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Abstract— The point clouds acquired by a vehicle-borne mobile
laser scanning (MLS) system have shown great potential for
many applications such as intelligent transportation systems,
road infrastructure inventories, and high-definition (HD) maps
to support the advanced driver-assistance systems (ADAS) and
autonomous vehicles (AVs). This paper presents a novel two-
step approach to automated detection and reconstruction of
three-dimensional (3D) highway curves from MLS point clouds.
However, when dealing with noisy, unstructured, dense point
clouds, we often face some challenges, most notably in handling
of the outliers introduced during road marking detection and in
recognition of curve types during 3D curve reconstruction. Our
approach is formed by two main algorithms: a detector based
on intensity variance and a robust model fitting estimator. The
experimental results obtained using both a virtual scan dataset
and a real MLS dataset demonstrated that our approach is very
promising in handling of the outliers and reconstruction of 3D
road curves. Specifically, a relative accuracy of 0.6% has been
achieved in estimation of circle radii based on the virtual scan
dataset. A comparative study also showed that our road marking
detection approach is more effective and more stable than state-
of-the-art approaches.

Index Terms— Highway geometric design, mobile laser scan-
ning, 3D point cloud, curve parameter estimation, road marking
detection.

I. INTRODUCTION

THE geometry of highways has crucial impacts on high-
way construction, road safety, and driving comfort.
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Highway geometry is mainly determined by highway curves.
The goal of highway curve reconstruction is to recover the
as-built geometric information of the underlying curves of a
highway. Consequently, highway curve reconstruction is useful
for many applications such as digital mapping, autonomous
driving, highway geometric design, traffic accident analysis,
and highway as-built quality assessment [1].

There are two major types of data that can be used to
reconstruct highway curves. The first type is ground surveys,
mainly using real-time kinematic (RTK) Global Navigation
Satellite Systems (GNSS) technique [2]. The second type
is off-ground surveys using digital images acquired by the
remote sensors mounted on aircrafts or satellites as well
as computer vision and digital photogrammetric algorithms
[3] [4]. Compared with the ground surveys, off-ground surveys
can cover a larger geographic area in a cost-effective way, but
its spatial accuracy of off-ground surveys is usually lower than
that of ground surveys [5], [6].

A mobile mapping vehicle with onboard optical cameras
and integrated GNSS and IMU (inertial measuring unit)
system becomes a better solution to provide both higher
accuracy and higher efficiency [7]. The trajectory data of
the mobile mapping vehicle along with the images collected
can be used to detect and reconstruct highway centerlines.
In recent years, vehicle-borne mobile laser scanning (MLS)
systems are able to rapidly acquire high-accuracy and high-
density three-dimensional (3D) point clouds. Compared with
its camera-based counterparts, MLS systems have considerable
advantages for acquiring 3D point clouds covering roadways
including centerlines [8]. The remarkable technical progress
has been achieved in the research and development efforts in
machine learning and deep learning algorithms for automated
detection and extraction both road objects (e.g., road edges,
lane lines, road markings, pavement cracks, manhole covers)
and off-road 3D objects (e.g., traffic signs, street light poles,
roadside tress, cars parking along roadsides) from noisy,
unstructured, highly dense 3D MLS point clouds [9], [10].
Moreover, autonomous vehicles under research and develop-
ment not only require road centerlines, but much more road
features (e.g., edge lines, lane lines, road markings), which are
key elements for future high-definition (HD) maps.

MLS point clouds have been used for a number of appli-
cations, such as road information extraction [11]–[13]. Sev-
eral methods have also been proposed to use MLS data
to reconstruct the geometry of highways. The rectangular
regions between pavement markings were used in [14] to
estimate super-elevations. The method proposed in [15] uses
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both the trajectory and scan angle to segment MLS data
into blocks, and then applies a principal component analysis
(PCA) algorithm to each block to estimate its slope and super-
elevation. Both the intensity and scan angle were used in
[16] to detect road markings, and the detected marking points
was then used to calculate azimuth and curvature diagrams to
estimate horizontal curve variables. The trajectory data was
used to hierarchically segment MLS data into multiple blocks
to estimate their slopes and super-elevations [17].

Highway curves are intrinsically 3D, as highways are 3D
objects. Different from the aforementioned methods that sep-
arately reconstruct horizontal or vertical curves from MLS
data, we reconstruct highway curves in a full 3D manner.
Consequently, the proposed method is more suitable for the
applications that prefer comprehensive 3D geometric infor-
mation of highways (e.g., highway geometric design, traffic
accident analysis, and highway as-built quality assessment).

The proposed method has two major steps. The first step
is to detect road marking points from MLS data. A number
of sophisticated methods have been proposed in the literature
to detect road markings. For example, Yang et al. recently
use a least squares algorithm to compute intensity gradient to
detect road markings [18]. Since road marking detection is a
preprocessing step in our method, the road marking detection
method is expected to be as simple as possible. We propose
to solely use the variance of intensity as feature to directly
detect road markings from MLS data.

The second step is to reconstruct curves from road marking
points. Several curve reconstruction approaches estimate the
values of curve variables by assuming that the type of the curve
is known. However, it is non-trivial to recognize the types
of 3D highway curves. Note that, there are three types of
elemental horizontal curves (i.e., line, circle, spiral), and
two types of elemental vertical curves (i.e., line, parabola).
3D highway curves are combined by horizontal and vertical
curves. Therefore, apart from composition curves, there are
six types of elemental 3D highway curve types. We adopt the
probabilistic program induction strategy [19] to perform curve
reconstruction, as the strategy can automatically recognize the
types of curves and estimate the values of the curve variables
at the same time. Specifically, curve reconstruction is achieved
by conducting model fitting for each type of curve.

Apart from curve type recognition, another challenge in
curve reconstruction is brought by outliers detected in the road
marking points. Road markings of interest are defined as lane-
line markings in this paper, while outliers are points belonging
to the other markings (e.g., arrows or stop lines), which are
difficult to be removed. Outliers can severely undermine the
performance of a least-squares estimation algorithm, which
is used by many highway geometric design methods such
as [2], [17], [15]. To robustly handle outliers, we adopted
the approach proposed in [20] to perform model fitting.
A geometric similarity estimator called mean measure (MM)
plays the key role in that approach. The MM-estimator has
very few parameters to tune, making it as convenient as a
least-squares estimation algorithm.

The new main contribution of this study is automation
in reconstruction of highway curves in 3D from MLS point

clouds. Specifically, our method differs from existing methods
in the following three aspects.

First, the curves reconstructed by our method are confined
by highway geometric design standard, making our method
useful not only for digital mapping but also for highway
as-built quality assessment. In contrast, many existing curve
reconstruction methods are not suitable for highway as-built
quality assessment as they are proposed to reconstruct generic
curves (e.g., B-splines [21]).

Second, our method uses MLS data to achieve curve recon-
struction. In contrast to vehicle trajectory data, MLS data have
richer and more reliable information for highways.

Third, our method reconstructs highway curves in 3D,
whereas most existing methods separately reconstruct 2D
highway curves. Note that, in recent years, the highway
geometric design community tends to design new highway
curves in 3D [22]–[24] [25]. In contrast to 2D methods, our
method can be painlessly extended to handle such new 3D
highway curves.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the proposed
method. Section IV presents and discusses the experimental
results. Section V concludes the paper.

II. RELATED WORK

In this section, we review some existing studies related to
our work.

A. Road Marking Detection

Road markings, especially lane-line markings, can well
represent the geometry of highways. Therefore, it is natural
to use road marking points to reconstruct highway curves.
However, it is challenging to detect markings from MLS data.

As painted on pavement with high reflective materials,
the intensities of road markings are larger than that of the
surrounding road surfaces. However, the intensities of different
road marking points are usually very different, because their
intensity values also depend on other factors such as inci-
dent angles and ranges [26]. Consequently, a single intensity
threshold was used in [27]–[29] [30], but showed insufficiency
in detection of all road markings points [18]. A number of
advanced methods were thus proposed to address the problem.
In [31], [32], [13], an inverse distance weighted interpolation
algorithm was used to overcome the range effect of intensity to
detect road markings. In [33] [26], the input point cloud was
segmented into several segments, road markings were then
detected from each segment by a thresholding algorithm.

It can be concluded that, existing road marking detection
methods are more or less not straightforward to implement,
making them inconvenient to use. In contrast, our proposed
detection method is considerably easier to implement and is
able to handle MLS data with sufficiently high quality.

B. Robust Curve Fitting

Many methods have been proposed to perform curve fitting
on relatively clean data, such as [21] [34]. However, it is
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Fig. 1. Pipeline of the proposed method.

more challenging to perform robust curve fitting on corrupted
data. One of the most popular robust curve fitting paradigms
is random sample consensus (RANSAC) [18], [35] [36],
[37]. The RANSAC-based methods perform model fitting by
maximizing the inlier number. An extra parameter called inlier
threshold is thus required to tune in RANSAC-based methods,
making them less convenient than a least-squares estimation
algorithm or the MM-estimator [20].

III. METHOD

The input to our method consists of a raw MLS point
cloud dataset and its corresponding trajectory point set. A raw
MLS point has four-dimensional (4D) properties, including
three location coordinates (x , y, z), and one intensity (i)
value. The GNSS-IMU position and orientation system (POS)
mounted on the MLS vehicle can provide accurate vehicle’s
trajectory data (x, y, z) in real time. As shown in Fig. 1, our
method is composed of five steps: raw data partitioning, road
surface detection, road marking detection and clustering, hull
detection, and curve reconstruction.

First, the vehicle’s trajectory data were used to partition
raw MLS point clouds into several parts. Second, road surface
points were then detected from each part using a smoothness-
based region growing algorithm. Third, road marking points
were detected from the road surface points by a thresholding
algorithm according to the variance of intensity, and then
the road marking points were grouped into several clusters
by computing the Euclidean distance between a point and
the cluster centroids. Fourth, hull points were detected from
each cluster by the alpha-shape algorithm. Finally, curves
were reconstructed in 3D from the hull points according to
predefined curve models. These five steps are sequentially
detailed in the following sections.

A. Raw Data Partitioning

A raw MLS point cloud dataset usually contains a large
number of unstructured, uneven distributed, highly dense
points, it is therefore difficult to process the whole point set
simultaneously. A common way to handle this problem is to
partition the raw MLS point set into several sub-point sets.
In this paper, we utilized the vehicle’s trajectory points to

perform partitioning, as the trajectory points are organized in
the order of acquisition time. Given the raw MLS point set
D and the trajectory point set T , we first split T into f sub-
sets T1, T2, · · · ,T f . After splitting, each sub-set has β points
except for the last sub-set T f . We then partition D into f parts
D1, D2, · · · ,D f as follows.

Given a point p = (xp, yp, zp), its set of neighboring points
in D is defined as:

N D
p = {q ∈ D | d (q,p) < r} , (1)

where d (·, ·) is the Euclidean distance between two points,
and r is a distance threshold to determine neighbors and is
fixed to 10 m in this step. Then the first part is defined as
D1 = �

p∈T1
N D

p , and each part with j> 1 is defined as:

D j =
�

p∈T1
N D

p −
�

q∈Tj−1
N D

q . (2)

Fig. 2 shows the consistent partition results obtained using
the proposed approach, with which those points far away from
roadways have been filtered out.

B. Road Surface Detection

Since the objects of interest in this paper are road markings
on road surfaces, road surface points are useful for the
detection of road markings. In general, most highway surfaces
are smooth. Therefore, we use the smoothness-based region
growing algorithm [38] to detect road surface points. For the
highway surfaces, the closer to the laser scanners on the top
of the vehicle, the higher density of the MLS point clouds.
Consequently, with region growing, the road surface usually
corresponds to the region with the largest number of points.
This step requires two parameters: a distance threshold to
determine neighbors to calculate the surface normal vectors,
and a smoothness threshold to compare the surface normal
vectors. In this paper, the smoothness threshold is set to 2◦.
Fig. 3 shows the results of detected road surfaces.

C. Road Marking Detection and Clustering

Road markings are the symbols and text painted on road-
way surfaces. A road marking is usually brighter than its
surroundings. Consequently, the intensity of a road marking
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Fig. 2. Partition results (trajectory highlighted by red curve). (a) A raw MLS
point set rendered with intensities in color, and (b) partitioning result, where
Parts 1, 3, and 5 are rendered with intensities in gray.

Fig. 3. Extracted road surfaces. (a) A section of a raw MLS point cloud
dataset, and (b) Road surface points extracted from (a).

point is usually higher than that of its surrounding points.
However, the intensities of different road marking points can
vary significantly (Fig. 5b) due to many factors such as laser
scanner incident angles and ranges [26]. Therefore, a simple
approach such as intensity thresholding is usually insufficient
to detect all road marking points.

Note that, the goal of this paper is to reconstruct highway
curves, while the edge points of road markings are sufficient
to achieve this goal. We therefore, propose a simple approach

Fig. 4. Results of road marking detection and clustering. (a) Road surface
rendered with intensities. (b) Road surface rendered with intensity variances.
(c) Extracted road marking points. (d) Two largest clusters.

to detect edge points of road markings. Our insight is that, the
intensity variance of neighboring points of an edge point is
usually larger than that of a non-edge point. More importantly,
the intensity variances are quite stable among different edge
points (Fig. 5c). Therefore, the edge points can be detected by
thresholding the intensity variances using a single threshold.

The intensity variance of a point p ∈D is calculated as
follows:

vp =
���� 1���N D

p

���
�

q∈N D
p

	
iq − ip


2
, (3)

where D is the set of detected road surface points, i is the
intensity of a point, |·| denotes the number of points in a point
set, and N D

p is the neighbors in D of p as defined in Eq. (1).
With the intensity variances, we use the Otsu’s algorithm

[39], [26] to compute a threshold to distinguish edge points
from other points. That is, a point with variance higher than
the threshold is detected as an edge point. Considering that the
detected points usually do not belong to a single road marking,
as a road surface usually contains several road markings,
we further use the Euclidean clustering algorithm to group
the detected points into several clusters. This step requires
two parameters: a distance threshold to determine neighbors
to calculate intensity variance, and a distance threshold for
clustering. Fig. 4 shows a result of road marking detection
and clustering.
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Fig. 5. A comparison of intensity and intensity variance. (a) A slice (color) of a road surface (gray). (b) The intensities of the points in the slice.
(c) The intensity variances of the slice.

Fig. 6. Illustration of hull point extraction. (a) Road marking points (blue
dots), and two curves (red and green) which fit well to road markings.
(b) Hull points (blue dots) extracted from road markings, and two curves
(red and green) which fit well to hull points.

Fig. 7. Hull points extracted from Fig. 4d.

D. Hull Detection

As shown in Fig. 4c, the markings detected by the proposed
approach are usually wider than the real markings. Conse-
quently, the detected markings may be not accurate enough for
precise curve reconstruction. Actually, it can be observed that
even the real markings (Fig. 4a) may be too wide for precise
curve reconstruction. As shown in Fig. 6a, the curves directly
reconstructed from all points of a marking may not able
to correctly represent the underlying shape of the marking.
Therefore, we propose to use the hull points to address this
problem (Fig. 6b). The hull points are detected by the alpha-
shape algorithm [40] which requires only one parameter (i.e.,
the alpha). In this paper, we set the alpha to 0.1. Fig. 7 shows
the hull points detected from Fig. 4d.

E. Curve Reconstruction

According to highway geometric design standard [41],
there are three elemental types of horizontal curves and two
elemental types of vertical curves (Table I). An elemental
3D highway curve is combined by a horizontal curve and a

TABLE I

MATHEMATICAL MODELS OF HIGHWAY CURVES

vertical curve. Consequently, there are six elemental types of
3D highway curves. For example, the mathematical model of a
3D curve combined by horizontal circle and vertical parabola
is as follows:

⎧⎪⎨
⎪⎩

x(s) = x0 + (sin (μ0 + κ0s)− sinμ0) /κ0

y(s) = y0 − (cos (μ0 + κ0s)− cosμ0) /κ0

z(s) = z0 + sλ0 + 1
2ηs2

(4)

This model is expressed in a parametric form. The
parameters ∈ [0, h], where h is the arc-length of the curve.
Includingh, this model has 9 variables. The variablesx0, y0
and z0 define the start location, μ0 is the start horizontal
azimuth, λ0 is the start slope, η is the vertical curvature,
κ0 corresponds to the start horizontal curvature, and ψ is
the horizontal curvature change rate. It is worth noting that
curvature is defined as reciprocal of radius.

The goal of curve reconstruction is to find a curve that
best fits a given data point set. In this paper, the curve is
defined by one of the six curve models. To achieve this goal,
we first conduct model fitting for each curve model to find
a candidate curve, the best curve is then selected from the
candidate curves. The pipeline of our curve reconstruction
method is shown in Fig. 8. The model fitting process is crucial
for the curve reconstruction. As the hull points may contain
many outliers (Fig. 7), a robust model fitting method [20] is
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Fig. 8. The pipeline of curve reconstruction.

TABLE II

THE RANGES OF MODEL VARIABLES

used to handle outliers. The fitting method is based on the
error from model to data, and thus is more robust than many
other fitting methods that are based on the error from data to
model.

For each curve model n ∈ {1, 2, · · · , 6}, the model fitting
method aims to find the candidate curve:

C∗
n = arg max

C∈Cn

g(C, D), (5)

where Cn is the set of curves defined by the model n, D is the
data point set, and g (·, ·) is the fitness function called mean
measure:

g(C, D) = h(C)/d2(C, D), (6)

where h(C) is the arc-length of the curve C , d(C, D) is the
modified Hausdorff distance from C to the data D [42]:

d(C, D) = 1��Cδ
��
�

p∈Cδ
min
q∈D

d(p,q) (7)

where Cδ is a point set uniformly sampled from C with a
small resolution. Then the best curve C∗∗ = C∗

b , where

b = arg max
1≤n≤6

g
	
C∗

n , D



(8)

We use the cuckoo search algorithm [43] as described in
[20] to solve the maximization problem (see Eq. (5)). The
algorithm requires each variable of a model to be within
a range. The location variables (x0, y0, z0 ) are within the
bounding box of the data. The ranges of the other variables
are presented in Table II. These ranges are set with regard to
highway geometric design standard. Similar to [20], we set the
resolution for sampling points from curves to 0.3 times data
resolution. In this paper, the data resolution is 20 cm, as the
data (i.e., the hull points) are down-sampled to a resolution
of 20 cm to remove redundancy. Therefore, the resolution
for sampling points from curves is set to 6 cm. Then, the

convergence tolerance for model fitting is the only parameter
remained in this step.

IV. EXPERIMENTS

We implemented our method in C++ (for road marking
extraction), Python (for curve reconstruction), and Java (for
generating virtual scanning data). We conducted experiments
on a machine running Windows 10 with an Intel Core
i7-8700 3.20 GHz CPU and 16 GB RAM. The experi-
ments include comparative study for road marking detection
(Section IV-A), curve reconstruction on the virtual scan dataset
(Section IV-B), and curve reconstruction on the real MLS
dataset (Section IV-C).

A. Comparison of Intensity Variance and Other Features

We compared the intensity variance (Section III-C) against
three other features (i.e., the intensity (Section III-C), the
intensity median [44], and the intensity gradient [18]) by
detecting road markings from the data shown in Fig. 4a.
The data consists of 2,056,202 points. The way of using the
intensity median or intensity gradient is similar to that of
using the intensity variance as described in Section III-C. We
compute the magnitude of the intensity median or intensity
gradient for each point in the data. Then a magnitude threshold
is calculated to detect road marking edges.

The results of road marking extraction by using the different
features are shown in Fig. 9, which demonstrates that intensity
variance has two superiorities upon the other features. First,
intensity variance is more effective for extracting edges of
road markings than intensity and intensity gradient. As shown
in Figs. 9b, 9e, and 9f, the road markings extracted by using
the intensity or intensity gradient contain many outliers. In
contrast, as shown in Figs. 4c and 9a, the edges extracted
by using the intensity variance are cleaner. Second, the per-
formance of intensity variance is more stable under different
distance threshold values than intensity median. When distance
threshold is set to 10 cm, intensity median performs well
(Fig. 9c). However, when distance threshold is set to 20 cm,
many road marking points have not been extracted by intensity
median (Fig. 9d). In contrast, intensity variance performs well
both for threshold values 10 cm (Fig. 4c) and 20 cm (Fig. 9a).

It should be noted that, although intensity variance is
suitable for extracting edge points of road markings, it may
not be suitable for extracting whole points of road markings.
Fortunately, road curves can be reconstructed with edge points.

B. Experiments on Virtual Scan Dataset

We use the virtual scan data VD-A (green part in Fig. 10a)
to validate our method, since the ground-truth models of the
virtual dataset VD-A are exactly known. We design a synthetic
3D highway surface (gray part in Fig. 10a), and then use the
HELIOS virtual scanning system [45] to virtually scan the
surface. Specifically, the virtual data VD-A is acquired by the
virtual RIEGL VQ-450 scanners [45] with 7.2 km/h moving
speed and 10 Hz scanning frequency.

The ground-truth horizontal and vertical curves representing
the surface are circle and line, respectively. There are two
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Fig. 9. Comparison of intensity variance and other features. (a) and Fig. 4c show the edge points extracted by using the intensity variance with distance
thresholds 20 cm and 10 cm, respectively. (b) shows the marking points extracted by using the intensity. Note that it does not need a distance threshold to
use the intensity. (c) and (d) show the marking points extracted by using the intensity median with distance thresholds 10 cm and 20 cm, respectively. (e) and
(f) show the edge points extracted by using the intensity gradient with distance thresholds 10 cm and 20 cm, respectively.

Fig. 10. Reconstructed curves from virtual scanning data VD-A. (a) The synthetic highway surface (gray), the trajectory (red) of the virtual scanner, and
the virtually scanned data VD-A (green). (b) The extracted road markings (red and green) from the virtual scanned data VD-A. (c) The reconstructed curves
(red and green) from the extracted road markings. The bottom row zooms in the parts within the purple boxes of the top row.

(inner and outer) white road markings on the surface. The
width between the outer edge of the surface and the outer
marking is 80 cm. The width of the road markings is 20 cm.
The width between the two markings is 7 m. The horizontal
radius of the outer edge of the surface is 350 m. The slope of
the surface is 0.08.

As shown in Fig. 10c, the curves are well reconstructed
by our method. Fig. 11 shows the evolution of fitness for
fitting the six curve models to the detected inner and outer

markings. As shown in Fig. 11a, the model best fitting the
inner marking is the ground-truth model, i.e., the model
combined by horizontal circle and vertical line. That is, our
method correctly reconstructs the curve for the inner marking
with finding the ground-truth model.

However, as shown in Fig. 11b, for the outer marking,
the best fitting model is Circle-Parabola, which is not the
ground-truth model (Circle-Line). The reason is as follows. As
shown in Table I, when η = 0, vertical parabola is reduced
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Fig. 11. Results of fitting the 6 curve models on the virtual scanned data
VD-A in Fig. 10. The types of curve models are shown in the legend, where
horizontal types are shown in ahead and vertical curves are shown in rear. For
example, Spiral-Parabola denotes the 3D curve type combined by horizontal
spiral and vertical parabola. (a) Fitting on the inner marking (green part of
Fig. 10b). (b) Fitting on the outer marking (red part of Fig. 10b). The types
of the ground-truth models of these data are Circle-Line.

TABLE III

GROUND-TRUTH AND RECONSTRUCTED VALUES OF SOME IMPORTANT
VARIABLES OF THE INNER AND OUTER CURVES FOR DATA VD-A

to vertical line. That is, line is a special case of parabola.
Therefore, in practical applications, if η is approximately equal
to zero, then the parabola can be seen as line. Table III shows
the reconstructed value of η of Circle-Parabola (i.e., the best
fitted curve) for the outer marking. It can be seen that, η is very
close to zero. In other words, to a large extent, our method also
finds the ground-truth model for the outer marking. Besides
η, Table III also shows the reconstructed values for other
important variables. All the reconstructed values are very close
to the ground-truth values. Therefore, it can be concluded that,
our method is able to accurately reconstruct highway curves
in the virtual scan data VD-A.

We now compare the estimator used in our method against
several other estimators for reconstructing curves on another
virtual scan data VD-B. There are three differences between
the data VD-B and the aforementioned data VD-A which
is shown in Fig. 10a. First, the ground-truth model of the
synthetic highway surface for VD-B is Circle-Parabola. The
vertical curvature of the synthetic surface is 0.0005. Second,
VD-B is acquired by the virtual RIEGL VQ-450 scanners [45]

TABLE IV

RECONSTRUCTED VALUES OF SOME IMPORTANT VARIABLES BY DIFFER-
ENT ESTIMATORS FOR VD-B

with 54 km/h moving speed and 100 Hz scanning frequency.
Third, the trajectories and the scanned distances are contam-
inated by Gaussian noise with standard deviations 0.01 and
0.04, respectively.

The estimators used for comparison are mean squared error,
inlier number [35], and M-estimator [36]. Inlier number and
M-estimator are among the state-of-the-art robust estimators
[37] and both require to tune an extra parameter called inlier
threshold (IT). In the comparative experiments, we only use
the ground-truth model (i.e., Circle-Parabola) to perform curve
fitting on the extracted outer marking points. We use the same
cuckoo search algorithm [43] to perform optimization for all
the estimators. The convergence tolerance for the optimization
is set to 2,000,000 iterations.

The fitting results of horizontal radius (i.e., 1/κ0) and
vertical curvature (i.e., η) for VD-B are shown in Table IV.
For variable η, the reconstructed value by our method (i.e.,
mean measure) is very close to the ground-truth value. How-
ever, for variable 1/κ0, the absolute reconstruction error (i.e.,
the difference between reconstructed value and ground-truth
value) of our method is near 2 m. This error is about ten times
larger than the error obtained on the virtual data VD-A (see
Fig. 10 and Table III). This is due to that VD-B is acquired by
higher moving speed and higher noise than VD-A. Let relative
reconstruction error be the ratio of absolute reconstruction
error to ground-truth value. The relative reconstruction error of
our method for reconstructing variable 1/κ0 is only about 0.6%
(i.e., 2/350). In this sense, our method is also able to accurately
reconstruct highway curves for the virtual scan data VD-B.

In contrast, the reconstruction errors for horizontal radius
or vertical curvature by using mean squared error and inlier
number are bigger than by our method. Only when the inlier
threshold (IT) is carefully chosen (in the case of Table IV,
IT should be larger than 0.025 and smaller than 0.4), the
performance of M-estimator is comparable with our method.

C. Experiments on Real MLS Data

The MLS data used for experiments were collected
by the same RIEGL VMX-450 system as in [32]. In
the experiments, the distance thresholds used for normal
calculation (Section III-B), intensity variance calculation
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Fig. 12. Curves (color) reconstructed from the hull points (white) given in Fig. 7, using (a) our method, and (b) using the least-squares estimation method.

Fig. 13. Overlaps of the reconstructed curves (red) and their corresponding road surface points (gray). (a) to (f) sequential parts of MLS data of a highway.
Note that, (b) corresponds to Fig. 7 and Fig. 12.

Fig. 14. Reconstructed curves (red) from a road surface partitioned by (a) β = 500, (b) β = 2000, and (c) Reconstructed curves (red) from a road surface
(given in Fig. 13b) by a distance threshold 0.05.

(Section III-C), and clustering (Section III-C) are set to the
same value. Therefore, the number of parameters used in our
method was reduced to 3. Specifically, we set the distance
threshold to 10 cm, β to 1000, and the convergence tolerance
to 500,000 iterations.

Fig. 12a shows the curves reconstructed from the hull
points in Fig. 7. It can be seen that, although the hull points
contain a large number of outliers, our method is still able to
correctly find the curve. In contrast, as shown in Fig. 12b, the
curve reconstructed by a least-squares estimation method is

significantly biased by the outliers. As shown in Fig. 13, the
reconstructed curves can well represent the geometry of the
highway.

We also conducted experiments to test the influence of
several important parameters of our method. As shown in
Figs. 14a and 14b, although our method can work for a large
value of β, a small value of β is preferred. Our method
reconstructs only one elemental curve from one road marking
cluster. A large value of β results in a long road curve, which
may contain multiple elemental curves. That means some
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elemental curves may miss to be reconstructed. Fig. 14c shows
the influence of the distance threshold. In Fig. 13b, where the
distance threshold is set to 0.1, two curves (left and right) are
reconstructed.

However, in Fig. 14c, where the distance threshold is set
to 0.05, only one curve is reconstructed. The reason is that,
our method fails to cluster the left curve into a big cluster and
decides to reconstruct only the right curve.

V. CONCLUSION

In this paper, we have presented a new automated method
to reconstruct 3D highway curves from noisy, unstructured,
dense MLS point clouds. Our method consists of two major
steps: detection of road markings solely using intensity vari-
ance, and curve reconstruction (i.e., recognizing the types of
curves and estimating the values of curve parameters) through
robust probabilistic program induction. Our method has been
validated by experiments on a virtual scan dataset. The virtual
experiments showed that, our method achieves the relative
accuracy of less than 0.6% for estimation of horizontal circle
radii and the vertical slope of 0.0001, respectively. The results
obtained using a real MLS dataset also demonstrated effec-
tiveness of our method. The final parametric curves obtained
using our method is confined by the highway geometric design
standard.

REFERENCES

[1] G. M. Gibreel, S. M. Easa, Y. Hassan, and I. A. El-Dimeery, “State
of the art of highway geometric design consistency,” J. Transp. Eng.,
vol. 125, no. 4, pp. 305–313, 1999.

[2] P. Di Mascio, M. Di Vito, G. Loprencipe, and A. Ragnoli, “Procedure
to determine the geometry of road alignment using GPS data,” Procedia
Social Behav. Sci., vol. 53, pp. 1202–1215, Oct. 2012.

[3] I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, and
A. Baumgartner, “Automatic extraction of roads from aerial images
based on scale space and snakes,” Mach. Vis. Appl., vol. 12, no. 1,
pp. 23–31, 2000.

[4] S. M. Easa, H. Dong, and J. Li, “Use of satellite imagery for establishing
road horizontal alignments,” J. Surv. Eng., vol. 133, no. 1, pp. 29–35,
2007.

[5] D. Chaudhuri, N. K. Kushwaha, and A. Samal, “Semi-automated road
detection from high resolution satellite images by directional mor-
phological enhancement and segmentation techniques,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1538–1544,
Oct. 2012.

[6] W. Shi, Z. Miao, and J. Debayle, “An integrated method for urban main-
road centerline extraction from optical remotely sensed imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3359–3372, Jun. 2014.

[7] K. Lakakis, P. Savvaidis, and T. Wunderlich, “Evaluation of a low-cost
mobile mapping and inspection system for road safety classification,”
Amer. J. Geograph. Inf. Syst., vol. 2, no. 1, pp. 6–14, 2013.

[8] H. Cai and W. Rasdorf, “Modeling road centerlines and predicting
lengths in 3-D using LIDAR point cloud and planimetric road centerline
data,” Comput. Aided Civil Infrastruct. Eng., vol. 23, no. 3, pp. 157–173,
2008.

[9] H. Guan, J. Li, S. Cao, and Y. Yu, “Use of mobile LiDAR in road
information inventory: A review,” Int. J. Image Data Fusion, vol. 7,
no. 3, pp. 219–242, 2016.

[10] L. Ma, Y. Li, J. Li, C. Wang, R. Wang, and M. Chapman, “Mobile laser
scanned point-clouds for road object detection and extraction: A review,”
Remote Sens., vol. 10, no. 10, p. 1531, 2018.

[11] Y. Yu, J. Li, H. Guan, and C. Wang, “Automated extraction of urban road
facilities using mobile laser scanning data,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 4, pp. 2167–2181, Aug. 2015.

[12] H. Guan, J. Li, Y. Yu, M. Chapman, and C. Wang, “Automated road
information extraction from mobile laser scanning data,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 1, pp. 194–205, Feb. 2015.

[13] M. Cheng, H. Zhang, C. Wang, and J. Li, “Extraction and classification
of road markings using mobile laser scanning point clouds,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 1182–1196,
Mar. 2017.

[14] Y. Tsai, C. Ai, Z. Wang, and E. Pitts, “Mobile cross-slope measurement
method using LiDAR technology,” J. Transp. Res. Board, vol. 2367,
no. 1, pp. 53–59, 2013.

[15] A. Holgado-Barco, D. Gonzalez-Aguilera, P. Arias-Sanchez, and
J. Martinez-Sanchez, “An automated approach to vertical road char-
acterisation using mobile LiDAR systems: Longitudinal profiles and
cross-sections,” ISPRS J. Photogramm. Remote Sens., vol. 96, pp. 28–37,
Oct. 2014.

[16] A. Holgado-Barco, D. González-Aguilera, P. Arias-Sanchez, and
J. Martinez-Sanchez, “Semiautomatic extraction of road horizontal align-
ment from a mobile LiDAR system,” Comput. Aided Civil Infrastruct.
Eng., vol. 30, no. 3, pp. 217–228, 2015.

[17] J. Wang, Z. Hu, Y. Chen, and Z. Zhang, “Automatic estimation of
road slopes and superelevations using point clouds,” Photogramm. Eng.
Remote Sens., vol. 83, no. 3, pp. 217–223, 2017.

[18] B. Yang, Y. Liu, Z. Dong, F. Liang, B. Li, and X. Peng, “3D local
feature BKD to extract road information from mobile laser scan-
ning point clouds,” ISPRS J. Photogramm. Remote Sens., vol. 130,
pp. 329–343, Aug. 2017.

[19] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[20] Z. Zhang et al., “Robust procedural model fitting with a new geometric
similarity estimator,” Pattern Recognit., vol. 85, pp. 120–131, Jan. 2019.

[21] W. Wang, H. Pottmann, and Y. Liu, “Fitting B-spline curves to point
clouds by curvature-based squared distance minimization,” ACM Trans.
Graph., vol. 25, no. 2, pp. 214–238, 2006.

[22] Y. Hassan, “Three-dimensional approach for roadway alignment design
incorporating driver perception,” Adv. Transp. Stud., vol. 2, pp. 15–32,
Jul. 2004.

[23] W. Kühn, “The basics of a three-dimensional geometric design method-
ology,” in Proc. 3rd Int. Symp. Highway Geometric Design, 2005,
pp. 1–18.

[24] M. K. Jha, G. A. K. Karri, and W. Kuhn, “New three-dimensional
highway design methodology for sight distance measurement,” J. Transp.
Res. Board, vol. 2262, no. 1, pp. 74–82, 2011.

[25] M. K. Jha, G. Karri, and W. Kuehn, “Three-dimensional highway
design methodologies based on piecewise polynomials and integral
Bézier splines,” in Proc. Transp. Res. Board 92nd Annu. Meeting, 2013,
pp. 53–62.

[26] Y. Yu, J. Li, H. Guan, F. Jia, and C. Wang, “Learning hierarchical
features for automated extraction of road markings from 3-D mobile
LiDAR point clouds,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 8, no. 2, pp. 709–726, Feb. 2015.

[27] A. Jaakkola, J. Hyyppä, H. Hyyppä, and A. Kukko, “Retrieval algorithms
for road surface modelling using laser-based mobile mapping,” Sensors,
vol. 8, no. 9, pp. 5238–5249, 2008.

[28] M. Thuy and F. León, “Lane detection and tracking based on lidar data,”
Metrol. Meas. Syst., vol. 17, no. 3, pp. 311–321, 2010.

[29] A. Mancini, E. Frontoni, and P. Zingaretti, “Automatic road object
extraction from mobile mapping systems,” in Proc. IEEE/ASME Int.
Conf. MESA, Suzhou, China, Jul. 2012, pp. 281–286.

[30] M. Soilán, B. Riveiro, J. Martínez-Sánchez, and P. Arias, “Segmentation
and classification of road markings using MLS data,” ISPRS J. Pho-
togramm. Remote Sens., vol. 123, pp. 94–103, Jan. 2017.

[31] B. Yang, L. Fang, Q. Li, and J. Li, “Automated extraction of road
markings from mobile LiDAR point clouds,” Photogramm. Eng. Remote
Sens., vol. 78, no. 4, pp. 331–338, 2012.

[32] H. Guan, J. Li, Y. Yu, C. Wang, M. Chapman, and B. Yang, “Using
mobile laser scanning data for automated extraction of road markings,”
ISPRS J. Photogramm. Remote Sens., vol. 87, pp. 93–107, Jan. 2014.

[33] P. Kumar, C. P. McElhinney, P. Lewis, and T. McCarthy, “An automated
algorithm for extracting road edges from terrestrial mobile LiDAR data,”
ISPRS J. Photog. Remote Sens., vol. 85, pp. 44–55, Nov. 2013.

[34] A. Iglesias, A. Gálvez, and A. Avila, “Immunological approach for
full NURBS reconstruction of outline curves from noisy data points
in medical imaging,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 15,
no. 6, pp. 1–14, Nov./Dec. 2018. doi: 10.1109/TCBB.2017.2688444.

[35] M. A. Fischler and R. C. Bolles, “Random sample consensus: A para-
digm for model fitting with apphcatlons to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

http://dx.doi.org/10.1109/TCBB.2017.2688444


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: 3D HIGHWAY CURVE RECONSTRUCTION FROM MOBILE LASER SCANNING POINT CLOUDS 11

[36] P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator
with application to estimating image geometry,” Comput. Vis. Image
Understand., vol. 78, no. 1, pp. 138–156, 2000.

[37] H. Le, T.-J. Chin, and D. Suter, “An exact penalty method for locally
convergent maximum consensus,” in Proc. IEEE Conf. CVPR, Honolulu,
HI, USA, Jul. 2017, pp. 379–387. doi: 10.1109/CVPR.2017.48.

[38] G. Vosselman, B. G. H. Gorte, G. Sithole, and T. Rabbani, “Recognising
structure in laser scanner point clouds,” ISPRS Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci., vol. 46, no. 8, pp. 33–38, 2004.

[39] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66,
Jan. 1979.

[40] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” IEEE Trans. Inf. Theory, vol. IT-29, no. 4,
pp. 551–559, Jul. 1983.

[41] E. Bertolazzi and M. Frego, “On the G2 hermite interpolation problem
with clothoids,” J. Comput. Appl. Math., vol. 341, pp. 99–116, Oct. 2018.

[42] M.-P. Dubuisson and A. K. Jain, “A modified Hausdorff distance
for object matching,” in Proc. 12th ICPR, Jerusalem, Israel, vol. 1,
Oct. 1994, pp. 566–568.

[43] X. S. Yang and S. Deb, “Engineering optimisation by cuckoo search,”
Int. J. Math. Model. Numer. Optim., vol. 1, no. 4, pp. 330–343, 2010.

[44] L. Yan, H. Liu, J. Tan, Z. Li, H. Xie, and C. Chen, “Scan line based road
marking extraction from mobile lidar point clouds,” Sensors, vol. 16,
no. 6, p. 903, 2016.

[45] S. Bechtold and B. Höfle, “HELIOS: A multi-purpose LIDAR simulation
framework for research, planning and training of laser scanning oper-
ations with airborne, ground-based mobile and stationary platforms,”
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., vol. III-3,
pp. 161–168, Jun. 2016.

Zongliang Zhang received the B.Eng. degree from
Fuzhou University in 2010, the M.Eng. degree from
Northwest A&F University in 2013, and the Ph.D.
degree from Xiamen University, China, in 2018, all
in computer science and technology.

He is currently a Lecturer with Fujian Medical
University, China. He has published an article in
Pattern Recognition journal and coauthored several
articles published in refereed conference proceed-
ings, including IGARSS, AAAI, and ISPRS. His
current research interests are 3D computer vision,

3D geometric modeling, point cloud processing, and robust model fitting.

Jonathan Li (M’00–SM’11) received the Ph.D.
degree in geomatics engineering from the University
of Cape Town, South Africa.

He is currently a Professor and the Head of
the Mobile Sensing and Geodata Science Group,
Department of Geography and Environmental Man-
agement, and cross-appointed at the Department of
Systems Design Engineering, University of Water-
loo, Canada. He has coauthored more than 400
publications, over 170 of them were published in ref-
ereed journals, including IEEE TGRS, IEEE TITS,

IEEE GRSL, IEEE JSTARS, ISPRS JPRS, IJRS, PE&RS, and RSE, and
over 170 of them were refereed conference proceedings, including CVPR,
AAAI, IJCAI, IGARSS, and ISPRS. His current research interests include
machine/deep learning algorithms for converting image pixels and LiDAR
point clouds into HD maps to support autonomous vehicles and smart cities.
He is also the Chair of the ISPRS Working Group I/2 on LiDAR, Air-
and Spaceborne Optical Sensing (2016–2020) and the ICA Commission on
Sensor-driven Mapping (2015–2019) and an Associate Editor of the IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, the IEEE
JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND

REMOTE SENSING, and the Canadian Journal of Remote Sensing.

Yulan Guo received the B.Eng. and Ph.D. degrees
from the National University of Defense Technology
(NUDT) in 2008 and 2015, respectively. He was a
Visiting Ph.D. Student with The University of West-
ern Australia from 2011 to 2014 and a Post-Doctoral
Research Fellow with the Institute of Computing
Technology, Chinese Academy of Sciences from
2016 to 2018. He has authored over 80 articles in
journals and conferences, such as the IEEE TPAMI
and IJCV. His current research interests focus on
3D vision, particularly on 3D feature learning, 3D

modeling, 3D object recognition, and 3D biometrics. He was a PC Member
for several conferences, such as ACM MM, IJCAI, and AAAI, and a recipient
of the CAAI Outstanding Doctoral Dissertation Award in 2016. He served as
an Associate Editor for the IET Computer Vision and IET Image Processing,
a Guest Editor for the IEEE TPAMI, a Reviewer for over 30 journals, and an
Organizer for a tutorial in CVPR 2016 and a workshop in CVPR 2019.

Chenhui Yang received the Ph.D. degree in
mechanical engineering from Zhejiang University,
Zhejiang, China, in 1995.

He was a Visiting Scholar with the University
of Chicago/Argonne National Laboratory from 1999
to 2000 and the University of Southern California
from 2014 to 2015. He is currently a Professor with
the School of Information Science and Engineering,
Xiamen University, China. He has coauthored more
than 80 research articles published in journals and
conference proceedings. His research interests focus

on computer vision, computer graphics, data mining, and their applications in
transportation, security, and medical studies.

Cheng Wang (M’04–SM’16) received the Ph.D.
degree in information and communication engineer-
ing from the National University of Defense Tech-
nology, Changsha, China, in 2002.

He is currently a Professor and the Associate
Dean of the School of Information Science and
Engineering, Xiamen University, China, where he
is also the Executive Director of the Fujian Key
Laboratory of Sensing and Computing for Smart
Cities. He has coauthored over 80 articles in ref-
ereed journals, including IEEE-TGRS, IEEE-TITS,

IEEE-GRSL, IEEE-JSTARS, IJRS, and ISPRS-JPRS. His research interests
include remote sensing image processing, mobile LiDAR data analysis, and
multisensory data fusion. He is also a fellow of IET and a Council Member of
the China Society of Image and Graphics. He is also the Chair of the ISPRS
WG I/3 on Multi-Platform Multi-Sensor System Calibration (2016–2020).

http://dx.doi.org/10.1109/CVPR.2017.48

