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Abstract— Land cover mapping is an effective way to quantify
land resources and monitor their changes. It plays an important
role in a wide range of applications. This letter proposes a hybrid
capsule network for land cover classification using multispectral
light detection and ranging (LiDAR) data. First, the multispectral
LiDAR data were rasterized into a set of feature images to
exploit the geometrical and spectral properties of different types
of land covers. Then, a hybrid capsule network composed of an
encoder network and a decoder network is trained to extract
both high-level local and global entity-oriented capsule features
for accurate land cover classification. Quantitative classification
evaluations on two data sets show that the overall accuracy,
average accuracy, and kappa coefficient of over 97.89%, 94.54%,
and 0.9713, respectively, are obtained. Comparative studies with
five existing methods confirm that the proposed method performs
robustly and accurately in land cover classification using the
multispectral LiDAR data.

Index Terms— Capsule network, feature image, land cover
classification, multispectral light detection and ranging (LiDAR),
point cloud.

I. INTRODUCTION

W ITH the rapid development of society, the processes
of urbanization and industrialization are getting accel-

erated globally. Although these progresses can bring social
and economic benefits, they also affect the stability and
sustainability of the environment and accelerate the changes
in land covers. Timely and precisely updating land cover
information is significant for environment protection, land
management, landscape pattern analysis, and so on. The col-
lection of land cover information is primarily based on field
surveys and analysis of remote sensing data. The field surveys
can provide accurate land cover details; however, they are
labor-intensive, time-consuming, and even inoperable in some
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conditions. Comparatively, the acquisition of high-resolution
remote sensing data covering large areas of the earth surface
can be easily and efficiently carried out using remote sensing
sensors, such as satellite sensors, unmanned aerial vehicle
(UAV) sensors, and light detection and ranging (LiDAR)
sensors. Thus, remote sensing techniques have been widely
used for land cover mapping.

Land cover mapping using remote sensing images is a
classic topic and has been intensively studied. The remote
sensing images can provide detailed texture information,
which favors to distinguish among different land cover types.
In [1], a multilevel deep learning architecture composed of a
set of convolutional neural networks (CNNs) was designed
for land cover classification using multitemporal satellite
images. Likewise, the CNN was also used in [2] for land
cover classification using 2-D spectral curve graphs. Based
on the UniBagging model, time-series Landsat images were
exploited in [3] for monitoring land cover changes. In [4],
high-resolution synthetic aperture radar (SAR) images were
considered for land cover classification. Due to the large
number of bands that reflect diverse spectral properties of
land covers, hyperspectral images have become a promising
alternative for land cover classification. For instance, capsule
networks [5], sparse representation [6], generative adversarial
networks [7], graph convolutional networks [8], CNNs [9],
and so on were proposed for land cover classification using
hyperspectral images. Moreover, land cover classification by
fusing multisource images has also been exploited to improve
classification accuracy [10], [11].

Recent development in LiDAR technologies has burst
a great number of applications. The LiDAR sensors can
collect both 3-D geospatial information and reflectance
properties of the earth surface. Consequently, land cover
mapping using the LiDAR data has also been carried out.
In [12], a geographic object-based approach based on the
elevation and intensity features of the LiDAR points was
proposed for land cover classification. Extinction profiles
and composite kernel support vector machines (SVMs) were
suggested in [13] using LiDAR-derived features and digi-
tal surface models. In [14], the morphological profiles and
CNN were proposed for LiDAR data classification. A spatial
transformation network combined with the morphological
profiles was designed in [15]. In [16], the LiDAR points
were classified into diverse land cover types by integrating
ant colony optimization and object-based analysis. To extract
heterogeneous features, a multi-kernel sparse representation
classification pipeline was proposed in [17]. In addition, land
cover mapping by fusing the LiDAR data and remote sensing
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images has also been studied. For instance, discriminative
graph-based fusion [18], discriminant correlation analysis [19],
multi-kernel learning [20], and so on were proposed by
fusing features from hyperspectral images and LiDAR data.
Moreover, CNN [21], Bayesian network [22], random forest
(RF) [23], and so on were exploited for land cover classifica-
tion by fusing the LiDAR data and optical images.

In recent years, multispectral LiDAR systems, which can
collect the LiDAR data with multiple channels simultaneously,
have been developed. Multispectral LiDAR systems provide
superior advantages than traditional single-channel LiDAR
systems in land cover mapping. In [24], the object-based
RF analysis was adopted for land cover classification based
on multispectral LiDAR data. In [25], a hierarchical rule-
based classifier was selected for multispectral LiDAR clas-
sification. The rules were derived based on the knowledge of
the geometrical and neighborhood properties of the LiDAR
points. Image-based classification using a maximum likeli-
hood (ML) classifier was investigated in [26] for multispectral
LiDAR classification. Using point features extracted from the
elevation, intensity, and geometry properties, seeded region
growing was developed in [27] for land/water discrimination.
In [28], a comparative feature study of deep Boltzmann
machine (DBM), principal component analysis, and RF was
conducted for land cover classification using multispectral
LiDAR data.

In this letter, we develop a hybrid capsule network for
land cover classification using multispectral LiDAR data.
The proposed method is performed on five types of feature
images rasterized taking into account the geometrical and
spectral properties of multispectral LiDAR data. Specifically,
during network architecture design, we found that the network
performance can be enhanced by connecting two conventional
neural layers before the capsule layers for low-level feature
extraction, as well as using large kernels in the convolutional
layers and small kernels in the capsule layers. The main
contributions include the following: 1) a novel hybrid capsule
network for land cover classification; 2) two sibling subnet-
works for extracting local and global features, respectively;
and 3) a decoder network with a new loss function for avoiding
overfitting.

II. STUDY AREA AND MULTISPECTRAL LIDAR DATA

In this letter, two multispectral LiDAR data sets were used
to perform land cover classification. The first data set (WS)
was collected in Whitchurch–Stoweville, Ontario, Canada.
This data set contained 19 flying strips and covered an area
of about 3.21 km2. The second data set (TB) was collected in
Tobermory, Ontario, Canada. This data set contained ten flying
strips and covered an area of about 1.99 km2. These two data
sets were collected using the Teledyne Optech’s Titan multi-
spectral LiDAR system. The Titan system has three spectral
channels that work in intermediate infrared (Channel 1), near
infrared (Channel 2), and visible (Channel 3) wavelengths,
respectively, and can collect the LiDAR data simultaneously.
The wavelengths of Channels 1, 2, and 3 are 1550, 1064, and
532 nm, respectively. Different channels can obtain different
reflectance properties of land covers. For instance, the soil
tends to reflect most in Channel 1 and lowest in Channel 3.
Thus, the multispectral LiDAR system can collect both the

Fig. 1. Rasterized feature images with regard to (a) elevation, (b) number
of returns, (c)–(e) three channels of spectral intensities, and (f) pseudo-color
image by merging the three spectral intensity images.

geometrical features and multiple spectral features of the earth
surface, which provides a promising data source for land cover
classification.

III. METHOD

A. Feature Image Generation

To take full advantage of the geometrical and spectral
properties of multispectral LiDAR data, we rasterize the 3-D
LiDAR points from the three channels into a set of feature
images. To this end, first, we merge the three sets of the
LiDAR points from the three channels into a single point cloud
according to their geographical coordinates. Then, we verti-
cally partition the merged point cloud into a grid structure
with a grid size (spatial resolution) of rg (e.g., 0.5 m in this
letter). Finally, the LiDAR points in each grid are interpolated
into a single pixel in the resultant feature image. The gray
value of a pixel in a feature image is interpolated based on
the properties of the LiDAR points in the associated grid
using the inverse distance weighted interpolation method [29].
In this letter, we generate five types of feature images by
taking into account the elevation, the number of returns, and
three channels of spectral intensities. Specifically, for the three
spectral intensity images, only the LiDAR points from the
associated channel are used for interpolation. For the elevation
and number of returns images, all the merged LiDAR points
are used for interpolation. Fig. 1(a)–(e) illustrates the five types
of rasterized feature images. Fig. 1(f) shows the pseudo-color
image by merging the three spectral intensity images.

B. Hybrid Capsule Network for Land Cover Classification

To perform land cover classification from the rasterized
feature images, we construct a hybrid capsule network. Unlike
traditional CNNs that use scalar neurons to encode the prob-
abilities of the existence of specific features, the capsule
networks consist of vectorial capsules to encode entity fea-
tures [30]. The instantiation parameters of a capsule represent
a specific type of entity; the length of the capsule encodes
the probability of the existence of that entity. The capsule
networks have been proven to be more powerful and reliable in
extracting the intrinsic features of the objects. Thus, to improve
land cover classification accuracy, we construct a hybrid
capsule network using the rasterized feature images.

At the training stage, we merge and convert the five types of
feature images into a single multispectral image, where each
pixel is composed of five spectral channels coming from the
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Fig. 2. Architecture of the hybrid capsule network. A capsule can be viewed as a set of neurons. All the capsules have the same dimension of 16.

associated gray values of the five feature images, respectively.
Then, a set of training image patches with a size of n × n
pixels are generated centered at the labeled pixels from the
multispectral image. The class label of an image patch is
assigned as the class of the central pixel. Finally, these labeled
image patches are used to train the hybrid capsule network.

Fig. 2 presents the architecture of the hybrid capsule
network, which contains an encoder network and a decoder
network. The encoder network has two sibling subnetworks
(a convolutional capsule subnetwork and a fully connected
capsule subnetwork) for, respectively, extracting local and
global features from the image patches. The classification is
conducted by fusing the local and global features from the two
sibling subnetworks. As shown in Fig. 2, the convolutional
capsule subnetwork contains two conventional convolutional
layers, a primary capsule layer, and two convolutional capsule
layers. The first two convolutional layers function to extract
low-level local features from the input image through con-
volution operations. These features are further encoded into
high-order capsules to depict different levels of entities. For
these two layers, the widely used rectified linear unit (ReLU)
is adopted as the activation function.

The primary capsule layer converts the low-level scalar
feature representations into high-order vectorial capsule rep-
resentations. It can be constructed based on conventional
convolution operations. Denote Dp as the number of feature
maps and Sp as the capsule dimension in the primary capsule
layer. Then, Dp × Sp kernels are performed on the second
convolutional layer. After convolutions, the generated feature
maps are grouped into Dp groups, each of which contains
Sp feature maps. For each group, the Sp components at each
position of the feature maps form an Sp-dimensional capsule.

The two convolutional capsule layers aim at extracting high-
order capsule features through capsule convolution operations.
For the capsules in these layers, the total input to a capsule
j is a weighted sum over all predictions from the capsules in
the convolution kernel in the lower layer

C j =
∑

i

ai j · U j |i (1)

where C j is the total input to capsule j ; ai j is the coupling
coefficient indicating the degree of contribution that capsule i
in the layer below activates capsule j ; U j |i is the prediction
from capsule i to capsule j and it is computed as follows:

U j |i = Wi j · U i (2)

where Ui is the output of capsule i and Wi j is the network
weight matrix. Specifically, the coupling coefficients between
capsule i and all its connected capsules in the layer above sum
to 1 and are determined by a dynamic routing process [30].
Recall that we use the length of a capsule to predict the
probability of the existence of an entity. Thus, we use the
nonlinear “squashing” function [30] as the activation function
to ensure that capsules with short vectors result in low proba-
bility predictions and capsules with long vectors result in high
probability predictions. The squashing function is defined as
follows:

U j = ‖C j ‖2

1 + ‖C j‖2 · C j

‖C j‖ . (3)

By such a conversion, the short capsules are shrunk toward
zero length and the long capsules approach a length close to 1.

As shown in Fig. 2, the fully connected capsule subnetwork
consists of a conventional fully connected layer, a primary
fully connected capsule layer, and two fully connected capsule
layers. The fully connected layer functions to extract low-
level global features from the input image. These features
are further encoded into high-order capsules through the
primary fully connected capsule layer. Similarly, the primary
fully connected capsule layer can be constructed based on
conventional fully connected operations. Then, the resultant
neurons are equally partitioned into groups to form a set
of capsules. The two fully connected capsule layers aim to
extract high-order capsule features with a global perspective.
Likewise, dynamic routing among capsules is used to cast
predictions and activate capsules, and the squashing function
is used to normalize capsule outputs.

The local and global capsule features from the two sibling
subnetworks are fused by flattening and concatenation and
further fed into the last three fully connected capsule layers
to conduct classification. The last layer is a softmax layer
composed of a set of class-oriented capsules for encoding
different types of land covers.

The decoder network consists of four conventional fully
connected layers that take as input the capsule outputs in
the softmax layer of the encoder network to reconstruct the
input image, thereby encouraging the capsules to encode the
most relevant and intrinsic instantiation parameters of the input
image. To this end, we mask out all but the capsule whose
class label corresponds to the input image patch. Then, the
instantiation parameters of this capsule are fed into the decoder
network for reconstruction.
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The parameters in the hybrid capsule network are iteratively
refined through the error backpropagation process. To effec-
tively train the hybrid capsule network, we use the following
multi-task loss function:

L =
N∑

i=1

V∑

k=1

Lk
cls + η

N∑

i=1

Li
rec (4)

where Lcls and Lrec are the classification and reconstruction
losses, respectively; N and V are the numbers of training
image patches and class-oriented capsules in the softmax layer,
respectively; η is a regularization factor to balance the two
terms. For class k, the classification loss is defined as follows:

Lk
cls = Tk · max(0, m+ − ‖Uk‖)2

+ λ(1 − Tk) · max(0, ‖Uk‖ − m−)2 (5)

where Tk = 1 if a training patch belongs to class k; otherwise,
Tk = 0. m+ and m− are, respectively, the lower bound for the
probability of a training patch being an instance of class k
and the upper bound for the probability of a training patch
not belonging to class k. They are set as m+ = 0.92 and
m− = 0.08. λ is a regularization factor. The reconstruction
loss is defined as the robust smooth-L1 loss [31] between the
outputs of the neurons in the decoder network and the input
image patch.

At the classification stage, we first rasterize the multispectral
LiDAR data into five types of feature images, which are further
fused and converted into a multispectral image. Then, an image
patch with a size of n × n pixels is generated centered at
each pixel to be classified. Finally, these generated patches
are fed into the encoder network to mark them into different
land cover types. The class label of a patch is determined as
follows:

T ∗ = arg max
k

‖Uk‖ (6)

where Uk is the capsule output in the softmax layer. This
class label is assigned to the central pixel of the patch as its
predicated land cover type.

IV. RESULTS AND DISCUSSION

A. Land Cover Classification

Through classification performance and computational effi-
ciency analysis, the optimal network configurations are illus-
trated in Fig. 2. At the training stage, we randomly initialized
all layers of the hybrid capsule network by drawing parame-
ters from a zero-mean Gaussian distribution with a standard
deviation of 0.01. The learning rate and the maximum epoch
were set as 0.001 and 2000, respectively. For the two data sets
with feature images of 4086 × 3143 and 2523 × 3154 pixels,
respectively, rasterized with a spatial resolution of 0.5 m,
40% of the labeled data were randomly selected for training
the hybrid capsule network. The patch size was configured
as 25 × 25 pixels. Once the hybrid capsule network was
constructed, we applied it to the remaining 60% of the labeled
data in each data set to evaluate its accuracy on land cover
classification. In this letter, we focused on six types of land
covers: 1) water; 2) vegetation; 3) road; 4) soil; 5) building;
and 6) other impervious surface. To quantitatively assess the
classification results, we adopted the following three metrics:
overall accuracy (OA), average accuracy (AA), and kappa

Fig. 3. (a) Rasterized feature images of the TB data set. (b) Ground-truth
land cover map. (c) Land cover classification result.

TABLE I

LAND COVER CLASSIFICATION RESULTS ON THE WS DATA SET

TABLE II

LAND COVER CLASSIFICATION RESULTS ON THE TB DATA SET

coefficient (κ). For the two data sets, we conducted ten Monte
Carlo runs and reported the mean and standard deviation of
these metrics. Tables I and II detail the land cover classification
results on the two data sets. For visual inspections, Fig. 3 illus-
trates the rasterized feature images, the ground-truth land cover
map, and the land cover classification result of the TB data set.

As reflected in Tables I and II, the proposed method
achieved the OA, AA, and κ values of 97.89% ± 0.15%,
94.54% ± 0.17%, and 0.9713 ± 0.0014 on the WS data set
and 98.34% ± 0.09%, 94.95% ± 0.14%, and 0.9776 ± 0.0011
on the TB data set, respectively. Specifically, for the two
data sets, the best classification performance was obtained for
water because of its homogeneous and distinctive properties,
whereas a relatively lower accuracy was obtained for building
because of the diverse geometrical and spectral properties.
In addition, the misclassification generally appeared at the
boundaries of two different land cover types. For instance,
some pixels belonging to soil were falsely labeled as other
impervious surface.

B. Comparative Study

To further evaluate the performance of the proposed hybrid
capsule network, we conducted a set of comparative tests
with the following five methods: CapsNet [5], RFs [24],
rule-based classifier [25], ML classifier [26], and DBM [28].
We applied these methods to the two multispectral LiDAR data
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sets to evaluate their land cover classification performance.
The detailed classification results are shown in Tables I and II.
Comparatively, the CapsNet and DBM outperformed the other
three methods. This is because instead of extracting low-level
features from the input data like in the RF, rule-based, and
ML methods, the CapsNet and DBM exploit high-level, deep
features for land cover classification. These features are more
intrinsic and distinct. In addition, the RF method relies on
a preprocessing of homogeneous region segmentation. Thus,
it performed unsatisfactorily for building and other impervious
surface. The superior performance obtained by the CapsNet
is due to the principal component analysis strategy for salient
feature selection. On the whole, benefited from the capabilities
in extracting both high-level local and global features, our pro-
posed hybrid capsule network achieved promising land cover
classification results and outperformed the other methods with
regard to classification accuracy. However, the proposed hybrid
capsule network had no absolute advantages with regard to
computational complexity compared with the CapsNet and
DBM, which are less lightweight with less network layers.

V. CONCLUSION

This letter has presented a hybrid capsule network for
land cover classification using multispectral LiDAR data. The
multispectral LiDAR data were rasterized into a set of feature
images to exploit the geometrical and spectral properties of
different types of land covers. The hybrid capsule network
took full advantage of vectorial capsules to extract both local
and global entity-oriented features from the rasterized feature
images. Land cover classification evaluations on two data sets
showed that the proposed method achieved the OA, AA, and
κ values of over 97.89%, 94.54%, and 0.9713, respectively.
Comparative studies with five existing methods confirmed that
the proposed method was more accurate and outperformed
the other five methods in land cover classification using
multispectral LiDAR data.
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