remote sensing @\py

Review

Review: Deep Learning on 3D Point Clouds

Saifullahi Aminu Bello 2, Shangshu Yu !, Cheng Wang 1'*, Jibril Muhmmad Adam !
and Jonathan Li 13

1 Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University,

422 Siming South Road, Xiamen 361005, China; 23020170155983@stu.xmu.edu.cn (S.A.B.);
23020180155671@stu.xmu.edu.cn (5.Y); 23020170155980@stu.xmu.edu.cn (J.M.A.); junli@uwaterloo.ca (J.L.)
Department of Computer Science, Kano University of Science and Technology, Wudil, PM.B 3244, Kano,
Nigeria

Department of Geography and Environmental Management, University of Waterloo, 200 University Avenue,
Waterloo, ON N2L 3G1, Canada

Correspondence: cwang@xmu.edu.cn

check for

Received: 21 April 2020; Accepted: 20 May 2020; Published: 28 May 2020 updates

Abstract: A point cloud is a set of points defined in a 3D metric space. Point clouds have become one
of the most significant data formats for 3D representation and are gaining increased popularity as
a result of the increased availability of acquisition devices, as well as seeing increased application
in areas such as robotics, autonomous driving, and augmented and virtual reality. Deep learning
is now the most powerful tool for data processing in computer vision and is becoming the most
preferred technique for tasks such as classification, segmentation, and detection. While deep learning
techniques are mainly applied to data with a structured grid, the point cloud, on the other hand, is
unstructured. The unstructuredness of point clouds makes the use of deep learning for its direct
processing very challenging. This paper contains a review of the recent state-of-the-art deep learning
techniques, mainly focusing on raw point cloud data. The initial work on deep learning directly with
raw point cloud data did not model local regions; therefore, subsequent approaches model local
regions through sampling and grouping. More recently, several approaches have been proposed
that not only model the local regions but also explore the correlation between points in the local
regions. From the survey, we conclude that approaches that model local regions and take into account
the correlation between points in the local regions perform better. Contrary to existing reviews,
this paper provides a general structure for learning with raw point clouds, and various methods
were compared based on the general structure. This work also introduces the popular 3D point
cloud benchmark datasets and discusses the application of deep learning in popular 3D vision tasks,
including classification, segmentation, and detection.

Keywords: point cloud; deep learning; datasets; classification; segmentation; object detection

1. Introduction

We live in a three-dimensional world; however, since the invention of the camera, visual
information of the 3D world has been projected onto 2D images. Two-dimensional images, however,
lose depth information and relative positions between two or more objects in the real world. These
factors make 2D images less suitable for applications that require depth and positioning information
such as robotics, autonomous driving, virtual reality, and augmented reality, among others [1-3].
To capture the 3D world with depth information, the early convention was to use stereo vision, where
two or more calibrated digital cameras are used to extract 3D information [4,5]. A point cloud is a
data structure that is often used to represent 3D geometry, as the immediate representation of the
extracted 3D information from stereo vision cameras [6,7] as well as of the depth map produced by

Remote Sens. 2020, 12, 1729; d0i:10.3390/rs12111729 www.mdpi.com/journal /remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/2072-4292/12/11/1729?type=check_update&version=1
http://dx.doi.org/10.3390/rs12111729
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2020, 12, 1729 2 of 37

RGB-D. Recently, 3D point cloud data have become popular as a result of the increasing availability
of sensing devices, especially light detection and ranging (LiDAR)-based devices such as Tele-15 [8],
Leica BLK360 [9], Kinect V2 [10], etc., and, more recently, mobile phones with a time of flight (tof)
depth camera. These sensing devices allow the easy acquisition of the 3D world in 3D point clouds.

A point cloud is simply a set of data points in space. The point cloud of a scene is the set
of 3D points around the surfaces of the objects in the scene. In its simplest form, 3D point cloud
data are represented by the XYZ coordinates of the points, or these may include additional features
such as surface normals and RGB values. Point cloud data represent a very convenient format for
representing the 3D world. Point clouds are commonly used as a data format in several disciplines
such as geomatics/surveying (mobile mapping); architecture, engineering, and construction (AEC);
and Building Information Modelling (BIM) [11-13]. Point clouds have a range of applications in
different areas such as robotics [14], autonomous driving [15], augmented and virtual reality [16],
manufacturing and building rendering [17], etc.

In the past, the processing of point clouds for visual intelligence has been based on handcrafted
features [18-23]. A review of handcrafted-based feature learning techniques is conducted in [24].
The handcrafted features do not require large training data and have been seldom used due to
insufficient point cloud data; furthermore, deep learning was not popular. However, with the
increasing availability of acquisition devices, point cloud data are now readily available, making
the use of deep learning for its processing feasible.

Deep learning is a machine learning approach based on artificial neural networks designed
to mimic the human brain [25]. Deep learning models are used to learn feature representations of
data through multiple processing layers that learn multiple levels of abstraction [26]. Deep learning
models are used in several areas, including computer vision, speech recognition, natural language
processing, etc. They have achieved state-of-the-art results comparable to—and in some instances
surpassing—human expert performance [27-29].

In the computer vision field, deep learning has achieved notable success with 2D data [27,30—
33]. However, the application of deep learning on 3D point clouds is not easy due to the inherent
nature of the point clouds. In this paper, the challenges of using point clouds for deep learning are
presented. This paper reviews the early approaches devised to overcome these challenges, and the
recent state-of-the-art approaches that directly operate on the point clouds, focusing more on the latter.
This paper is intended to serve as a guide to new researchers in the field of deep learning with point
clouds as it presents the recent state-of-the-art approaches of deep learning with point cloud data. In
contrast to existing reviews [34-36], this paper’s focus is mainly on point cloud data; it gives a general
structure for learning with raw point clouds, and various methods are compared based on the general
structure. Popular point cloud benchmarked datasets are also introduced and summarized in tabular
form for easy analysis.

The rest of the paper is organized as follows: Section 2 discusses the methodology used. Section 3
discusses the challenges of point clouds which make the application of deep learning more difficult.
Section 4 reviews the methods to overcoming these challenges by converting the point clouds into a
structured grid. Section 5 contains in-depth information regarding the various deep learning methods
that process point clouds directly. In Section 6, 3D point clouds benchmark datasets are presented.
The application of the various approaches in the 3D vision tasks is discussed in Section 7. The summary
and conclusion of the paper are given in Section 8.

2. Methodology

Articles reviewed in this paper were all published between 2015 to 2020. The article is mainly
focused on point cloud data; however, it includes a brief review of other approaches based on structured
3D data. The article includes the first works that use deep learning on voxel-based and multiview 3D
representation, which were published in 2015 and 2016, respectively. It also includes a few highly cited
works on the two representations.

Remote Sens. 2020, 12, 1729 3 of 37

Deep learning with raw point clouds was pioneered by PointNet, published in 2017. The works
reviewed in this category were published from 2017 to 2020. We have mainly searched for the
relevant papers using the major conference repositories such as Conference on Computer Vision
and Pattern Recognition (CVPR), International Conference on Computer Vision (ICCV), European
Conference on Computer Vision (ECCV), Association for the Advancement of Artificial Intelligence
(AAATI) Conference, International Conference on Learning Representations (ICLR) as well as Google
Scholar. Many benchmarked datasets have an online leaderboard; we also consider leading works
from these leaderboards.

The datasets selected in this paper were all published after 2010, and they mainly referenced
common tasks in computer vision. The data are all tagged with ground truth (GT) labels. Tabular
details were provided for the easy understanding of the datasets.

The methods reviewed are organized according to Figure 1. Performances of these methods on
three popular computer vision tasks are reported in Section 7.

[Deep Learning on 3D point cloud]
[structured grid based] ‘ Raw point cloud]
Voxel Multiview Higher dimensional| |pgintNet . .
| based] based] [|attices] ointNe Local region computation
SplatNet
VoxNet
VMCNN coNr(r)ellc:iiiln] Local correlation]
VMCNN | o SFCNN))
PointNet++ PointCNN (Graph]
NormalNet based
SLCAE VoxelNet Pointweb Kd-Network
-Networl
MRCNN
GIFT SO-Net PointConv
DGCNN
ShapePFCN Pointwise Conv RS-CNN
LocalSpec
MV - 3D PointCapsNet [GeoCNN
SphericalProject SPG
A-CNN
SSP+SPG
SpiderCNN
DPAM
PAT

Figure 1. Overview of deep learning approaches on point clouds.
3. Challenges of Deep Learning with Point Clouds

Applying deep learning to 3D point cloud data has many challenges. These challenges include
occlusion, which is caused by cluttered scenes or blindsides; noise/outliers, which are unintended
points; and point misalignment, etc. [37,38]. However, the most significant challenges regarding the
application of deep learning to point clouds can be categorized as follows:

Irregularity: Point cloud data are irregular, meaning that the points are not evenly sampled across
the different regions of an object/scene, so some regions could have dense points while others have
sparse points [39]. These can be seen in Figure 2a. Irregularity can be attenuated by sub sampling
techniques, but cannot be completely eliminated [40].

Unstructured: Point cloud data are not placed on a regular grid [41]. Each point is scanned
independently, and its distance to neighboring points is not always fixed. In contrast, pixels in
images are represented on a two-dimensional grid, and the spacing between two adjacent pixels is
always fixed.

Unorderdness: A point cloud of a scene is the set of points (usually represented by XYZ) obtained
around the objects in the scene, and these are usually stored as a list in a file. As a set, the order

Remote Sens. 2020, 12, 1729 4 of 37

in which the points are stored does not change the scene represented; therefore, it is invariant to
permutation [42]. For illustration purposes, the unordered nature of point sets is shown in Figure 2c.

These properties of point clouds are very challenging for deep learning, especially convolutional
neural networks (CNN). This is because CNNs are based on convolution operation, which is performed
on data that are ordered, regular, and on a structured grid. Early approaches overcome these challenges
by converting the point clouds into a structured grid format, as shown in Section 4. However,
researchers have recently been developing approaches that directly use the power of deep learning for
the raw point cloud, without the need for conversion to a structured grid; see Section 5.

e o
e]
(3N)
. o. i - .
® ¢’ Pt p1 o p7 .
® 5 2 p2 5 EE’
dense region sparse region of .p P _ .F’B .p p5
—— p5 p4 M| = p4 0
Wi 0 [05 p3 . 0 o
[} 06 [p2
[L]
pe o7
pr p2 of pt
(a) Irregular. Sparse and |(b) Unstructured. No grid; [(c) Unordered. As a set, point clouds are
dense regions. each point is independent |invariant to permutation.
and the distance between
neighboring points is
not fixed.

Figure 2. Challenges of point cloud data.

4. Structured Grid-Based Learning

Deep learning, specifically the convolutional neural network (CNN), is successful because of
the convolutional layer. The convolutional layer uses gradient descent to determine the filters (also
referred to as kernels) for feature detection using the convolution operation. The convolution layer
is used for feature learning, replacing the need for handcrafted features. Figure 3 shows a typical
convolution operation on a 2D grid using a 3 x3 filter. The convolution operation requires a structured
grid. Point cloud data are unstructured, and this is a challenge for deep learning. To overcome this
challenge, many approaches convert the point cloud data into a structured form. These approaches
can be broadly divided into two categories: voxel-based and multi-view-based.This section reviews
some of the state-of-the-art methods in both voxel-based and multi-view-based categories, as well as
their advantages and drawbacks.

''_H_'_'_,,.—o—""'_'_ﬂ .
el ™
21 Tk
— 1. " ‘5__ 5 | -
4 2171,

3 r?_,..r—"”"fz T
=T, |4 |3 |5+
0170
fﬂaz “l__!',_,,,»-”

Figure 3. A typical 2D convolution operation.

Remote Sens. 2020, 12, 1729 5o0f 37

4.1. Voxel-Based Approach

The convolution operation for 2D images uses a 2D filter of size & X i to convolve a 2D input,
represented as matrix of size X x Y with ¥ <= X and y <= Y. Voxel-based methods [43—47] use
a similar approach by converting the point clouds into a 3D voxel structure of size X X Y x Z and
convolving it with 3D kernels of size x X y X z with x,y,z <= X, Y, Z, respectively. Basically, two
important operations take place in this method: offline (preprocessing) and online (learning). The
offline method converts the point clouds into fixed-size voxels, as shown in Figure 4. Binary voxels [48]
are often used to represent the voxels. In NormalNet [46], a normal vector is added to each voxel to
improve discrimination capability.

Figure 4. The point cloud of an airplane is voxelized to a 30 x 30 x 30 volumetric occupancy grid.

The online operation is the learning stage. In this stage, the deep convolutional neural network is
designed, usually using a various number of 3D convolutional, pooling, and fully connected layers.

In 3D ShapeNets [48], 3D shapes are represented as a probability distribution of binary variables on
a 3D voxel grid; this technique was the first to use 3D Deep Convolutional Neural Networks. The inputs
to the network—point clouds, computer-aided design (CAD) models, or RGB-D images—are converted
into a 3D binary voxel grid and are processed using a convolutional deep belief network [49]. A
three-dimensional CNN is used for landing zone detection for unmanned rotorcraft in [43]. LIDAR
from the rotorcraft is used to obtain point clouds of the landing site, which are then voxelized into 3D
volumes, and a 3D CNN binary classifier is applied to classify the landing site as safe or otherwise.
In VoxNet [44], a 3D convolutional neural network for object recognition is proposed. As with 3D
ShapeNets [48], the input to VoxNet is converted into a 3D binary occupancy grid before applying 3D
convolution operations to generate a feature vector which is passed through fully connected layers to
obtain class scores. Two voxel-based models were proposed by Qi et al. [45]: the first model addressed
overfitting using auxiliary training tasks to predict objects from partial subvolumes, while the second
model mimicked multi-view CNNs by convolving the 3D shapes with an anisotropic probing kernel.

Although voxel-based methods have shown good performance, they suffer from high memory
consumption due to the sparsity of the voxels, as shown in Figure 4. The voxel sparsity results in
wasted computation when convolving over the non-occupied regions. The memory consumption also
limits the voxel resolution, usually to between 32 cubes and 64 cubes. These drawbacks are also in
addition to the artifacts introduced by the voxelization operation.

To overcome the challenges of memory consumption and voxelization, [50,51] proposed
adaptive representation by using unbalanced octrees which focus on the relevant dense regions.

Remote Sens. 2020, 12, 1729 6 of 37

This representation is more complex than the regular 3D voxels, but it is still limited to only 256
cube voxels.

4.2. Multi-View-Based Approach

Multi-view-based methods [45,52-58] take advantage of the benefits of the already matured
2D CNNs and apply them into three dimensions. Because images are actual representations of the
3D world squashed onto a 2D grid by a camera, methods in this category follow this technique by
converting point cloud data into a collection of 2D images and applying existing 2D CNN techniques
to it; see Figure 5. Compared to their volumetric-based counterparts, multi-view based methods have
better performance, as the multi-view images contain texture information, unlike 3D voxels, even
though, the latter contain depth information.

projection to 2D

A SIESIL

Figure 5. Multi-view projection of a point cloud to 2D images. Each 2D image represents the same
object viewed from a different angle.

MultiviewCNN [52] was the first approach in this direction. The proposed network bypassed the
need for 3D descriptors for recognition and achieved state-of-the-art accuracy. Leng et al. [53] proposed
a stacked local convolutional autoencoder (SLCAE) for 3D object retrieval. Multi-resolution filtering,
which captures information at multiple scales, was introduced by Qi et al. [45]; besides, the authors
used data augmentation for better generalization. RotationNet [58] uses rotation to select the best
viewpoint that maximizes the class likelihood; it leads the Modelnet40 [48] leaderboard at the time of
this review.

Multi-view based networks have better performance than voxel-based methods; this is because
(1) they use 2D techniques which have already been well researched and (2) they can contain richer
information as they do not have the quantization artifacts of voxelization.

4.3. Higher-Dimensional Lattices

There are other methods for point cloud processing using deep learning that convert the point
clouds into a higher-dimensional regular lattice. SplatNet [59] processes point clouds directly; however,
the primary feature learning operation occurs at the bilateral convolutional layer (BCL). The BCL
layer converts the features of unordered points into a six-dimensional (6D) permutohedral lattice
and convolves it with a kernel of a similar lattice. SFCNN [60] uses a fractalized regular icosahedral
lattice to map points onto a discretized sphere and define a multi-scale convolution operation on the

Remote Sens. 2020, 12, 1729 7 of 37

regular spherical lattice. Compared to voxel-based and multi-view approaches, [59,60] have better
performance in terms of segmentation with SplatNet, achieving state-of-the-art accuracy on semantic
segmentation. They are also better than the voxel-based approach in terms of classification.

5. Deep Learning Directly with a Raw Point Cloud

Deep learning with raw point clouds has received increased attention since PointNet [42] was
released in 2017. Many state-of-the-art methods have been developed since then; these techniques
process point clouds directly despite the challenges listed in Section 3. In this section, the state-of-the-art
techniques that work in this direction are reviewed. The development of this began with PointNet,
which is the bedrock for most methods. Other methods improved on PointNet by modeling local
region structures.

5.1. PointNet

Convolutional neural networks use convolutional layers to learn hierarchical feature
representations as the network deepens [27]. Convolutional layers use a convolution that requires a
structured grid, which is lacking in point cloud data. PointNet [42] was the first method to apply deep
learning to an unstructured point cloud, and it formed the basis from which most other techniques
were developed.

The architecture of PointNet is shown in Figure 6. The input to PointNet is a raw point cloud
P = RN*P, where N represents the number of points in the point cloud and D the dimension.
Usually, D = 3, representing the XYZ values of each point; however, additional features can be used.
Because points are unordered, PointNet is built on two basic functions: multilayer perceptron (MLP),
with learnable parameters, and a maxpooling function. The MLPs are feature transformations that
transform the feature dimension of the points from a D = 3 to D = 1024 dimensional space, and their
parameters are shared by all the points in each layer. To obtain a global feature, the maxpooling
function is used as a symmetric function. A symmetric function is a function whose output is the same
irrespective of the input order. The maxpooling produces one global 1024-dimensional feature vector.
The feature vector represents the feature descriptor of the input, which can be used for recognition and
segmentation tasks.

PointNet achieved state-of-the-art performance on several benchmark datasets. The design
of PointNet, however, does not consider the local dependency among points; thus, it does not
capture the local structure. The global maxpooling applied selects the feature vector with a
“winner-takes-all" [61] principle, making it very susceptible to a targeted adversarial attack, as
demonstrated by Xiang et al. [62]. After PointNet, many approaches were proposed to capture
local structures.

Remote Sens. 2020, 12, 1729 8 of 37

Classification Network
input mlp (64,64) feature mlp (64,128,1024) max mlp
§ transform transform pool 1024 (512,256.,k)
S e) % NS
‘; 5 = B shared \g 1 1 g shared nx1024 I
§ & : global’feature k
— R s output scores
: i i point features
g
—]
1088 & g |2
nig shared = shared] -1
g 2
E
—] g
5 mlp (512,256) mlp (128,m)
Segmentation Network

Figure 6. Architecture of PointNet [42]. PointNet is composed of multilayer perceptrons (MLPs), which
are shared point-wise, and two spatial transformer networks (STN) of 3 x 3 and 64 x 64 dimensions
which learn the canonical representation of the input set. The global feature is obtained with a
winner-takes-all principle and can be used for classification and segmentation tasks.

5.2. Approaches with Local Structure Computation

Many state-of-the-art approaches were developed after PointNet to capture local structures.
These techniques capture the local structure hierarchically in a similar fashion to grid convolution,
with each hierarchy encoding a richer representation.

Basically, due to the inherent unstructuredness of point clouds, local structure modeling is based
on three basic operations: sampling, grouping, and a mapping function. The mapping function
is usually approximated by a multilayer perceptron (MLP) which maps the features of the nearest
neighbor points into a feature representation that encodes higher-level information; see Figure 7. These
operations are briefly explained before reviewing the various approaches.

Sampling is employed to reduce the resolution of points across layers in the same way that
the convolution operation reduces the resolution of feature maps via convolutional and pooling
layers. Given a point cloud P € RN*3 of N points, the sampling reduces it to M points P € RM*3,
where M < N. The subsampled M points, also referred to as representative points or centroids, are
used to represent the local region from which they were sampled. Two approaches are popular for
subsampling: (1) random point sampling, where each of the N points is equally likely to be sampled;
and (2) farthest point sampling (FPS), where the M points are sampled such that each sampled point is
the most distant point from the rest of the M — 1 points. Other sampling methods include uniform
sampling and Gumbel subset sampling [63].

As regards the grouping operation, as the representative points are sampled, the k-nearest
neighbor (kNN) algorithm is used to select the nearest neighbor points to the representative points
to group them into a local patch; see Figure 8. The points in a local patch are used to compute the
local feature representation of the neighborhood. In grid convolution, the receptive field shows the
pixels on the feature map under a kernel. The kNN is either used directly, where k nearest points to a
centroid are sampled, or a ball query is used. With ball query, points are selected only when they are
within a certain radius distance to the centroid points.

Regarding the non-linear mapping function, once the nearest points to each representative point
are obtained, the next step is to map them into a feature vector that represents the local structure. In grid
convolution, the receptive field is mapped into a feature neuron using simple matrix multiplication
and summation with convolutional kernels. This is not easy in point clouds, because the points are
not structured; therefore, most approaches approximate the function using a PointNet-based method
[42] which is composed of multilayer perceptrons, & (-), and a maxpooling symmetric function, g(-), as
shown in Equation (1).

Remote Sens. 2020, 12, 1729 9 of 37

f{x1,x}) = g(h(x1), ... h(xg)) 1)

Input Nx(3+¢)

Sampling M

k-NN

Grouping MxKx(3+c)
Non-linear Ko (e} sic
mapping iRV — R
v
Output Mx(3+C)

Figure 7. Basic operations for capturing local structures in a point cloud. Given P € RN*(3+¢) points,
each point is represented by XYZ and c feature channel (for input points, ¢ can be point features such
as normals, RGB, etc or zero). M < N centroids points are sampled from N, and k-nearest neighbor
(kNN) points to each of the centroids are selected to form M groups. Each group represents a local
region (receptive field). A non-linear function, usually approximated by a PointNet-based MLP, is then
applied to the local region to learn the C—dimensional local region features (C > c).

¥

...
L J

Sampling Grouping ey

Input

Figure 8. Sampling and grouping of points into local patches. The red dots are the centroid points
selected using sampling algorithms, and the grouping shown is a ball query in which points are selected
based on a certain radius distance to the centroid.

5.2.1. Approaches That Do Not Explore Local Correlation

Several methods follow a PointNet-like approach, in which the correlation between points within
a local region is not considered. Instead, individual point features are learned via a shared MLP, and the
local region feature is aggregated using a maxpooling function with a winner-takes-all principle.

PointNet++ [39] extended PointNet for local region computation by applying Pointnet
hierarchically in local regions. Giving a point set P € RN*3, the farthest point sampling algorithm is
used to select centroids, and a ball query is used to select nearest neighbor points for each centroid to
obtain local regions. PointNet is then applied to the local regions to generate a feature vector of the
regions. This process is repeated in a hierarchical form, thereby reducing the point resolution as it
deepens. In the last layer along the hierarchy, all point features are passed through the PointNet to

Remote Sens. 2020, 12, 1729 10 of 37

produce one global feature vector. PointNet++ has achieved state of the art accuracy on many public
datasets, including ModelNet40 [48] and ScanNet [64].

VoxelNet [65] proposed voxel feature encoding (VFE). Giving a point cloud, it is first casted into
3D voxels of resolution D x H x W, and points are grouped according to the voxel into which they
fall. Because of the irregularity of point clouds, T points are sampled in each voxel in order to obtain a
uniform number of points per voxel. In a VFE layer, the centroids for each of the voxels is computed as
a local mean of the T points within the voxel. The T points are then processed using a fully connected
network (FCN) to aggregate information from all the points. similar to PointNet. The VFE layers are
stacked, and a maxpooling layer is applied to get a global feature vector of each voxel, representing the
feature of the input point clouds by a sparse 4D vector, C x D x H x W. To fit VoxelNet into Figure 7,
the centroids for each voxel are the centroids/representative points, the T points in each voxel are the
nearest neighbor points, and the FCN is the non-linear mapping function.

The self-organizing map (SOM) which was originally proposed in [66] is used to create a
self-organizing network for point clouds in SO-Net [67]. While random point sampling/farthest
point sampling/uniform sampling are used to select centroids in most of the methods discussed,
in So-Net, SOM is constructed with a fixed number of nodes which are dispersed uniformly in a unit
ball. The SOM nodes are permutation-invariant and play the roles of local region centroids. For each
SOM node, the kNN search is used to find the nearest-neighbor points, which are passed through a
series of fully connected layers to extract point features. The point features are maxpooled to generate
M nodes features. To obtain the global features of the input point cloud, the M nodes features are also
aggregated using maxpooling.

Pointwise convolution was proposed by Hua et al. [68]. In this technique, there are no
subsampled /representative points, because the convolution operation is done on all the input points.
In each point, nearest-neighbor points are sampled based on a size or radius value of a kernel centered
on the point. The radius value can be adjusted for different numbers of neighbor points in any layer.
Four pointwise convolutions are applied independently on the input, and each transforms the input
points from three-dimensional to nine-dimensional. The final feature is obtained by concatenating the
output of the four pointwise convolutions for each point, lifting the points from 3D to 36D. The final
feature has the same resolution as the input point clouds and can be used for segmentation using a
convolution layer or classification task using fully connected layers.

3DPointCapsNet [69] proposed an approach that does not consider the local correlation between
points, but region correlation is achieved using the novel dynamic routing procedure proposed
by Sabour et al. [70]. The authors used 16 PointNet-like MLPs with maxpooling; each of the 16
outputs is used as a primary capsule for the dynamic routing procedure that produces 64 x 64 latent
capsule—the feature representation. The dynamic routing causes the output of 16 PointNet-like MLPs
to target 16 different regions of the input shape.

5.2.2. Approaches That Explore Local Correlation

Several approaches explore the correlations between points in a local region to improve
discriminative capability. This is intuitive because points do not exist in isolation; rather, multiple
points together are needed to form a meaningful shape.

PointCNN [41] improved on PointNet++ by proposing an X-transformation for the k-nearest
neighbor points of each centroid before applying a PointNet-like MLP. The centroids/representative
points are randomly sampled, and kNN is used to select the neighborhood points which are passed
through an X-transformation block before applying the non-linear mapping function. The purpose of
the X-transform is to learn a transformation matrix that permutes the neighborhood points into a more
canonical form, which, in essence, takes into consideration the relationship between points within
a local region. In PointWeb [71], “a local web of points” is designed by densely connecting points
within a local region, and it learns the impact of each point on the other points using an adaptive
feature adjustment (AFA) module. In PointConv [72], the authors proposed a “pointConv” operation

Remote Sens. 2020, 12, 1729 11 of 37

that similarly explores the intrinsic structure of points within a local region by computing the inverse
density scale of each point using a kernel density estimation (KDE). The kernel density estimation is
computed offline for each point, and is fed into an MLP to obtain the density estimates.

In R-S CNN [73], the centroids are selected using a uniform sampling strategy, and the nearest
neighbor points to the centroids are selected using a spherical neighborhood. The non-linear function is
also approximated using a multi-layer perceptron (MLP), but with additional discriminative capability
by considering the relation between each centroid to its nearest neighbor points. The relationship
between neighboring points is based on the spatial layout of the points. Similarly, GeoCNN [74]
explores the geometric structure within the local region by weighing the features of neighboring points
based on the distance to their respective centroid point; however, the authors perform point-wise
convolution without reducing the point resolution across layers. The global feature descriptor is
obtained by performing channel-wise maxpooling from the points.

A-CNN [75] argues that the overlapping receptive field caused by the multi-scale architecture
of most PointNet-based approaches could result in computational redundancy because the same
neighboring points could be included in different scaled regions. To address this redundancy,
the authors proposed annular convolution, which is a ring-based approach that avoids the overlaps
between the hierarchy of receptive fields and captures the relationship between points within the
receptive field.

PointNet-like MLP is a popular mapping function for approximating points in a local patch into a
feature vector; however, SpiderCNN [76] argues that MLP does not account for the prior geometry
of point clouds and requires sufficiently large parameters. To address these issues, the authors
proposed family filters that are composed of two functions: a step function that encodes local
geodesic information, followed by a third order Taylor expansion. The approach learns hierarchical
representations and achieves state-of-the-art performance in classification and segmentation tasks.

Point attention transformers (PAT) were proposed by Yang et al. [63]. They proposed a new
subsampling method termed “Gumbel subset sampling (GSS)”, which, unlike farthest point sampling
(FPS), is permutation-invariant and is robust to outliers. They used absolute and relative position
embedding, where each point is represented by a set of its absolute position and relative position
to other points in its neighborhood; PointNet is then applied to the set, and to further capture the
relationship between points, a modified multi-head attention (MHA) mechanism is used. New
sampling and grouping techniques with learnable parameters were proposed by Liu et al. [77] in a
module termed the dynamic points agglomeration module (DPAM) which learns an agglomeration
matrix which, when multiplied with incoming point features, reduces the resolution (similar to
sampling) and produces an aggregated feature (similar to grouping and pooling).

5.2.3. Graph-Based Approaches

Graph based approaches were proposed in [78-81]; others include [82-85]. Graph-based
approaches represent point clouds with a graph structure by treating each point as a node. The graph
structure is good for modeling the correlation between points as explicitly represented by the graph
edges. Klokov et al. [78] used a kd-tree, which is a special kind of graph. The kd-tree is built in a
top-down manner on the point clouds to create a feed-forward kd-network with learnable parameters
in each layer. The computation performed in the kd-network is in a bottom-up fashion. The leaves
represent the input points; two nearest-neighbor (left and right) nodes are used to compute their parent
node using the shared parameters of a weight matrix and bias. The kd-network captures hierarchical
representations along the depth of the kd-tree; however, because of the tree design, nodes at the same
depth level do not capture overlapping receptive fields. In [79-81], the authors use a method based
on the typical graph network G = {V,E} whose vertices V represent the points, and the edges E
are represented as a V x V matrix. In DGCNN [79], edge convolution is proposed. The graph is
represented as a k-nearest neighbor graph over the inputs. In each edge convolution layer, features of
each point/vertex are computed by applying a non-linear function on the nearest neighbor vertices as

Remote Sens. 2020, 12, 1729 12 of 37

captured by the edge matrix E. The non-linear function is a multilayer perceptron (MLP). After the
last edgeConv layer, global maxpooling is employed to obtain a global feature vector similar to
PointNet [42]. One distinct difference of DGCNN from normal graph networks is that the edges are
updated after each edgeConv layer based on the computed features from the previous layer, which is
the reason behind the name Dynamic Graph CNN (DGCNN). While there is no resolution reduction
as the network deepens in DGCNN, which leads to an increase in computation cost, Wang et al. [80]
defined a spectral graph convolution in which the resolution of the points reduces as the network
deepens. In each layer, k-nearest neighbor points are sampled, but instead of using an MLP-like
operation, a graph Gy = {V,E} is defined on the sets. The vertices V of the graph are the points,
and the edges E C V x V are weighted based on the pair-wise distance between the xyz spatial
coordinates of the points. A graph Fourier transform of the points is then computed and filtered using
spectral filtering. After the filtering, the resolution of the points remains the same, and clustering and
arecursive cluster pooling technique are proposed to aggregate the information in each graph into one
vertex.

In Point2Node [81], the authors proposed a graph network that fully explores not only the local
correlation but also non-local correlation. The correlation is explored in three ways: self-correlation,
which explores the channel-wise correlation of a node’s feature; local correlation, which explores the
local dependency among nodes in a local region; and non-local correlation, which is used to capture
better global features by considering long-range local features.

5.3. Summary

Table 1 summarizes the approaches, showing their sampling, grouping, and mapping functions.
The methods employ local region computation based on sampling and grouping; PointNet is an
exception. In [68,74,79], the authors do not use the sampling technique, and as such, these methods are
more computationally intensive. To improve discriminative ability, several methods have exploited the
correlation between points in a local region. By default, graph-based methods capture the correlation
between the points using edges. Point2Node [81] exploits not only the local correlation but also the
non-local correlation between points and has better performance in terms semantic segmentation.
The performance of the methods discussed in classification, segmentation, and object detection
applications are shown in Section 7.

Remote Sens. 2020, 12, 1729 13 of 37

Table 1. Summary of methods showing the sampling, grouping, and mapping functions used. CNN:
convolutional neural network; DGCNN: dynamic graph CNN; SOM: self-organizing map; k-NN:
k-nearest neighbor; MLP: multi-layer perceptron.

Method Sampling Grouping Mapping Function
PointNet [42] - - MLP
PointNet++ [39] Farthest point sampling Radius-search MLP
PointCNN [41] Uniform/Random sampling k-NN MLP
So-Net [67] SOM-Nodes Radius-search MLP

Pointwise Conv [68] - Radius-search MLP
Kd-Network [78] -
DGCNN [79] - k-NN MLP

LocalSpec [80]

Tree based nodes Affine transformations+ReLU

Farthest point sampling k-NN Spectral convolution + cluster pooling

SpiderCNN [76] Uniform sampling k-NN Taylor expansion

R-S CNN [73] Uniform sampling Radius-nn MLP

PointConv [72] Uniform sampling Radius-nn MLP

PAT [63] Gumbel subset sampling k-NN MLP

3D-PointCapsNet [69] - - MLP+Dynamic routing
A-CNN [75] Uniform subsampling k-NN MLP+Density functions
ShellNet [86] Random Sampling Spherical Shells 1D convolution

6. Benchmark Datasets

A considerable number of point cloud datasets have been published in recent years. Most of the
existing datasets are provided by universities and industries and can provide a fair comparison for
testing diverse approaches. These public benchmark datasets consist of virtual scenes or real scenes,
which focus particularly on point cloud classification, segmentation, registration, and object detection.
They are particularly useful in deep learning since they can provide huge amounts of ground truth
labels to train the network. The point clouds are obtained by different platforms/methods, such as
structure from motion (5fM), red green blue—depth (RGB-D) cameras, and light detection and ranging
(LiDAR) systems. The availability of benchmark datasets usually decreases as the size and complexity
increases. In this section, some popular datasets for 3D research are introduced. The datasets are also
summarized in Tables 2 and 3 for easy analysis.

6.1. 3D Model Datasets

6.1.1. ModelNet

This dataset was developed by the Princeton Vision & Robotics Labs [48]. ModelNet40 has 40
man-made object categories (such as an airplane, bookshelf and chair) for shape classification and
recognition. It consists of 12,311 CAD models, which are split into 9.84 x 103 training and 2.47 x 103
testing shapes. The ModelNet10 dataset is a subset of ModelNet40 that only contains 10 categories of
classes; it is also divided into 3.99 x 10 training and 908 testing shapes.

6.1.2. ShapeNet

This large-scale dataset was developed by Stanford University et al [87]. It provides semantic
category labels for models, igid alignments, parts and bilateral symmetry planes, physical sizes,
and keywords, as well as other planned annotations. ShapeNet indexed almost 3.0 x 10° models
when the dataset was published, and 2.20 x 10> models have been classified into 3.14 x 10° categories.
ShapeNetCore is a subset of ShapeNet, which consists of nearly 5.13 x 10* unique 3D models. It
provides 55 common object categories and annotations. ShapeNetSem is also a subset of ShapeNet,

Remote Sens. 2020, 12, 1729 14 of 37

which contains 1.2 x 10* models. It is more smaller but covers more extensive categories, amounting
to a total of 270.

6.1.3. Augmenting ShapeNet

In [88], the authors created detailed part labels for 3.2 x 10* models from the ShapeNetCore
dataset. This provided 16 shape categories for part segmentation. The approach in [89] provided
1.2 x 10? virtual partial models from the ShapeNet dataset. The authors of [90] proposed an approach
for automatically generating photorealistic materials for 3D shapes built on the ShapeNetCore dataset.
The approach in [91] is a large-scale dataset with fine-grained and hierarchical part annotations; it
consists of 24 object categories and 2.6 x 10* 3D models, which provides 5.74 x 10° part instance labels.
The approach in [92] has contributed a large-scale dataset for 3D object recognition. There are 100
categories of the dataset, consisting of 9.01 x 10* images with 2.02 x 10° objects (from ImageNet [93])
and 4.4 x 10* 3D shapes (from ShapeNet).

6.1.4. Shape2Motion

Shape2Motion [94] was developed by Beihang University and National University of Defense
Technology. It has created a new benchmark dataset for 3D shape mobility analysis. The benchmark
consists of 45 shape categories with 2.44 x 10® models; the shapes are obtained from ShapeNet and 3D
Warehouse [95]. The proposed approach inputs a single 3D shape, then jointly predicts motion part
segmentation results and motion corresponding attributes.

6.1.5. ScanObjectNN

ScanObjectNN [96] was developed by Hong Kong University of Science and Technology et al.
It is the first real-world dataset for point cloud classification. About 1.50 x 10* objects are selected
from indoor datasets (SceneNN [97] and ScanNet [64]), and the objects are split into 15 categories with
2.9 x 10 unique object instances.

6.2. Three-Dimensional Indoor Datasets

6.2.1. NYUDv2

The New York University Depth Dataset v2 (NYUDv2) [98] was developed by New York
University et al. The dataset provides 1.45 x 10> RGB-D (obtained by Kinect v1 [99]) images captured
from 464 various indoor scenes. All of the images are distributed segmentation labels. This dataset is
mainly used to understand how 3D cues can lead to better segmentation for indoor objects.

6.2.2. SUN3D

This dataset was developed by Princeton University [100]. It is a RGB-D video dataset in which
the videos were captured from 254 different spaces in 41 buildings. SUN3D provides 415 sequences
with camera poses and object labels. The point cloud data are generated by structure from motion

(SEMD).

6.2.3. S3DIS

Stanford 3D Large-Scale Indoor Spaces (S3DIS) [101] was developed by Stanford University et al.
S3DIS was collected from three different buildings with 271 rooms, where the cover area was above
6.00 x 10° m2. It contains over 2.15 x 10® points, and each point has the provision of instance-level
semantic segmentation labels (13 categories).

Remote Sens. 2020, 12, 1729 15 of 37

6.2.4. SceneNN

Singapore University of Technology and Design et al. developed this dataset [97]. SceneNN is an
RGB-D (obtained by Kinect v2 [102,103]) scene dataset collected form 101 indoor scenes. It provides 40
semantic classes for the indoor scenes, and all semantic labels are the same as the NYUDv?2 dataset.

6.2.5. ScanNet

ScanNet [64] is a large-scale indoor dataset developed by Stanford University et al. It contains
1.51 x 103 scanned scenes, including nearly 2.5 x 10° RGB-D (obtained by an occipital structure sensor)
images from 707 different indoor environments. The dataset provides ground truth labels for 3D object
classification with 17 categories and semantic segmentation with 20 categories. For object classification,
ScanNet divides all instances into 9677 instances for training and 2.61 x 103 instances for testing, and
it splits all scans into 1201 training scenes and 312 testing scenes for semantic segmentation.

6.2.6. Matterport3D

Matterport3D [104] is the largest indoor dataset and was developed by Princeton University et al.
The cover area of this dataset is 2.19 x 10°mm? from 2.06 x 10° rooms, and there is 4.66 x 10*mm? of
floor space. It consists of 1.08 x 10* panoramic views; the views are from 1.94 x 10°> RGB-D images
of 90 large-scale buildings. The labels contain surface reconstructions, camera poses, and semantic
segmentation. This dataset investigates five tasks for scene understanding: keypoint matching, view
overlap prediction, surface normal estimation, region-type classification, and semantic segmentation.

6.2.7. 3DMatch

This benchmark dataset was developed by Princeton University et al. [105]. It is a large collection
of existing datasets, such as Analysisby-Synthesis [106], 7-Scenes [107], SUN3D [100], RGB-D Scenes
v.2 [108] and Halber et al. [109]. The 3DMatch benchmark consists of 62 scenes with 54 training scenes
and eight testing scenes. It leverages correspondence labels from RGB-D scene reconstruction datasets,
and then provides ground truth labels for point cloud registration.

6.2.8. Multisensor Indoor Mapping and Positioning Dataset

This indoor dataset (rooms, corridor and indoor parking lots) was developed by Xiamen
University et al. [110]. The data were acquired by multi-sensors, such as a laser scanner, camera,
WIFI, Bluetooth, and inertial measurement units (IMUs). This dataset provides dense laser scanning
point clouds for indoor mapping and positioning. Meanwhile, they also provide colored laser scans
based on multi-sensor calibration and simultaneous localization and mapping (SLAM) processes.

6.3. 3D Outdoor Datasets

6.3.1. KITTI

The KITTI dataset [111,112] is one of the best known in the field of autonomous driving and was
developed by Karlsruhe Institute of Technology et al. It can be used for the research of stereo images,
optical flow estimation, 3D detection, 3D tracking, visual odometry, and so on. The data acquisition
platform is equipped with two color cameras, two grayscale cameras, a Velodyne HDL-64E [113,114]
3D laser scanner, and a high-precision GPS/IMU system. KITTI provides raw data with five categories:
road, city, residential, campus and person. The depth completion and predic