to detect and inspect traffic signs for inven-
tory [21], or detect objects like car, pedestrian in real-time for
autonomous driving [22]–[24]. Fig. 1 shows a MLS system
(RIEGL VMX-450 system), and MLS point cloud with multi-
view images acquired by the system. However, for traffic
sign detection based on MLS data, current methods, like
shape-based [25] or retro-reflective-based [26] methods, are
suitable only for dealing with traffic signs in good condition.
In our previous works, the retro-reflective properties of sign
board [27], [28] and shape-like characteristic [21] were utilized
to roughly detect the signs and then multi-condition filtering
(e.g. height, evaluation, etc.) was used to finely detect the
signs. In [29], a visual phrase dictionary was generated from
training data to construct bag-of-visual-phrases representa-
tions (BoVPs). Detecting traffic signs was then achieved based
on the similarity measures between the BoVPs of the query
object and the segmented semantic objects. This method
performs well on signs in good condition but cannot work
on signs with challenging conditions like deformed shape and
tilted or fallen situations caused by human or natural disasters.

In this paper, we propose a framework to build a 2-D-3-D
traffic sign landmark dataset and provide a method of geo-
localization based on the landmark dataset. The flowchart of
the proposed framework is shown in Fig. 2. First, to accurately
extract traffic signs from the MLS data, we develop an
integrated sign detection method based on a deep learning

network and the retro-reflective properties of traffic signs.
Next, the semantic and spatial properties of the traffic signs,
including type, location, position and geometric characteris-
tics, are obtained. Then, with these properties, a joint 2-D-3-D
traffic sign landmark dataset and an organization graph is built
for geo-localization. Driving trajectory estimation is provided
as a geo-localization test based on the traffic sign landmark
dataset.

The contributions of this paper are summarized as follows:
(1) A geo-localization method is proposed to estimate

the driving trajectory based on a joint 2-D-3-D semantic-
spatial traffic sign landmark dataset. The driving trajectory
is estimated by concatenating the image geo-location points
obtained by Single-Photo Resection (SPR) with the captured
traffic sign image and the correspondent point cloud. The
dataset, which includes 3-D point clouds, correspondent multi-
view 2-D images, sign types, locations, position and geomet-
ric characteristics, can be a potential localization reference
and provides a possible solution of auxiliary positioning for
autonomous vehicles.

(2) To build traffic sign landmark dataset accurately and
rapidly, a robust and rapid traffic sign detection method is
developed. Proposed detection method can handle with traffic
signs in poor pose condition (e.g. tilted and deformed) and
challenging image scenarios. Based on the detection results
transferred from traffic sign detection in images, traffic signs
with poor poses in point clouds can be successfully detected.
Based on the detection results using the retro-reflective proper-
ties in point clouds, the mis-detected traffic signs in images due
to poor illuminations or partial occlusions can be successfully
detected.

The remainder of the paper is organized as follows:
Section II reviews the related work. Section III details the
proposed traffic sign detection method and the description
of the semantic and spatial properties of the detected traffic
signs. Section IV introduces our 2-D-3-D traffic sign landmark
dataset and driving trajectory estimation. Section V discusses
the experimental results. Section VI concludes the work.

II. RELATED WORK

Types of traffic signs and the extraction of spatial informa-
tion are important issues in road scene understanding. As a
reflection of the function of a traffic sign, it is essential
that its type be recognized when gathering associated traffic
sign information. Most current works are based on images.
Nowadays, because of its high accuracy, one of the most
popular methods for traffic sign recognition uses a deep
learning network [30], [31]. Due to the lack of informa-
tive textures in MLS point clouds, it is difficult to directly
recognize extracted traffic sign point clouds, unless they have
RGB values. In [27], the type of shape of a traffic sign
is obtained by using geometric shape property and the 3-D
shape context. Riveiro et al. [32] converted 3-D space into a
raster image and evaluated the polynomial curves for different
types of shapes of signs. However, a detailed type is still
unknown. Since MLS systems simultaneously capture multi-
view image data along with 3-D point cloud data, the type of
traffic signs can be recognized with the assistance of images.
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Fig. 2. Flowchart of the proposed framework.

It can be achieved by using classifiers, like the Gaussian-
Bernoulli deep Boltzmann machine-based hierarchical [29]
and SVM classifier [21], [33], to recognize on-image sign area,
which is obtained by projecting the 3-D points of each traffic
sign onto a 2-D image. However, only traffic signs in good
condition that are detected in point clouds can be correctly
recognized.

As for traffic sign spatial information, most works focus
only on tilt angle [15] or mutations [16] in images. In addition,
some information, like 3-D localization [7], is analyzed further.
Spatial information about traffic sign is easy to obtain from
MLS data regarding the high precision and high-density 3-D
data acquired. Automatic inspection processed have been
proposed for acquiring the position and placement of traffic
signs, including height of the traffic placement of traffic signs
poles, planarity of the traffic sign boards, etc. [21], [33]. Thus,
combining 2-D images and 3-D data to provide semantic and
spatial information, respectively, is significant for ITS tasks.

Recently, indoor RGB-D datasets, for example NYU
Depth v2 [34], SUN RGBD [35] and SceneNN [36], have been
introduced into object recognition and scene understanding.
These datasets provide images and 3-D point clouds (or water-
tight mesh models) of the indoor scenes. 2-D-3-D-S [37] is a
2-D-3-D semantic indoor dataset with several different modal-
ities of images, like RGB, depth and semantically annotated
3-D meshes, and point clouds. Compared with outdoor scenes,
indoor scenes have smaller areas with controlled lighting.
A 2-D-3-D benchmark (PASCAL3-D+ [38]), which provides
2-D-3-D alignments to 12 rigid categories with each category
having more than 3,000 object instances, was built to detect
3-D objects in the wild. ObjectNet3-D [39] is a larger scale
2-D-3-D dataset consisting of 100 object categories, including
both indoor and outdoor objects. Although these datasets
align 2-D objects in images with 3-D CAD shapes and have
semantic annotations, they lack the pose and geometric char-
acteristics of each specific object. For different applications,
such as street object inventory, object retrieval, and street
scene understanding in autonomous driving, spatial informa-
tion about street objects is important. Building a real-world

2-D-3-D dataset that provides both 3-D point cloud data and
2-D images, especially specific spatial information about each
object, is of great significance.

III. PROPOSED FRAMEWORK

A. Traffic Sign Detection Using Point Cloud and Images
In this section, we present a combination of method based

on the deep learning network and retro-reflectivity for traffic
sign detection. Fig. 3 shows an illustration of the proposed
detection process. The original point clouds are firstly parti-
tioned into several blocks due to the large size of the point
cloud data. Then, based on the trajectory data, the 3-D points
that are farther than d (20 meters in the paper) from the MLS
device are filtered out. In this way, only the objects on both
sides of the lane where the MLS device is driven are retained
for further processing. Thethreshold d is chosen based on the
specific road width. Here, a traffic sign is defined as a highly
retro-reflective vertical plane.

In recent years, several public traffic sign image benchmarks
have shown superior performance for classification and detec-
tion of traffic signs with deep learning methods. In this paper,
we use the benchmark, Tsinghua-Tencent 100K [8], which
contains 100,000 high resolution traffic sign images annotated
with class labels, bounding boxes, and pixel masks, to train
two neural networks, YOLOv3 [40] and FCN model [8]
(for comparison) for traffic sign detection. Using the above
trained models, we detect traffic signs in multi-view images
captured by four high-resolution cameras mounted on a
RIEGL VMX-450 MLS system (Fig. 1).

After traffic sign detection in images, the proposed method
consists of next three steps:

(1) Coarse traffic sign region transferred from images:
As shown in Fig. 3(a), a series of bounding box results
of traffic sign are obtained using detection network. Once
an image has any detected traffic signs, we assume traffic
signs exist in the neighborhood of the location where the
image is captured. To obtain coarse region of those results
in point clouds, we first define the neighborhood as a circle
with radius r around the image location in the XY-plane.
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Fig. 3. Illustration of traffic sign detection. (a) Traffic sign detection in images. (b) View of two images in point clouds. (c) Projected points in half circle
range onto the images to find coarse sign region point clouds. (d) Coarse traffic sign region point clouds. (e) Traffic sign and other object within overlapping
region. (f) Non-overlapping region.

Then, points in point clouds within this circular range are
projected onto the image according to the corresponding rela-
tionships between the multi-view images and the point clouds.
In practice, depending upon the camera direction, only half of
the points within the circle need to be projected (see Fig. 3(c)).
With the intrinsic and extrinsic parameters given in the MLS
system, the corresponding relationships are obtained. A 3-D
point in the world coordinate system is transformed into a
point in the image coordinate system by applying:

sm̃ = A [R|t] M̃ (1)

where M̃ = [Xw, Yw, Zw, 1]T
and m̃ = [u, v, 1]T represent

the homogeneous coordinate of a point in world frame and
in image frame, respectively; s is a scaling factor; A and
[R|t] are the intrinsic and extrinsic camera parameter matrix,
respectively. Then, the points, which can be projected onto the
bounding box in the image, are regarded as potential points of
the traffic sign board. These points are clustered as a coarse
traffic sign region, as shown in Fig. 3(d).

(2) Detection in overlapping regions: Considering that the
multi-view images are acquired simultaneously, a traffic sign
can be detected in more than one image. Thus, with multiple
detections of the same traffic sign, we obtain more than
one coarse area of the sign from different views (Fig. 3(d)).
If two or more coarse areas of a potential traffic sign are
determined, it is possible to detect accurate potential traffic
signs in point cloud data. The overlapping region is extracted
by obtaining the indices of points that are projected onto
bounding box in the images more than once. After processing
all images, overlapping regions with true traffic signs and few
other objects are obtained (see Fig. 3(e)). In this way, traffic
signs, including those in poor pose conditions within these

overlapping regions will be detected. Then, after height and
shape filtering for separated clusters, accurate traffic signs are
extracted.

(3) Detection in non-overlapping regions: After detec-
tion in overlapping regions, most of the traffic signs can
be extracted. However, in real situations, some traffic signs
captured in a single view, and other types of traffic signs,
cannot be detected in the images because of a lack of train-
ing samples. To this end, we use a retro-reflectivity-based
method, which is straightforward in point cloud but with strict
constraints, to extract the remaining traffic signs from the
non-overlapping regions (see Fig. 3(f)). The non-overlapping
regions are obtained by removing overlapping regions from
original point clouds.

A voxel-based ground removal method [41] is used first to
remove the ground points. Next, the points with an intensity
value lower than a threshold, ωc, are filtered out and an
Euclidean distance clustering method is applied to partition
the remaining points into separated clusters.

Finally, based on the prior knowledge of traffic signs,
thefollowing four conditions are adopted to filter out the
objects, except for traffic sign boards: 1) Hit count filtering.
A cluster is removed if the number of points, with an intensity
value larger than ωI , is less than NI ; 2) Elevation filtering.
The difference of the z-coordinates between the segment
centroid and the ground points must be at least He; 3) Height
filtering. The difference of the z-coordinates between the
highest and lowest points of a cluster must be larger than Hc;
4) Shape filtering. Considering that a traffic sign board is
normally a flat object, for each cluster, a Principal Component
Analysis (PCA) is performed on the covariance matrix of its
points. Then, Eigenvalues (λ1 > λ2 > λ3 > 0) are used to
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Fig. 4. Illustration of detected traffic signs with bounding box and class label.

compute linearity as a1D = (
√

λ1 − √
λ2)/

√
λ1 and planarity

as a2d = (
√

λ2 −√
λ3)/

√
λ1. If a1D is larger than Sl , and a2d

is smaller than Sp , the cluster cannot be a sign board and is
filtered out.

After filtering, a traffic sign pole is retrieved along the down-
ward direction of the extracted traffic sign board. However,
a traffic sign may adhere to other objects after retrieving the
pole. In this case, to set them apart, we introduce a voxel-
based normalized cut segmentation method [29]. The weights
on the edges of the complete weighted graph also introduce
intensity features of the voxels as follows:
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wherepXY
i = (xi , yi ) and pXY

j = (x j , y j ) are the coordinates
of the centroids on the XY plane. pZ

i = zi and pZ
j = z j are the

z coordinates of the centroids. I n
i and I n

j are the interpolated
normalized intensities of the points in voxels i and j , respec-
tively. σ 2

XY , σ 2
z and σ 2

I are the variances of the horizontal,
vertical and intensity distributions, respectively. Restraining
the maximum valid horizontal distance between two voxels
is a distance threshold, dXY .

B. Traffic Sign Semantic and Spatial Properties
1) Semantic Property-Sign Type: Traffic sign semantic

property, that is, traffic sign type label, are acquired by a
Traffic Sign Recognition (TSR) process. Previous works on
TSR using point cloud data are usually based on image
recognition using different classifiers after projecting the point
cloud of detected signs onto images. In our method, the type
of traffic sign point cloud is analogously obtained based on
image recognition. We first detect the traffic sign regions in
images based on network model. Simultaneously, the sign type
is obtained. As shown in Fig. 4, a bounding box with a unique
label, which represents the sign type, surrounds the detected
traffic sign.

Fig. 5. Illustration of traffic sign spatial properties measurement.

Based on the recognition results of the multi-view images,
a sign type is obtained by the types of labels from those
images. However, because of the differences in distance or illu-
mination, the model may recognize a traffic sign in a different
image as a different type. If all types of labels in multi-view
images are randomly transferred to a point cloud, a traffic sign
may be given multiple labels. As a result, the type of label
of a point cloud is not unique. Considering that recognition
performance becomes less reliable with an increase in distance
between the location of the traffic sign and the LiDAR sensor,
we first re-assign the original score of the probability of the
label type for each image, based on distance. Then, to select
the most likely type of label for a point cloud, the following
selection formulas are used to balance two determining factors:
the number of times a single type of label is repeated and the
score of the probability of that type of label:

L̂ = argmaxWLi (3)

WLi = ω1
NLi

�n
1 NLi

+ ω2
Avrs Li

�n
1 Avrs Li

(4)

where Li denotes the possible type of label, i ; L̂, computed
as the argmax of a weighted function WLi , is the most likely
type of label in a point cloud; NLi is the number of times
label type, Li , is repeated. AvrSLi is the average score for the
repeated type of labels, Li ; ω1 and ω2 are the weighted values
of the two factors.

Multiple signs, with more than one type in a sign board,
cannot be dealt with in this way. In practice, each part of a
type is separated in the detection stage and then merged after
assigning type labels to all the parts. In addition, traffic signs,
which cannot be recognized in the images, are temporarily
classified together as unknown types of signs.

2) Spatial Properties: Based on our previous work [21],
the following parameters (see Fig. 5) are used to describe the
spatial properties of the traffic signs:

• Location: Location is defined as the coordinates of the
centroid of the bottom ring for a traffic sign pole;

• Position: (1) the horizontal distance (dt) between the
traffic sign locating point (point T ) and the road bound-
ary point closest to the traffic sign in the horizontal
plane (point R); (2) the horizontal angle (αd) between
the tangent vector of point R(vr ) and the normal vector
of the traffic sign board (nt).
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• Geometric characteristics: (1) height (ht ) of the traffic
sign above the ground, defined as the height of the
centroid of the traffic sign board over the ground; (2) the
inclination angle, αt , included between the distribution
direction (np) of the traffic sign pole and the vertical
direction with respect to the orientation of the traffic sign
board; (3) the inclination angle, αp, included between the
distribution direction (np) of the traffic sign pole and the
vertical direction with respect to the profile of the traffic
sign board.

Additionally, the planarity of the traffic sign, which is
measured by the standard deviation of the laser points on
the traffic sign board, can also be calculated. Also, using the
combination of features extracted from a traffic sign point
cloud and the corresponding image, the visibility of a traffic
sign can be estimated as follows [42]:

Vs = 1

N

∑N−1

t=0

∑D

d=1
wd Md ( f t ) (5)

wd = (w1, w2, w3, w4, w5, w6, w7, w8) (6)
∑i=8

i=1
wi = 1 (7)

where f is a feature vector that integrates the spatial-related
features and the image features, N represents number of
scene, Md (f). wd is a positive weighted vector for the basis
function vector.

IV. TRAFFIC SIGN LANDMARK DATASET

FOR GEO-LOCALIZATION

A. Traffic Sign Landmark Dataset Construction
Using the proposed framework, joint multi-view images and

3-D point clouds of traffic signs with semantic and spatial
properties were obtained from our data collections.

For some mis-recognized types of signs and traffic signs
detected based on point cloud only, the types of some traffic
signs are false or unknown. For signs with false or unknown
type, we projected the point clouds onto images to obtain the
corresponding images, and then manually identified the sign
type according to the images. These images were cropped
automatically to keep only traffic sign regions. Then, images
that are blurred, or contain only the backs of signs, are
eliminated. After that, a number was assigned to both the point
cloud and the corresponding images to determine the associa-
tion between them. Each traffic sign point cloud contains more
than one multi-view image showing the front of the sign. Next,
a traffic sign landmark dataset with 2-D images and 3-D point
clouds was built. As shown in Fig. 6, semantic and spatial
properties of each traffic sign are associated with 2-D images
and a 3-D point cloud, resulting in a complete 2-D-3-D traffic
sign landmark dataset. Based on this dataset, the simplified
organization graph can be constructed.

Considering the reset or position change of some traffic
signs, which lead to changes in semantic and spatial prop-
erties of the traffic signs in the dataset, the dataset needs
to be updated regularly. If a traffic sign, which has been
changed or reset, is explicit, the point clouds, images and
spatial properties can be obtained by equipment like static
laser scanner, camera and total station. A large-scale update of

Fig. 6. Illustration of simplified process of a traffic sign dataset and
organization graph construction.

traffic signs may occur if the roads are rebuilt. In this situation,
a new MLS scanning process is needed to accurately update
the dataset. The traffic sign dataset can be considered as an
independent basic library once it is built using our proposed
process. Thus, a new scan for the traffic signs is irrelevant to
the dataset.

B. Geo-Localization Based on Traffic Sign
Landmark Dataset

The traffic sign landmark dataset can be further used for
geo-localization of a car with a dashboard camera. Assuming
a car is driven on an unknown road, obtaining the accurate geo-
location is difficult if based only on the speed and direction
of the car, or on the GPS, for which the margin of error is
about five to ten meters. But, with some real-world references
on the road, the precise location of the car is more likely to
be achieved. To estimate the trajectory of the car driven on
a road where we have collected traffic sign data, we propose
using the images captured by the dashboard camera and the
traffic sign landmark dataset. The geo-location of the car at
any given time is regarded as the image geo-location captured
by the dashboard camera at that time. Thus, estimating the
trajectory of the car can be converted into a problem of
obtaining geo-locations of a series of consecutive images. This
problem, known as Single-Photo Resection (SPR), is a tra-
ditional photogrammetric problem that is usually solved by
relating 2-D image points to corresponding 3-D object points.
In the traffic sign landmark dataset, 3-D traffic sign point
clouds are real-world coordinate points. Thus, the key to solve
this problem is to build a relationship between the images from
the dashboard camera and the point clouds in the traffic sign
dataset. Because the point cloud and the corresponding multi-
view images in the dataset have been assigned the same ID
number, the traffic sign point cloud can be retrieved by finding
the most similar image for a given image containing the traffic
sign object and then selecting control points to calculate the
image geo-location point.

The method consists of the following four procedures:
(1) Traffic sign detection for images: First, we use images

captured from the dashboard camera to detect traffic signs.
Once an image contains a traffic sign, from the traffic sign
landmark dataset, we can retrieve all traffic sign point clouds
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and related images within a circle with radius, Rs (20 meters in
this paper), around the initial GPS positioning location. After
that, each given image has the corresponding search library
for the next procedure.

(2) Image-based 3-D point cloud retrieval: The goal is
to find the 3-D point cloud that is most similar to a given
image. Image retrieval is determined based on the similarity
of the measurements of the image features. The most common
image features include color, shape, and texture features,
like RGB, Histogram of Oriented Gradient (HOG), Scale-
invariant feature transform (SIFT), etc. Compared with these
traditional features, the feature extracted from the convolution
network has proved to be effective in many applications
like detection and classification. Thus, to increase the accu-
racy of retrieved results, a public pre-trained network model,
ImageNet-VGG-f [43], consisting of eight layers, five of which
are convolutional and the last three fully-connected, is used to
extract image features. After comparing the feature vector of
the given image with the feature of each image in the search
library, the traffic sign point cloud of the given image is found
from among the N returned point clouds and corresponding
images. Since the point clouds and images in the search library
are from the neighborhood of the initial GPS positioning
location, many unnecessary interferences have been filtered
out, which greatly improves the accuracy of the retrieved
results and reduces the retrieval time.

(3) Calculating geo-location of an image: With the image
and related point cloud, SPR is used to determine the six
Exterior Orientation Parameters (EOP’s) associated with the
image, including the image geo-location (Xo, Yo, Zo) and
three-dimensional rotation (ϕ, ω, κ) of the camera. Using at
least three non-collinear conjugate points (control points) in a
least squares adjustment based on the collinearity equations,
the traditional method takes the following form:

x−x p = − f
a1 (X − Xo) + b1 (Y − Yo) + c1(Z − Zo)

a3 (X − Xo) + b3 (Y − Yo) + c3(Z − Zo)
(8)

y−y p = − f
a2 (X − Xo) + b2 (Y − Yo) + c2(Z − Zo)

a3 (X − Xo) + b3 (Y − Yo) + c3(Z − Zo)
(9)

where x p , yp are the coordinates of the principal point; f is the
focal length of the camera; ai , bi , ci (i = 1, 2, 3) are the

elements of the rotation matrix R = Rϕ Rω Rκ =
⎡

⎣
a1 a2 a3
b1 b2 b3
c1 c2 c3

⎤

⎦.

In our method, we use a collinearity equations-based approach,
where control points are selected interactively. The control
points of the traffic sign point cloud, initially set as the corner
points of the 3-D bounding box of the sign board and lowest
point of the pole, are then modified manually. The correspond-
ing control points in the image are selected accordingly. For
a series of control points, the optimal p for the EOP’s is
computed as the argmax of an error function E(p) that is
accumulated by inserting the coordinates of the control points
into the collinearity equations point by point:

E (p) =
∑n

i=1

∥
∥
∥
∥xi − xo+ f

ui

wi

∥
∥
∥
∥

2

+
∥
∥
∥
∥yi − yo + f

vi

wi

∥
∥
∥
∥

2

(10)

p∗ = arg min
p

E(p) (11)

TABLE I

DESCRIPTIONS OF THE THREE SELECTED DATA COLLECTIONS

TABLE II

PARAMETERS USED IN METHOD

where n is the number of control points; xi , yi represent
the coordinates of the image point i that corresponds to the
object point (Xi , Yi , Zi ). ui , vi , wi represent a1 (Xi − Xo) +
b1 (Yi − Yo) + c1(Zi − Zo),a2 (Xi − Xo) + b2 (Yi − Yo) +
c2(Zi − Zo) and a3 (Xi − Xo) + b3 (Yi − Yo) + c3(Zi − Zo),
respectively. With one of the Quasi-Newton methods (BFGS),
the optimal p for the EOP’s is solved by minimizing the error
function E (p).

(4) Result check: Because of the possibility that results
may be erroneously retrieved, it may be incorrect to consider,
as the final result, only the geo-location, which is calculated
using the most similar traffic sign point cloud with the given
image. Thus, once the geo-location is determined, it should be
checked by the initial GPS positioning location. If the error
between the geo-location and the GPS positioning location is
greater than a preset threshold (4 meters in 2-D Euclidean
space in this paper), the next similar point cloud should be
iteratively calculated until the image geo-location is within
the allowable range of error. For a series of the image geo-
location points, the trajectory of the car is estimated by linearly
concatenating the trajectory points.

V. EXPERIMENTS AND RESULTS

A. System and Data
In this study, MLS data, including point clouds and images,

were acquired by a RIEGL VMX-450 system (Fig. 1(a)).
The accuracy of the acquired point clouds is within 8 mm,
and the precision is within 5 mm. To obtain traffic sign
landmarks by our traffic sign detection method, three data
collections were selected from the following sources: the
surveys of Huandao Road (HDR), Wenping Road (WPR) and
Xiahe Road (XHR), Xiamen, China, conducted in Decem-
ber 2013, August 2016, and September 2016, respectively.
These roads represent a typical urban road environment with a
considerable number of traffic signs. The XHR survey, which
revealed many fallen trees, was acquired after the attack of
Typhoon Meranti. In XHR survey, some traffic signs, which
are deformed or tilted, are a great challenge for traffic sign
detection. A detailed description of these three data collections
is given in Table I.

B. Traffic Sign Detection
1) Parameter Analysis: Table II gives the parameters used

in our traffic sign detection method. Table III lists the influence
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TABLE III

INFLUENCE OF EACH PARAMETER ON THE RESULTS

TABLE IV

PRINCIPAL COMPONENT ANALYSIS OF SIGN BOARDS

of each parameter on the results if it is set too small (S) or too
large (L).

The radius of projection circular range, r is set, based on the
largest distance between the MLS camera and a traffic sign that
can be detected in an image. The coarse point cloud region of
detected traffic sign in image may cannot be transferred from
image if r is set too small. If r is set too large, it will take too
much time to project points onto image to find coarse traffic
sign region. In this paper, we set r to be 30 meters.

Intensity filtering value, ωc is set, based on the intensity
values of the traffic sign points. If ωc is set too small, it will be
difficult to partition the remaining points into separated object
clusters after the initial intensity filtering. Some traffic sign
boards may be mis-detected because they clustered with other
objects, resulting in matching the filtering conditions. If ωc is
set too large, points with not-high intensity in sign board will
be filtered out, causing the incompleteness of the sign board
and mis-detecting. In this paper, we set ωc to be 40000.

Intensity threshold, ωI is usually set about 50000 to 60000
depending on the high intensity value of points on sign board.
In this paper, we set ωI to be 55000. The number of points
with an intensity value larger than ωI , NI is set according
to the number of minimum sized boards. If NI is set too
small, some false objects with few high intensity points will
be retained. If NI is set too large, some sign boards have
only few high intensity points due to retro-reflective material
deterioration, may be filtered out. In this paper, we set NI to
be 285.

Elevation threshold, He and height threshold, Hc are deter-
mined directly based on local traffic facility construction
standards. Once He and Hc are set too small, some objects
like traffic cone and license plate are falsely detected as sign
board. In addition, low elevation traffic signs will be filtered
out if He is set too large. If Hc is set too large, triangle signs
whose board height is short will be filtered out as well. In this
paper, we set He and Hc to be 1.5 and 0.7 meters, respectively.

After analyzing the principal component of 197 traffic sign
boards, as shown in Table IV, linearity threshold, Sl is set
as the maximum value of linearity, and planarity threshold,
Sp is set as the minimum value of planarity. If Sl is set too
small, it may miss some big sign boards whose linearity is
large, or if Sl is set too large, light pole or trunk may be
erroneously regarded as board. If Sp is set too small, it may

retain some board-like objects, or if Sp is set too large, it may
miss some small signs whose planarity is small. In this paper,
we set Sl and Sp to be 0.85 and 0.11, respectively.

In addition, the variances of the horizontal, vertical and
intensity distributions, respectively, σ 2

XY , σ 2
z , σ 2

I , and the
distance threshold restraining the maximum valid horizon-
tal distance between two voxels, dXY , the optimal parame-
ter configurations used in the voxel-based normalized cut
segmentation method are set according to [29].

Thus, these parameters should be anatomized and reason-
ably set before experiments. However, they are not fixed values
in any context. For point clouds collected using different
systems, ωc, ωI and NI , which are related to the attributes of
density and intensity, should be reset accordingly. For traffic
signs with different design standards, He, Hc, Sl and Sp should
be modified accordingly.

2) Quantitative Assessment: To quantitatively assess the
accuracy of the proposed traffic sign detection method, detec-
tion results were given using the three selected data col-
lections. We compared the extracted traffic signs with the
manually labeled reference data and adopted the following four
indices as follows:

Recall = T P

T P + F N
(12)

Precision = T P

T P + F P
(13)

Quality = T P

T P + F N + F P
(14)

F1 measure = 2 ∗ T P

2 ∗ T P + F N + F P
(15)

where TP, FN, and FP denote the numbers of true positives,
false negatives, and false positives, respectively.

Fig. 7 shows an example of part of the traffic sign detection
results in 3-D point clouds. Details of the quantitative evalua-
tion results are given in Table V. The average precision, recall,
F1-measure, and quality of the proposed traffic sign detection
algorithm achieved (YOLOv3-based/FCN-based) using the
three selected data collections are 0.949/0.940, 0.931/0.963,
0.940/0.951, and 0.887/0.907, respectively. The results indicate
the proposed method efficiently detects traffic signs using
MLS data. Comparing with the FCN-based method, the
YOLOv3-based method for traffic sign detection in images has
higher accuracy. Thus, after transferring from images, fewer
FPs exist in overlapping region point clouds, leading to higher
precision of YOLOv3-based method. However, it has lower
recall than the FCN-based method for image object detection.
Once traffic sign results cannot be transferred from images,
the detection result is from retro-reflective-based method,
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Fig. 7. Illustration of a part of traffic sign detection results. (a) Raw point cloud. (b) Detected traffic signs.

TABLE V

QUANTITATIVE EVALUATION OF DIFFERENT TRAFFIC SIGN DETECTION METHODS

which is applied directly in point clouds. Thus, YOLOv3-
based method achieved lower detection recall than FCN-based.
In conclusion, with the advent of faster and more accurate on-
image detection networks, transferring detection results from
image will attain higher precision and recall.

In addition, the following three typical methods were com-
pared with our method: an intensity-based (IB) method [28],
a pole-based (PB) method [21], and a Gaussian Mixture
Model-based (GB) method [33]. Shown in bold in Table V
are the best experimental results, which indicate that our
proposed method outperforms the other methods for detecting
traffic signs. Comparatively, the IB method achieved better
performance than the PB and GB methods. In the PB method,
pole-like objects (linear structures) are extracted first based
on a PCA analysis. However, the linearity threshold in PCA
cannot be self-adapted and is always pre-defined in accordance
with the common thin poles. Thus, the PB method may not
be able to deal with a huge pole or pole structure loss.

The large number of reflective objects in the city streets
(e.g. planar metallic surfaces and some pedestrian reflective
clothing) in our selected datasets strongly influence the pre-
cision of the methods based on retro-reflective properties for
urban road environment. The PB and GB method uses retro-
reflective properties to detect traffic signs. In this case, some
sign boards, whose retro-reflective properties are partially lost
due to material deterioration, may be erroneously filtered out.
Also, in the GB method, a Gaussian Mixture Model with
two components was trained to analyze the distribution of the
intensity of both non-reflective and retro-reflective points to set

them apart. Training samples strongly affect performance. The
IB method, especially, is very sensitive to reflective objects.
Although the IB method has the highest recall among the
compared methods, because of the increase in FPs, there is
a decrease in precision and global quality.

To further test the performance of our method, we recon-
structed a part of road scene point clouds using a series
of single frames and ground truth poses from the odometry
benchmark (one of KITTI dataset [44]), which was collected
by a Velodyne multi-beam laser scanner. Due to the lack of
camera extrinsic parameters, the detection point clouds cannot
be transferred from image detection results. Thus, we only
applied the retro-reflective-based method to this data. Consid-
ering the elevation and size of traffic signs in this dataset are
lower and smaller than ours, the parameters NI , He and Hc

in the experiment were modified to be 150, 1.3, and 0.5,
respectively and other parameters remained the same. As show
in Table V, the precision, recall, F1-measure, and quality in
KITTI dataset are 0.905, 0.893, 0.899, and 0.817, respectively.
Thus, our method also achieved satisfying results on KITTI
dataset.

3) Traffic Sign Detection in Challenging Conditions: To test
our traffic sign detection method under challenging conditions,
three scenes with traffic signs in poor pose condition (Fig.8(a))
were selected from the XHR dataset (collected after Typhoon
Meranti). Most of the existing sign damage is deformation of
the sign boards. In our previous work [45], we demonstrated
the feasibility of our method. The detection results of the
traffic signs with challenging 3-D form, generated by our
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TABLE VI

COMPUTING TIME OF EACH PROCESSING STEP AT THE TRAFFIC SIGN DETECTION STAGE

Fig. 8. Some examples of traffic sign in challenging conditions detected.
(a) Challenging 3-D form. Images of traffic signs in poor pose conditions (left
side), Point clouds of traffic signs in poor pose conditions (middle) and
detection results (right side). (b) Challenging image scenarios: strong illu-
mination (left side), poor illumination (middle) and large viewpoint (right
side).

detection method, are given in the right side of Fig. 8(a).
The results indicate our proposed method performs well and
achieves good results for traffic sign detection under challeng-
ing 3-D forms. These traffic signs in poor pose conditions
are difficult to be detected in point clouds because of retro-
reflective material and geometrical property loss. With the
combination of traffic sign detection results in images, which
are not associated with the conditions of traffic sign in 3-D
form, our method effectively deals with the failure detection
of traffic signs in point clouds.

In addition, we considered the effects of challenging
image scenarios such as strong illumination, poor illumi-
nation and large viewpoint (shown in Fig. 8(b)) in traffic
sign detection performance. It is still very challenging to
effectively detect traffic signs in above image scenarios using

TABLE VII

LABELING RESULTS OF TRAFFIC SIGN POINT CLOUDS

image-based methods. However, since point clouds are more
immune to environmental conditions, we can detect those
traffic signs directly based on the retro-reflective properties
in point clouds. The two methods are complementary. Thus,
the integrated method is robust to traffic sign detection for
different situations.

4) Time Performance: In our experiments, we used a
trained YOLOv3 (and FCN for comparison) for traffic
sign detection in images with a Linux PC with an Intel
Core (TM) i5-4460 CPU and two NVIDIA Titan Z GPUs
with 12GB memory. To reduce the time cost of detecting
images, we partitioned the images in each dataset into four
groups and ran them in parallel. The obtaining image detection
results were then used for transferring coarse traffic sign region
in point clouds, which is the next step of the remaining
proposed framework. The remaining proposed framework,
coded with C++, was run on a personal computer configured
with an Intel(R) Core (TM) i7-6700 CPU 3.4 GHz and a RAM
of 16 GB.

As shown in Table VI, the transfer of coarse traffic sign
regions from images required most of the total processing
time except detection in images. Total computing time (not
including data acquisition time) for traffic sign detection
(YOLOv3-based and FCN-based) in the HDR, WPR, and
XHR datasets were about 13.40/340.54, 14.79/306.94, and
23.34/939.76 min, respectively. For YOLOv3-based method,
the computing time of detection in images was greatly shorten
compared with FCN-based method. The overall computational
efficiency of the traffic sign detection was greatly improved.

C. Sign Type Recognition
For classifying the true type of a sign, the following are

of equal importance: two determining factors of selection
formulation, times a single type of label type is repeated, and
the probability score of the type of label. Thus, the weight
value ω1 and ω2, are set at 0.5. In practice, the perfor-
mance of traffic sign recognition mainly depends on the
deep learning network and training samples. In [8], network
performance is evaluated in detail. Achieved accuracy and
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Fig. 9. Illustrations of parts of traffic sign point clouds and related images in our landmark dataset.

Fig. 10. Illustration of the organization graph with traffic sign landmarks. (a)–(f) Representative traffic signs of each category.

recall are 88.0% and 91.0%, respectively. To evaluate the
performance of sign recognition, 335 traffic sign point clouds
with signs (except those of unknown type) were selected from
the detection results for comparison with true labels from the
images.

As shown in Table VII, by reassigning the scores for the
types of labels and using the selection formulation, we achieve
an average accuracy of 92.15%, which to a certain degree,
is an improvement when compared with the result without for-
mulation selection. False labeling occurs when all the images
containing same traffic sign, recognized by the network, obtain
false label types.

D. Dataset Visualization and Organization Graph
The dataset consists of 39 sign types, 1,306 2-D images

captured from different views, and 442 3-D point clouds,
along with their semantic and spatial properties. Currently,
two parameters of semantic properties, traffic sign planarity
and visibility, are not considered in the dataset. Fig. 9 shows
some example point clouds and related images in our dataset.

Based on this dataset, an organization graph for traffic signs
of the same type was built (see Fig. 10). The node of the
graph represents a recognized traffic sign with semantic and
spatial attributes. The edge between nodes is the Euclidean
distance between the two signs in 3-D space. In conformance
with the semantic property, traffic signs of the same type are
connected. In conformance with the global spatial property
(i.e. the traffic sign location in the real world), the traffic
signs are connected to a specific road area. In conformance
with the local spatial properties (i.e., traffic sign positions),
the relationship of a traffic sign to the local road environment
is provided.

The traffic sign landmarks along with semantic and spa-
tial information are exported to a Geographic Information
System (GIS) vector layer. Fig. 11 shows the traffic sign
landmarks with semantic and spatial properties clearly and
intuitively visualized over an orthophoto in GIS under the
visual interface. The semantic and spatial properties can be
easily acquired by clicking the traffic sign in the inter-
face. With the combination of big traffic data like traffic
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TABLE VIII

mAP (%) RESULTS OBTAINED BY USING DIFFERENT SIMILARITY MEASUREMENT DISTANCE IN TWO DATASETS

Fig. 11. Traffic sign landmarks with semantic and spatial propeties visualized
over an ortophoto in GIS.

flows or traffic accidents, it might be useful for analyzing
whether the distribution distance between two same type traffic
signs is reasonable, to guide road designation, or standardiza-
tion installation and maintenance update of traffic signs. For
example, if a road section with few speed limit signs or other
warning signs in long distance often has traffic accidents,
it would be urgent for traffic management departments to add
more related warning signs.

E. Image-Based 3-D Point Cloud Retrieval in Dataset
To find the optimal similarity measurement distance for

image retrieval, we chose 28 categories, about 415 images with
different street views, from our dataset as the search library.
Also, we used another dataset [46], containing 40 categories
of animals, with 100 images in each category to seek the
optimal similarity measurement. In addition, half of the images
from each category were randomly selected as retrieval images
to test the measurement of several distances. We used mean
average precision (mAP) to judge the performance of their
retrieval. The mAP is computed as follows:

mAP = 1

N

∑N

n=1

1

R

∑R

r=1
Precision(Mnr ) (16)

where N is the total number of retrieved images and R is the
number of the retrieved images in each category; Mnr rep-
resents the set of retrieval results ranked from the maximum
result to image, dr . Table VIII shows that measuring similar
distances differently has a great impact on the retrieval results.
Because of its larger search library, performance in [46]
is worse than for our dataset. Among these distances, the
cosine distance has the highest mAP: 59.95% and 43.27% for
our dataset and [46], respectively. Thus, cosine distance is used
as our measurement of the similarity in distance for further
retrieval tasks. Due to the difficulty in matching morphological
features between an image and a point cloud, it is impossible

Fig. 12. Example of 3-D traffic sign point cloud retrieval. Pink boxes are
the true point cloud.

Fig. 13. Average recall using 128, 1024 and 4096 dimensions feature with
different number of retrieved images.

to manually select the most similar among the hundreds of
3-D point clouds that depend only on a single image. To this
end, based on the image retrieval method, we provide operator
with the top N ranked 3-D point clouds and a related image
from our dataset for each randomly captured traffic sign
image from a street. Then, the operator selects those that are
close from among the N returned point clouds. Fig. 12 shows
some 3-D point cloud retrieval examples using the image-
based retrieval method.

To evaluate the performance of the method, six main cate-
gories with 37 subcategories (1195 images) were selected from
our dataset. A single traffic sign contains at least two images
captured from different views, with the same ID number
assigned to each. Once any one of the retrieved top N images
has the same ID number as the retrieval image, we conclude
that the traffic sign image has successfully retrieved its clos-
est image and 3-D point cloud. Obviously, as the number
of retrieved image increases, the recall rises. As illustrated
in Fig. 13, using different dimension features of an image
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Fig. 14. Recall for 37 categories that have images with a 3-D point cloud in our dataset. The number of 2-D images for each category is shown in the
brackets.

Fig. 15. Illustration of SPR results of 90 sample images compared with ground truth. (a) Biases in the x , y and z directions. (b) Distance errors in 2-D and
3-D Euclidean space (Green boxes are maximum and minimum distance errors).

influences the recall rate. Thus, suitable dimension features
selected can improve the recall rate and time efficiency of
the retrieval method. When using 128 dimensions, the recall
reaches 97% with 30 images returned. Taking comprehensive
complex operator selection and time efficiency into consider-
ation, we finally used 128-dimension features, reduced from
the original output 4096-dimension features by PCA. Then,
using each image, we conducted a test to determine if the top
retrieved image and point cloud were the same as those in the
traffic sign with the retrieved ones. Fig. 14 shows the recall
results for each category. Thus, in our dataset, the image-based
3-D point cloud retrieval method attains satisfying results.

F. Geo-Localization of a Driving Car
To demonstrate the feasibility of trajectory estimation,

90 sample images, which are related to 44 traffic sign point
clouds, captured in three road parts from constructed traffic
sign landmark dataset were selected. The trajectory recorded
by MLS system is regarded as the ground truth. Before SPR,
IOP’s (the principal point xo, yo and the focal length of
camera f ) and initial EOP’s should be set at first. In general,
IOP’s can be obtained from the instruction manual of cam-
era. As for initial EOP’s, image geo-location (Xo, Yo, Zo)
were set as Xo = ∑n

1 Xi/n, Yo = ∑n
1 Yi/n, Zo = 0.

Three rotations (ϕ, ω, κ) were all set as 0. In SPR, it only

Fig. 16. Some examples of low quality of traffic sign point clouds
[(a) and (b)] and images [(c) and (d)] causing difficulty in selecting control
points. (a) Rough edges. (b) Missing a corner. (c) Occlusion. (d) Blurred
edges.

needs one control point to minimize the error function E (p).
But the introduction of more control points strengthens the
solution of the SPR. Thus, we selected five control points
and used four of them each time to find out the image geo-
location. It obtained five results. We chose the one having
minimum E(p) as result.

To assess the accuracy of the experimental results with
respect to the ground truth, the biases between the two groups
of coordinates were analyzed. As shown in Fig. 15(a), most
biases in the x, y, and z directions were within ±1m, on the
90 selected image geo-locations. Fig. 15(b) shows the distance
errors between estimated point and ground truth point in
2-D and 3-D Euclidean space. The distance errors are defined
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Fig. 17. Illustration of three estimated trajectories (in blue) compared with the baseline trajectories (in red). The squares with different number represent
the ground truth (in red) and the estimated (in blue) geo-location of the sample images.

as follows:

Error2d =
√

(xe − xg)
2 + (ye − yg)

2 (17)

Error3d =
√

(xe − xg)
2 + (ye − yg)

2 + (ze − zg)
2 (18)

where xe, ye, ze are the coordinates of the estimated point;
xg , yg , zg are the coordinates of the ground truth point.

In 2-D Euclidean space, it attained an average, maximum,
minimum distance errors of 0.733m, 3.138m and 0.065m,
respectively. In 3-D Euclidean space, it attained an average,
maximum, minimum distance errors of 0.989m, 3.416m and
0.105m, respectively. The maximum distance errors occurred
in the image numbered 25. The reason is that the correspond-
ing traffic sign point cloud is with low quality (as shown
in Fig. 16(a)), causing difficulty in selecting control points.
Therefore, the results of this approach were strongly affected
by the quality of point clouds and images. Fig. 16 shows some
low-quality examples of traffic sign point clouds and images.
Except for images with occlusion (Fig. 16(c)) or blurred edges
(Fig. 16(d)), the images captured in night time, rain or misty
weather may also lead to the failure of selecting correct control
points. In addition, manpower to select control points is time-
consuming, low efficiency, and easy to introduce human error.
Considering worse accuracy of GPS positioning, the approach
for estimating driving trajectory achieved acceptable results.

The estimated trajectory (in blue) and the ground truth
trajectory (in red) are given in Fig. 17. Red squares represent

ground truth geo-location of sign image, and blue squares rep-
resent estimated geo-location of sign image by our method. If a
long-curved road only has an estimated point on both sides,
such as a part curved road between sample number 1 and 10,
the linearly connecting trajectory loses curvature of the curve.
On the straight road and curved roads with multiple estimated
image geo-location points, the driving trajectories obtained
from linearly concatenating the image geo-location points has
a good coincidence with ground truth trajectories.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for building a
joint 2-D-3-D traffic sign landmark dataset from MLS data for
geo-localization. By using the integrated method based on a
deep learning network and retro-reflective properties in our
method, we achieved experimental results that demonstrate
the effectiveness of automated detection and type recognition
for traffic sign from MLS data. Using detected traffic sign
point clouds aligned with images and the extracted semantic
and spatial properties of the traffic signs, we built a 2-D-3-D
traffic sign landmark dataset. Also, based on the landmark
dataset for an intuitive and effective guide to update the
maintenance of traffic signs, we built a semantic-spatial orga-
nization graph of traffic signs. In addition, the driving car
geo-localization test conducted using the traffic sign landmark
dataset demonstrates the potential application to driving trajec-
tory estimation. It shows a great effectiveness and feasibility
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in auxiliary positioning of ordinary and autonomous vehicles.
In future work, we will expand the landmark dataset and
develop an automatic SPR method for more efficient and
accurate geo-localization.
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