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Abstract— The Landsat 1–5 multispectral scanner
system (MSS) collected records of land surface mainly
during 1972–1992. Investigations on MSS have been relatively
limited compared with the numerous investigations on its
successors, such as Thematic Mapper (TM) and Enhanced
TM Plus (ETM+). The benefits of the Landsat program are
not fully accomplished without the inclusion of MSS archives.
Investigations on the Landsat 1–5 MSS channel reflectance
characteristics wereperformed followed by derived vegetation
spectral indices and the Tasseled Cap (TC) transformed features
mainly using a collection of synthesized records. On average,
the Landsat 4 MSS is generally comparable to the Landsat
5 MSS. The Landsat 1–3 MSSs show disagreement in channel
reflectance compared with the Landsat 5 MSS, especially
for the red channel (600–700 nm) and the near-infrared
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channel (700–800 nm). Meanwhile, the relative differences for
vegetation spectral indices of the Landsat 3 MSS are mainly
from −16% to −5% with the median about −11.5%, while
those of the Landsat 2 MSS are mainly from −15% to −7%.
Cross-validation tests and two case applications suggested that
between-sensor consistency was improved generally through
the transformation models generated by ordinary least-squares
regression. To improve the consistency of the vegetation indices
and the TC greenness, direct strategy employing respective
transformation models was more effective than calculations
based on the transformed channel reflectance. Considering the
shortages of the Landsat MSS archives, further efforts are
needed to improve its comparability with observations by other
successive Landsat sensors.

Index Terms— Consistency, Landsat, multispectral scanner
system (MSS), spectral response function (SRF), transformation,
vegetation indices.

I. INTRODUCTION

THE Landsat project, as a part of the National Land
Imaging Program jointly supported by the U.S. Geolog-

ical Survey (USGS) and the National Aeronautics and Space
Administration (NASA), has contributed to the longest and
most geographically comprehensive record of Earth observa-
tion with moderate spatial resolutions since 1972 [1], [2].
The free data policy, implemented in 2008 [3], contributed
mostly to the increasing applications of the Landsat archive,
especially in time-series analyses [1], [2], [4]–[6]. More than
8.13 million images up to September 30, 2018, had been avail-
able in a consistent archive acquired by all seven successive
Landsat satellites (https://landsat.usgs.gov/landsat-archive) due
to the contribution of the USGS Landsat Global Archive
Consolidation (LGAC) initiative that began in 2010 [4].
In particular, the Landsat 1–5 multispectral scanner sys-
tem (MSS) collected global records of land surface mainly
during 1972–1992 with additional but limited acquisitions
until January 2013 (see Table I). More than 1.32 million MSS
scenes had been absorbed into the USGS Landsat archive up to
September 30, 2018 (https://landsat.usgs.gov/landsat-archive),
similar to the previous observation, with nearly two million
scenes expected after completion of the LGAC initiative [4].
The MSS data are considered the most valuable for time-series
analyses, as captured by the first Landsat missions, and,
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TABLE I

GENERAL INFORMATION ABOUT THE LANDSAT 1–5 MSS SENSORS

Fig. 1. Comparison of the SRFs for individual channels of the Landsat 1–5
MSS, including the channels of green (500–600 nm), red (600–700 nm),
NIR1 (700–800 nm), and NIR2 (800–1100 nm). The SRFs are accessible
at https://landsat.gsfc.nasa.gov/spectral-response-of-the-multispectral-scanner-
system-in-band-band-average-relative-spectral-response/. The gray line shows
a reflectance spectrum of forest over corresponding spectral range observed
by Hyperion.

particularly, are the unique globally acquired data sources with
a moderate spatial resolution for 1972–1984 [2]. The MSS,
onboard Landsat 1–5, presents four spectral channels, covering
visible and near-infrared (NIR) spectral regions (see Table I),
whereas variations among the sensors are observable to some
extent (see Fig. 1).

Although the Landsat program is considered a relatively
consistent mission [2], quite small sensor differences may
have a significant impact depending on data application [7].
For example, the characterization differences were shown
between the Landsat 7 Enhanced Thematic Mapper (ETM+)

and the Landsat 8 Operational Land Imager (OLI) in terms of
channel reflectance and normalized vegetation indices [7], [8].
Accordingly, there is a need to define quantitative trans-
formations between Landsat sensors to ensure a long-term
archive with consistency [7], [9], especially for the time-
series analyses. For between-sensor transformation, the linear
model through ordinary least-squares (OLS) regression was
generally used as a simple and readily applicable way [7]–[10].
Meanwhile, paired observations synchronously acquired by
different sensors are usually inaccessible for the investigations
on comparison and transformation. To overcome the difficulty
in collecting the paired acquisitions, synthesizing broadband
multispectral records from hyperspectral profiles (i.e., from
Hyperion) were proven as a feasible way [9]–[17].

Inclusion of the MSS in Landsat time-series analyses,
considering its historical importance, will ideally benefit the
reconstruction of Earth’s surface history back to 1972. With-
out comprehensive inclusion of the MSS archive, the entire
power and benefits of the Landsat program are not fully
realized [2], [18], [19]. The Landsat 1–5 MSS archive
reprocessed has been available in the Landsat Collection 1
Level-1 data product since May 2018, being particularly for
areas over North America, East Asia, and Australia (please
refer to https://landsat.usgs.gov/usgs-landsat-global-archive).
Fig. 2 shows the number of valid Landsat MSS scenes for
a specific area. For this specific area, the archived MSS data
may make time-series analyses of Landsat observations further
extend to the 1970s. However, applications and investigations
of the Landsat MSS archival images have been still relatively
limited although with an increasing trend since the open
data policy implemented in 2008 [18]–[26] compared with
its successors, such as Thematic Mapper (TM), ETM+, and
OLI [6]. Accordingly, for regions with valid MSS archival
data, investigations are necessary.

Detailed investigations on the characterization of the
Landsat 1–5 MSS for consistency issues have not been
performed previously. This article attempts to investigate,
comprehensively, the characterization and comparison of the
Landsat 1–5 MSS in terms of channel reflectance and derived
spectral indices and features. Furthermore, to make the com-
parability of observations, and of derived variables, practical
transformation models are investigated. Factors mainly chal-
lenging the continuity between the Landsat MSS and other
successive sensors are discussed. Accordingly, it intends to
show comprehensive insights on the characterizations of the
Landsat 1–5 MSS and to call attention to the inclusion of
the MSS archive in time-series analyses. The rest of this
article is organized as follows. Section II details the method.
Data are described in Section III. Results on between-sensor
comparison and transformation are shown in Section IV. Dis-
cussion and conclusion are presented in Sections V and VI,
respectively.

II. METHODS

Due to the difficulty in collecting substantial contempora-
neous observations of the Landsat MSS, a synthesized data
collection generated from Hyperion hyperspectral profiles was
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Fig. 2. Acquisition day-of-year (DOY) of all valid MSS archival scenes in the Landsat Collection 1 Level-1 data product over the Worldwide Reference
System (WRS)-2 Path/Row 123/032 (for the Landsat 4-5 MSS), considering an overlap with the WRS-1 Path/Row 133/032 (for the Landsat 1-3 MSS), during
1973–1998. The valid scene was determined in terms of cloud cover and visual appearance (i.e., no cloud covering the urban areas of interest) and freely
accessed at EarthExplorer (https://earthexplorer.usgs.gov/).

used in this article. The capability of Hyperion to synthe-
size the broadband multispectral channels (e.g., ETM+) was
proven and employed previously [9]–[17].

Characterization differences among the Landsat 1–5 MSS
were mainly shown through the comparisons of channel effec-
tive wavelength and reflectance, followed by derived vegeta-
tion spectral indices and the Tasseled Cap (TC) transformed
features [18], [27]. Specifically, two widely used vegetation
spectral indices were discussed, the Normalized Difference
Vegetation Index (NDVI) [28] and the Enhanced Vegetation
Index with a modified version (EVI) [29], which are the key
variables in Landsat higher level science products [30]. The
discussion on NDVI and EVI for the Landsat MSS will benefit
the continuity of the Landsat higher level science products and
will facilitate the full use of the Landsat MSS archive.

A. Channel Effective Wavelength and Reflectance

As an important indicator of channel characteriza-
tion [31]–[33], the effective wavelength calculated for
individual channels of the Landsat 1–5 MSS is

λL
eff_Bi =

∫ λL
BiE

λL
BiS

λSRFL
Bi(λ)dλ∫ λL

BiE

λL
BiS

SRFL
Bi(λ)dλ

(1)

where SRFL
Bi(λ) is the spectral response function (SRF) of

a specific channel Bi, while λL
BiS and λL

BiE are the start
wavelength and end wavelength, respectively. λL

eff_Bi is the
effective wavelength for the channel Bi, which was obtained
in this article through the “Trapezoid” strategy [32], [33]. The
superscript “L” stands for the Landsat MSS.

Meanwhile, the synthesized reflectance for channel Bi
(RefL

Bi) of the Landsat MSS is estimated as an effective

reflectance over its spectral range, as follows:

RefL
Bi =

∫ λL
BiE

λL
BiS

RefH(λ)SRFL
Bi(λ)dλ∫ λL

BiE

λL
BiS

SRFL
Bi(λ)dλ

(2)

where RefH(λ) is the reflectance value of a calibrated Hyperion
profile at a specific wavelength λ. The superscript “H ” stands
for the Hyperion profile. The Hyperion profile is the surface
reflectance spectrum after atmospheric correction (see Section
III-B). To solve (2), procedures performed are the weights’
calibration (3), the weights normalization (4), and the weighted
sum (5), which is a modified version for the synthesized
reflectance in (2) [9]–[11], [14]

W H
i =

∫ λiE

λiS

SRFH
i (λ)SRFL

Bi(λ)dλ when λH
iC ∈ (λL

BiS, λ
L
BiE

)
(3)

nW H
i = W H

i∑
i W H

i
(4)

RefL
Bi =

∑
i

(
nW H

i · RefH
i

)
(5)

where SRFH
i (λ) and RefH

i are the SRF and reflectance for
the Hyperion channel i, respectively, while W H

i and nW H
i are

the weight and the normalized weight correspondingly. In (3),
λiS and λiE are the start wavelength and end wavelength of
the Hyperion channel i. As shown in (5), RefL

Bi is obtained as
a weighted sum of all valid Hyperion channels in which the
center wavelengths (λH

iC) are located within the spectral range
of the MSS channel Bi. The SRF for the Hyperion (SRFH

i (λ))
was estimated through (16) (see Section III-A), as in previous
investigations [9], [10].

B. Between-Sensor Comparison

In addition to the channel effective wavelength, the between-
sensor comparison of the Landsat 1–5 MSS was discussed,
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in terms of channel reflectance, derived vegetation spectral
indices (i.e., NDVI and EVI), and two features (i.e., brightness
and greenness) obtained through the TC transformation [27].

Vegetation spectral indices extracted from remote sensing
have been widely used to delineate vegetation characteristics
and monitor land surface dynamics [29], [33]–[39]. Two
widely used vegetation spectral indices were discussed, includ-
ing NDVI (6) and a two-band EVI [EVI2, (7)]. EVI provides
improved sensitivity in high biomass regions while minimiz-
ing soil and atmosphere influences [29]. Compared with the
original EVI developed for sensors with the Blue channel in
addition to the red and NIR channels [40], the EVI2 was
proposed for sensors without the Blue channel [29]

NDVI = (Refnir − Refred)

(Refnir + Refred)
(6)

EVI2 = 2.5 × (Refnir − Refred)

(Refnir + 2.4Refred + 1)
(7)

where Refred and Refnir are the channel reflectance over red and
NIR regions, respectively. The NIR1 (700–800 nm) channel
was used in vegetation indices estimation. Descriptions of the
channels are presented in Fig. 1 and Table I.

Meanwhile, the TC transformation initially proposed in [27]
provides a way to generate spectral features, which can be
readily interpretable and are directly associated with the phys-
ical parameters of the land surface, and to reduce data volume
with minimal information loss [41]. The spectral features
derived from the TC transformation have been widely used
for land surface mapping [42]–[44]. Corresponding versions
of the TC transformation have been developed for all Landsat
sensors, including the MSS [27], the TM [41], the ETM+ [45],
and the OLI [46]. Particularly, for the MSS, two readily inter-
pretable features through the TC transformation are brightness
and greenness [27]. The brightness as a weighted sum of
all MSS channels measures the total reflection performance.
Meanwhile, the greenness measures the reflectivity contrast
between two NIR channels and two visible channels (i.e.,
green and red), which is considered a good indicator for
vegetation [41]. Currently, TC transformation for the MSS is
only available to digital number (DN) records [18], [27]. The
development of reflectance-based TC transformation for the
MSS is valuable; however, it is beyond the scope of this article.
To obtain DN from the channel reflectance (the synthesized
data), procedures used are the following equations:

Ls
Bi = RefL

Bi · (ESUNBi · cos(θs))/
(
π · d2

)
(8)

DNBi = (
Ls

Bi − biasBi
)
/gainBi (9)

where θs is the solar zenith angle, and d is the Earth-to-
Sun distance, which is in astronomical units (from about
0.9833 to 1.0167) [47], while ESUNBi is the exoatmospheric
solar irradiance (ESUN) in spectral channel Bi. The cosine of
the solar zenith angle is equal to the sine of the solar elevation.
We set d = 1 (astronomical unit) and solar elevation = 60◦
to facilitate the DN calculation. The gains (gainBi) and biases
(biasBi) associated with radiometric calibration for respective
MSS sensors [18] and the ESUN values for the Landsat 5
MSS [18], [47] were used.

C. Measures for Between-Sensor Difference

The relative difference (RD) measures the individual
between-sensor difference of sample (pair) j , for the corre-
sponding variable (Vari), which is defined as

RDL(N)
ij = 2 ×

(
VarL(N)

ij − VarL5
ij

)
(

VarL(N)
ij + VarL5

ij

) × 100 (10)

where VarL(N)
ij and VarL5

ij are the corresponding values of
sample j ( j = 1, 2, . . . , nn, while nn is the number of
sampling pairs to be compared) for the variable Vari of the
Landsat (N) MSS (N = 1, 2, 3, 4) and the Landsat 5 MSS
(as the baseline or reference), respectively.

To measure the overall between-sensor difference, three
indicators considered were the mean difference (MD), the root
mean square deviation (RMSD), and the mean RD (MRD)

MDL(N)
i = mean

(
VarL(N)

ij − VarL5
ij

)
(11)

RMSDL(N)
i = sqrt

(
mean

((
VarL(N)

ij − VarL5
ij

)2
))

(12)

MRDL(N)
i = mean

(
RDL(N)

ij

)
(13)

where mean() and sqrt() are the procedures used to get the
mean value and the square root value, respectively.

These indicators were used in the previous investiga-
tions [7], [10]. To measure the average RD in vegeta-
tion indices and the TC transformed greenness, the median
RD (MdRD) was used. Compared with the MRD, the MdRD
is less affected by extreme cases. Meanwhile, respective
variables for the Landsat 5 MSS were used as references in
between-sensor comparison.

MdRDL(N)
i = median

(
RDL(N)

ij

)
(14)

where median() is used to get the median value.

D. Between-Sensor Transformation

The linear model was applied, as adopted previ-
ously [7]–[10], to make the observation continuity between
different sensors

VarL5
i = SlopeL(N)

Vari
× VarL(N)

i + OffsetL(N)
Vari

(15)

where SlopeL(N)
Vari

and OffsetL(N)
Vari

are the linear transforma-
tion model parameters for the corresponding variable Vari

of the Landsat (N) MSS (N = 1, 2, 3, 4), obtained using
the Landsat (N) MSS regressed against the Landsat 5 MSS
correspondingly.

OLS regression was usually used to solve the linear
transformation model by minimizing the summed square of
the residuals. OLS regression can get the best-unbiased esti-
mators, given that the residual has a constant variance called
homoscedasticity. However, suspectable estimates are likely
obtained when the heteroscedastic data are analyzed. Effects
of heteroscedasticity on OLS estimates were investigated,
by comparing against the estimates through weighted least-
squares (WLS) regression that served as a common method
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for the heteroscedasticity issue (see Section V-C). The com-
parison suggested that the estimates obtained through OLS
regression were acceptable although they showed relatively
larger confidence intervals (see Table V).

Furthermore, uncertainties and improvements associated
with the transformation model were demonstrated through a
cross-validation strategy. The cross-validation is a proper way
to assess model prediction performance. Same as in previous
investigations [9], [10], the K -fold cross-validation (K = 5)
with 10 000 simulations was performed. For each validation
case, the mean (or median) RDs (MRD or MdRD) after and
before transformation were measured, respectively, and com-
pared. Meanwhile, the uncertainty of the transformation model
was presented by the distribution of the model estimates.

III. DATA

A. Spectral Response Function

The channel-average spectral response functions of the
Landsat 1–5 MSS are publicly available at https://landsat.gsfc.
nasa.gov due to the efforts made by the Image Processing Lab,
South Dakota State University. In particular, the SRFs for the
Landsat 1–3 MSS were digitized from the plots in contractor
reports, which were sampled at 1 nm steps. It is estimated
an uncertainty with ±3 nm on the wavelength samples.
The SRFs for the Landsat 4–5 MSS were digitized from
considerably better copies [48]. Compared with the SRFs for
the predecessors, the SRFs for the Landsat 4–5 MSS were
digitized at the tests’ native spectral sampling, specifically
at 10 nm for the green, red, and NIR1 channels, while
at 20 nm for the NIR2 channel (https://landsat.gsfc.nasa.
gov / spectral-response-of-the-multispectral-scanner-system-in-
band-band-average-relative-spectral-response/). To facilitate
the effective wavelength estimation and channel reflectance
calculation, the SRFs for all channels of the Landsat 4–5 MSS
were interpolated to 1-nm spectral resolution using the spline
method, as in [10] and [33]. Possible uncertainty associated
with the choice of interpolation methods was discussed (see
Section V-A).

The Hyperion SRFs are not publicly accessible. In this arti-
cle, a Gaussian function was adopted to model the Hyperion
SRFs, using the full-width at half-maximum (FWHM) and the
center wavelength (16), as in [7]–[10]. The simulated Hyperion
SRFs, recorded with a spectral resolution of 1 nm, were
used subsequently in synthesizing the broadband reflectance
of MSS

SRFH
i (λ) = exp

(
−4 ln(2)

(
λ − λH

iC

)2

(FWHMi)
2

)
(16)

where FWHMi is the FWHM of the Hyperion chan-
nel i. The center wavelength and the FWHM are publicly
available at https://archive.usgs.gov/archive/sites/eo1.usgs.gov/
hyperioncoverage.html (accessed on February 28, 2020).

B. Hyperion Spectra Collection

As a primary instrument onboard the EO-1 spacecraft
launched in November 2000, the Hyperion instrument was the

first imaging spectrometer, acquiring data from space [49].
The Hyperion instrument is a high-resolution hyperspectral
imager with 220 unique spectral channels, which approx-
imately covers 400–2500 nm. Generally, each channel of
Hyperion is characterized by an approximate 10-nm FWHM
and with a spatial resolution of 30 m. There are only
196 unique channels calibrated in the Level-1 radiometric
product due to detectors’ low responsivity and overlap between
channels (https://eo1.usgs.gov). The calibration of Hyperion
was radiometrically stable to within 5% over the visible
and NIR regions [49], [50]. The Hyperion profile, as actual
observed surface condition, provides a valuable and unique
data source to investigate the radiometric comparison between
instruments [17]. The capability of Hyperion to synthesize the
broadband multispectral channels has been proven [9]–[17].
A total of 10 000 calibrated Hyperion hyperspectral pro-
files, collected elaborately while maintaining spectra variabil-
ity [16], [17], were used (see Fig. 3). These samples were
selected from 158 Hyperion scenes through a two-step clus-
tering procedure, which was atmospherically corrected using
the 6S model (Second Simulation of the Satellite Signal in the
Solar Spectrum) supplied with atmospheric products of Moder-
ate Resolution Imaging Spectroradiometer (MODIS) [17]. This
collection was used previously for between-sensor comparison
and transformation [9], [10], [16], [17]. Anomalous (negative)
channel reflectance values were observed in several Hyperion
spectra, especially for the channels located in 1326–1427 and
1830–1932 nm [10], which likely resulted from atmospheric
impacts and improper correction. Nevertheless, considering
the spectral range of the Landsat MSS (see Table I and
Fig. 1), effects of the negative value in several Hyperion
spectra on channel reflectance estimation of the Landsat MSS
are assumed minor in this article.

IV. RESULTS

A. Channel Characterization of the Landsat MSS

Compared with the Landsat 1–3 MSS, the Landsat 4 MSS
shows more similarities with the Landsat 5 MSS in the channel
characterizations on average, including in spectral response
function (see Fig. 1) and in effective wavelength (see Table II).
Significant discrepancies in the spectral response function
between sensors are observed, especially for the NIR channels.
The discrepancy around the end wavelength of NIR2 is possi-
bly associated with the extraction method for the NIR2 SRF
of the Landsat 4–5 MSS (see Fig. 1). The NIR2 SRF currently
available was extracted through an extrapolation, which made
a value close to zero at 1140 nm (https://landsat.gsfc.nasa.gov).
The significant difference is shown between Landsat 3 and
Landsat 5, among others, especially for the NIR channels (i.e.,
NIR1 and NIR2) (see Fig. 1). In addition to its association
with the sensor, the difference in effective wavelength (using
the Landsat 5 MSS as reference) varies with the channel. The
difference of the Landsat 2 MSS in effective wavelength for
the red channel is about 11 nm, and the difference is nearly
5 nm for the NIR1 channel (see Table II). The variations
of the channel characterizations likely contribute a lot to
the differences in reflectance and derived spectral indices
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Fig. 3. Spatial distribution of the Hyperion spectra profiles (red dots) included in the collection used for reflectance simulation. The profiles are geographically
overlapped or approximate, with some not being visible due to the enlarged symbols. Details on the Hyperion spectra selection are presented in [17].

TABLE II

CHANNEL EFFECTIVE WAVELENGTH (nm) OF THE LANDSAT 1–5 MSS

between the Landsat sensors [9], [33], [51]. Accordingly,
a specific transformation model for each corresponding chan-
nel of respective sensors is required to make the consistency
of the Landsat 1–5 MSS archive.

B. Difference in Channel Reflectance

In the spectra collection (including 10 000 samples), most
samples are characterized with low reflectance (i.e., less
than 0.15) in the green channel and the red channel, while the
reflectance over the NIR region (i.e., the NIR1 and NIR2 chan-
nels) is mainly located from 0.20 to 0.30 (see Fig. 4).
The distribution difference is relatively significant for the
red channel and the NIR1 channel. As shown in Fig. 4,
the obvious differences (greater than 2%) are observed for
the red channel and the NIR1 channel, whereas the frequency
difference is within ±1% for the green channel and the NIR2
channel. Generally, the between-sensor difference is more
visible for the Landsat 2–3 MSS, while the slight difference
is recorded for the Landsat 4 MSS (see Fig. 4). Furthermore,
the statistics of the Jarque–Bera test [52] showed that all
respective collections of channel reflectance did not come
from a normal distribution at the 0.05 significance level.
Accordingly, the Wilcoxon signed-rank test as a nonparametric
method was further used in the comparison test of channel
reflectance. Findings show that the between-sensor differences

in reflectance are significant, respectively (at the 0.05 signifi-
cance level).

Negatively significant overall between-sensor differences
are observed for the NIR1 channel, whereas intermediate and
positive overall between-sensor differences are shown for the
red channel (see Table III). In particular, the Landsat 2 MSS
has the greatest MD of 0.006 for the red channel, while
the Landsat 3 MSS has the greatest MD of −0.010 for the
NIR1 channel. The RMSD of channel reflectance is more
significant for the NIR1 channel and is generally smaller
for the green channel. According to the MRD, the overall
between-sensor difference is relatively obvious for the red
channel and the NIR1 channel although it varies with sensors.
As a whole, the between-sensor disagreement is more visible
for the Landsat 3 MSS, as it has obvious MRD (−4.776%)
for the NIR1 channel and intermediate MRDs for the green
channel and the red channel. The overall between-sensor dif-
ference is also obvious for specific channels of other sensors.
For example, the MRDs for the red channel of Landsat 2 and
the NIR1 channel of Landsat 1 are 6.270% and −3.089%,
respectively. Moreover, the overall RDs in channel reflectance
vary with sensors, which are also channel-related (see Fig. 5).
It appears that the Landsat 4 MSS and the Landsat 5 MSS
are generally comparable as the overall RDs mainly locate
around zero (within ±2%). Between-sensor comparability is
also shown for the green channel and the NIR2 channel,
with the overall RDs mainly falling within ±5%. By contrast,
the overall RDs are notable for the red channel and the
NIR1 channel, especially for the Landsat 2–3 MSS.

C. Difference in Derived Spectral Indices and Features

Between-sensor differences in reflectance of individual
channels are especially important when considering derived
spectral indices, which usually depends on the reflectivity
contrast between channels (e.g., NDVI) [9], [33], [51]. Com-
pared with the differences of individual channels (i.e., the red
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Fig. 4. Distribution of channel reflectance and the corresponding differences for the Landsat 1–4 MSS, using the Landsat 5 MSS as reference. Results
are based on simulations using a collection of Hyperion hyperspectral spectra, as surface reflectance atmospherically corrected (totally 10 000 samples). The
dashed line shows the distribution of the Landsat 5 MSS. For all plots, the bin size is 0.05, while the X-axis range is set as (0, 0.70) within which 99.50%
samples are located to show the between-sensor difference clearly.

TABLE III

DIFFERENCE MEASURES FOR CHANNEL REFLECTANCE AND THE DERIVED SPECTRAL FEATURES USING

CORRESPONDING VARIABLE OF THE LANDSAT 5 MSS AS REFERENCE

channel and the NIR1 channel), the differences of the
derived spectral indices (i.e., NDVI and EVI2) are larger
(see Table III). Taking the Landsat 3 MSS as an example,
the MDs for NDVI and EVI2 are −0.030 and −0.022, respec-
tively, which are obviously greater than the corresponding
MDs for the red channel (0.003) and the NIR1 channel
(−0.010). Because the same channels were used for NDVI
and EVI2, the between-sensor differences in the vegetation
indices are similar for the MSS, respectively. As mentioned

earlier, the between-sensor differences for the red channel and
the NIR1 channel are positive and negative, respectively, which
alleviates the reflectance contrast followed by the decrease in
vegetation indices. Accordingly, compared against the refer-
ence (i.e., Landsat 5 MSS), on average, the Landsat 1–4 MSS
has negative biases in the vegetation indices (see Table III).
Specifically, greater biases are observed for Landsat 2 and
Landsat 3, while intermediate and small biases are presented
for Landsat 1 and Landsat 4, respectively.
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Fig. 5. RDs of channel reflectance for the Landsat 1–4 MSS using the Landsat 5 MSS as reference. The box plot shows the difference distribution of the
corresponding channel. The central mark is the median, and the bottom and top of the box are the 25th (Q1) and 75th percentiles (Q3), respectively. The
distance between the top and bottom is the interquartile range (IQR, Q3–Q1). The whiskers are black lines extending values above and below the box, which
are Q3 + 1.5IQR and Q1 − 1.5IQR, respectively. Obvious differences are plotted individually as red points, locating outside the range determined by the
whiskers.

Fig. 6. (Top) Differences and (Bottom) RDs for the vegetation indices (NDVI and EVI2) and the TC transformed features (greenness and brightness) of
the Landsat 1–4 MSS, using the Landsat 5 MSS as reference. The box plot in this figure is similar as in Fig. 5. However, in the subplots of RD (Bottom), the
Y -axis was truncated at −20% and 0% for NDVI and EVI2, −35% and 10% for the TC greenness, and −15% and 5% for the TC brightness to highlight the
difference distribution of most samples. Several extreme RDs (>50%) observed for NDVI, EIV2, and the TC greenness, respectively, are not shown.

The TC transformed features of the Landsat 1–4 MSS
(except for the brightness of Landsat 2) show negative biases,
as the vegetation indices do (see Table III). The mean
(or median) RD (MRD or MdRD, in Table III) shows that
the brightness insignificantly varies across sensors compared
against the vegetation indices (i.e., NDVI and EVI2) and
greenness. As mentioned, the TC transformation is done
through a linear model with fixed parameters. Accordingly,
while the DN-based biases are different (positive or negative)
for individual channels of each MSS, spectral contrast is
generally alleviated, resulting in negative bias in the greenness
(see Table III). Considering the MdRD, between-sensor differ-
ences in vegetation indices and the TC greenness are similar.
Nevertheless, it is worth noting that the between-sensor differ-
ence in the TC greenness linearly and directly relates to the
biases in individual channels. Meanwhile, the difference in the
normalized vegetation indices (e.g., NDVI and EVI2) shows

a more complicated relationship with the individual channel
biases, which is regulated by actual (as reference) vegetation
indices through a nonlinear manner.

Due to its similarity to Landsat 5 for the MSS individual
channels, Landsat 4 has small between-sensor differences
for the vegetation indices and for the TC transformed fea-
tures although with varied and negative biases (see Fig. 6).
The RDs are located around −2.5% for the vegetation
indices and the TC greenness. By contrast, the between-
sensor differences of Landsat 1–3 are relatively significant for
the vegetation indices and the TC greenness. For example,
the NDVI differences of Landsat 2 are mainly located from
−0.08 to 0.04. A similar distribution of the EVI2 differences
is observed although the EVI2 difference is generally smaller
(see Table III and Fig. 6). Moreover, the RDs for the vege-
tation indices are more significant compared with the RDs
for individual channels (see Table III and Figs. 5 and 6).
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Fig. 7. Between-sensor differences after (red) and before (black) transformation for the red channel of the Landsat 1–4 MSS, using the Landsat 5 MSS as
reference. The differences are shown by median (respective marks) and range (vertical lines) with the lower and upper taken as 5% and 95% percentiles for
contiguous 0.05 reflectance ranges of the corresponding channel. All subplots in the figure are plotted using the same axis ranges.

Fig. 8. Between-sensor differences after (red) and before (black) transformation for the NIR1 channel of the Landsat 1–4 MSS, using the Landsat 5 MSS
as reference.

The RDs for NDVI of the Landsat 3 MSS are mainly from
−16% to −5% with the median about −11.5%, while those
of the Landsat 2 MSS are mainly from −15% to −7%.

In summary, differences are observed for individual chan-
nels and derived variables, including vegetation indices and the
TC transformed features (DN-based), across the Landsat 1–5
MSS. In terms of channel reflectance, there are major chan-
nel differences for the red and NIR1 channels. Meanwhile,
overall comparability is observed for Landsat 4, and obvious
disagreement is for Landsat 2 and Landsat 3, using Landsat 5
as reference. Generally, the biases in individual channels likely
cause large biases in the normalized indices as a nonlinear
form (i.e., NDVI and EVI2) (see Table III and Figs. 5 and 6).
Accordingly, the normalized indices should be used with
caution as the biases in individual channels can be amplified
and generate more significant biases, which shows consistency
with previous findings [9], [10], [33], [51], [53], [54]. Due to
the spectral contrast alleviation, the TC transformed features
(i.e., brightness and greenness) generally show smaller bias

compared with individual channels (see Table III), while more
consistency between sensors possibly to be achieved through
utilizing all channels [55].

D. Cross-Sensor Transformation to Improve Consistency
Among the Landsat MSSs

Linear model, as a practical means for cross-sensor
transformation [7]–[10], was applied to ensure the consis-
tency between the Landsat MSSs. Considering the observed
between-sensor differences and related effects on the bias in
vegetation indices, the red channel and the NIR1 channel are
mainly discussed further.

Overall, between-sensor comparability was improved
through the linear transformation model, as shown by the
decreases in between-sensor difference (see Figs. 7 and 8).
However, the amplified differences after transformation are
observable, mainly for samples with low reflectance. Specif-
ically, for the Landsat 2 MSS red channel, the median
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Fig. 9. Between-sensor RDs after (red) and before (black) transformation for the red channel of the Landsat 1–4 MSS, using the Landsat 5 MSS as reference.

Fig. 10. Between-sensor RDs after (red) and before (black) transformation for the NIR1 channel of the Landsat 1–4 MSS, using the Landsat 5 MSS as
reference.

between-sensor difference (negative) is amplified about
0.005 for samples with low reflectance (less than 0.10, with
the proportion about 30%), whereas a decrease about 0.005 is
observed over (0.20, 0.45) (see Fig. 7). The decreased RD
(see Figs. 9 and 10) also suggests the improved between-
sensor comparability of channel reflectance through a linear
transformation. In particular, improvement for the red channel
is significant, especially over low reflectance (less than 0.10).
For the samples with low red reflectance, the decreases approx-
imating 10% and 5% in median RD (positive) are observed for
Landsat 2 and Landsat 3, respectively (see Fig. 9). As shown
in Fig. 10, the RD for the NIR1 channel generally decreases
for samples provided with moderate reflectance (0.10–0.50).
However, the median RDs of Landsat 3 increase about 10%
and 1.5% for the samples with low reflectance and high
reflectance, respectively. RD for individual channels largely
contributes to the biases in vegetation indices (i.e., NDVI and
EVI2). Accordingly, the increased RD for the NIR1 channel
over low reflectance (see Fig. 10) along with the improved

comparability of the red channel (see Fig. 9) results in a visible
difference in the vegetation indices based on the transformed
reflectance (see the “Channel transformation” in Fig. 15).

To investigate the effectiveness of transformation models
for applications, the between-sensor differences in channel
reflectance before and after transformation, respectively, were
compared. Two pairs of MSS archived observations of Land-
sat 4 and Landsat 5 (over the WRS-2 Path/Row 123/032,
see Fig. 2) with clear imagery were selected through carefully
visual interpretation due, mainly, to uncertainties in the quality
assessment (QA) band information (see Section V-E). The
MSS observations without data problems visually (see Fig. 11)
were freely accessed through EarthExplorer. In addition, sev-
eral reflectively pseudoinvariant targets (i.e., the water body
and airport) assumed were collected to estimate the observa-
tion differences associated with the interval between the paired
MSS observations (with eight days). Comparisons and the
difference measures for each pair of observations are based on
10 000 randomly selected samples (see Fig. 11). Consistency
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Fig. 11. Channel reflectance comparisons of the samples randomly selected for two cases. (Left) Case 1. (Right) Case 2. In each scatter plot, the transformed
channel reflectance (red circle) as well as the original channel reflectance (black asterisk) of the Landsat 4 (L4) MSS are shown with comparison
against the corresponding channel reflectance of the Landsat 5 (L5) MSS. General differences measured by the MRD (13) before (black) and after (red)
transformation are presented. The dashed lines are 1:1 lines superimposed for reference. Images used are LM04_L1TP_123032_19840925_20180410_01_T2
and LM05_L1TP_123032_19841003_20180411_01_T2 (for Case 1), and LM04_L1TP_123032_19841128_20180411_01_T2 and LM05_L1TP_123032_
19841206_20180411_01_T2 (for Case 2).

of channel reflectance between the MSS observations of Land-
sat 5 and Landsat 4 is generally improved after transformation
with an MRD decrease. The application cases verified the
effectiveness of the transformation models generated through
OLS regression, showing accordance with the findings based
on cross-validation tests (see Figs. 9 and 10) and the previous
investigations [7]–[10]. However, the difference measures of
between-sensor vary between the two cases (see Fig. 11) and
simulation dataset (see Table III), suggesting that other factors
challenging the consistency of the Landsat MSS should be
further considered and tackled in practice (see Section V-E).

V. DISCUSSION

A. Effect of Spectral Sampling Shift of the MSS SRF

For the SRFs of the Landsat 1–3 MSS, there is an
estimated uncertainty with ±3 nm in wavelength samples
(https://landsat.gsfc.nasa.gov). Potential errors in channel
reflectance associated with the uncertainty of SRF were
investigated. A shifted SRF was generated through shifting
individual wavelength samples with an identical step (i.e.,
with 1 nm) while keeping its SRF value unchanged. Then,
based on a shifted SRF, more estimation of channel reflectance
was obtained when no shifts were performed to the Hyperion
profile in channel reflectance estimation. Accordingly, six
additional simulations with the shifts from −3 to 3 nm at
an interval of 1 nm were generated. Based on the additional
simulations, uncertainty in channel reflectance associated with
the shifts was measured by the RD while using the original
estimation (without shift) as the reference. Generally, com-
pared with the between-sensor difference (see Table III), the
reflectance variation resulted from the SRF shift is relatively

minor (see Fig. 12). In particular, for the Landsat 3 MSS,
the median RDs associated with the NIR1 SRF shifts are
proximately −1% to 0.5%, while the corresponding between-
sensor difference is −4.776% (see Table III). Accordingly, the
potential effect associated with the SRF uncertainty on the
investigation was not considered.

B. Effect of Interpolation for the MSS SRF

Different methods for the SRF interpolation of the
Landsat 4–5 MSS were compared, including linear interpo-
lation, spline interpolation, and cubic interpolation. The effect
associated with interpolations was measured by the variation
coefficient, as the ratio of the standard deviation to mean
(as a percent). Generally, the variation in channel reflectance
caused by different interpolations of SRF is small, with the
median variation coefficient being approximate to 0.02% for
the Landsat 4 and 5 MSS channels (see Table IV). The
interpolation methods show relatively significant effects on the
red channel. However, for about 80% of samples, the variation
of reflectance is less than 0.1%. Consequently, the interpolated
SRFs for the Landsat 4–5 MSS with a spectral interval of
1 nm through the spline interpolation were used in reflectance
simulation and effective wavelength estimation, as in previous
investigations [9], [33].

C. Between-Sensor Transformation Models and Associated
Improvements in Consistency

The transformation models of channel reflectance for the
Landsat 3 MSS were discussed in detail to show models’
reliability. Table V presents the model estimates obtained
through OLS and WLS regressions separately. The coefficients
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Fig. 12. Effects of the SRF shifts of the Landsat 3 MSS (from −3 to 3 nm) on channel reflectance, measured by RD using the original simulation as
reference.

Fig. 13. Demonstration of the linear transformation model through OLS regression for the Landsat 3 MSS. The red lines show regression of the Landsat 3
MSS against the Landsat 5 MSS for respective channels, while the transformation models are provided correspondingly. The dashed blue lines in all subplots
are 1:1 lines superimposed for reference.

TABLE IV

EFFECTS OF INTERPOLATION METHODS ON CHANNEL

REFLECTANCE OF THE LANDSAT 4–5 MSS

estimated through OLS and WLS regressions are generally
identical. Compared with the estimates through WLS regres-
sion, the estimates by OLS regression show larger confidence
intervals. However, for the cases in this article, the differences
in confidence intervals did not affect the model determination.
Meanwhile, the models through OLS regression are highly sig-
nificant, with a large (greater than 0.99) regression coefficient

of determination. Overall, for all individual channels, the linear
models through OLS regression depict the between-sensor
relation well (see Fig. 13).

A cross-validation strategy was employed to demon-
strate the associated improvements and model uncertainty.
Cross-validation is a model validation technique, which has
been widely used to assess how accurately a predictive model
will perform on another data set. Similar to previous inves-
tigations [9], [10], the K -fold cross-validation (K = 5)
with 10 000 simulations was performed for the transformation
model (i.e., the transformation model of reflectance for the
Landsat 3 MSS NIR1, see Fig. 14). Consequently, there were
50 000 validation cases totally for a transformation model.
Specifically, for each validation case, 80% of samples were
selected for training, and the rest 20% were for testing. Based
on the training samples, the model coefficients were estimated
through OLS regression, whereas the MRD of prediction (after

Authorized licensed use limited to: Jonathan Li. Downloaded on May 16,2020 at 00:04:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: CHARACTERIZATION OF MSS CHANNEL REFLECTANCE AND DERIVED SPECTRAL INDICES 13

Fig. 14. Uncertainty and improvement associated with the linear transformation model for the Landsat 3 MSS NIR1 channel. (Top) Model coefficients
(“Slope” and “Offset”) are shown, while (Bottom) RDs (Left) after and (Right) before transformation are shown. The statistics in this figure were based on
10 000 times K -fold cross-validation (K = 5) tests.

TABLE V

COMPARISON OF THE LINEAR MODEL COEFFICIENTS FOR THE LANDSAT 3 MSS THROUGH OLS REGRESSION AND WLS. THE REGRESSION 95%
CONFIDENCE INTERVALS FOR THE COEFFICIENT ESTIMATES ARE PROVIDED IN THE PARENTHESES, WITH LOWER

CONFIDENCE BOUNDS AND UPPER CONFIDENCE BOUNDS, RESPECTIVELY

transformation) and the MRD before transformation were
measured based on the testing samples. Fig. 14 summarizes
the results for the NIR1 channel of the Landsat 3 MSS based
on the K -fold cross-validation (K = 5) tests. The distribution
of “Offset” is significantly different from zero, indicating that
the linear model with an offset (nonzero constant term) is
reasonable for cross-sensor transformation. In addition, tests
based on simulation data showed that compared with the
model without offset, the model with “Offset” performed
better in reducing the between-sensor difference. For example,
regarding the Landsat 3 MSS, the MRDs of the red channel
and NIR1 channels are 1.749% and −0.956%, respectively,
for the model without offset, while those are −0.092% and
−0.664%, respectively, for the model with offset.

Generally, the cross-validation tests show consistency with
the regression confidence intervals (see Table V). Median
estimates (i.e., “Slope” and “Offset”) extracted from all
K -fold cross-validation cases (see Fig. 14) are close to those
in Table V correspondingly. The between-sensor compara-
bility is significantly improved, as the mean RD for the
Landsat 3 MSS NIR1 channel decreases to about 0.70%
(median) from the original difference about −4.75% (median),
showing accordance with Fig. 9. Findings indicate that the
linear model through OLS regression is generally applicable
for cross-sensor transformation to improve the Landsat 1–5

MSS reflectance consistency, showing consistency with pre-
vious findings [7]–[10]. However, both the advantages and
disadvantages of the linear transformation model should be
recognized. On one hand, the linear model, serving as a simple
and easily applicable way [7]–[10], provides a useful method
to improve the between-sensor comparability on average.
On the other hand, a global liner model achieves the optimal
solution over all samples, while may not be the best one
for subsets. Consequently, by using the linear transformation
model, amplified differences are observed mainly for samples
with low reflectance (see Figs. 7 and 8) when between-
sensor comparability is improved on average. To overcome its
shortages, more other applicable strategies should be investi-
gated further. In addition, the statistical significance of the
model’s coefficient (e.g., “Offset”) is determined in terms
of the hypothesis test and cross-validation test. However,
the physical meaning of the offset has not been interpreted
currently.

D. Transformation to Improve Consistency in Spectral
Indices of the Landsat MSS

The RD for individual channels largely contributes to the
biases in vegetation indices. Accordingly, the increased RD
over low reflectance for the NIR1 channel (see Fig. 10) along
with the improved comparability of the red channel (see Fig. 9)
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Fig. 15. Between-sensor differences for NDVI of the Landsat 1-4 MSS, using the Landsat 5 MSS as reference. Two transformation strategies were performed
separately, including the channel reflectance transformation (red) as an indirect strategy and the NDVI transformation (blue) as a direct strategy. The differences
are shown by median (respective marks) and range (vertical lines) with the lower and upper taken as 5% and 95% percentiles, for contiguous 0.05 NDVI
ranges of the Landsat 5 MSS.

Fig. 16. Between-sensor differences for the TC transformed greenness of the Landsat 1–4 MSS, using the Landsat 5 MSS as reference. Similar to Fig. 15,
results separately based on two transformation strategies are presented. The differences are shown by median (respective marks) and range (vertical lines)
with the lower and upper taken as 5% and 95% percentiles for contiguous five greenness ranges of the Landsat 5 MSS.

results in a visible difference in the vegetation indices followed
by (see “Channel transformation” in Fig. 15). According to
a previous investigation [56], two transformation strategies
are possible for derived variables (i.e., vegetation indices),
including retrieving the variable based on transformed channel
reflectance correspondingly as an indirect strategy and getting
the transformed variable using its specific model, respectively,
as a direct strategy (see Figs. 15 and 16). Considering the
amplified effects of individual channel differences, the vege-
tation indices should be transformed through their respective
models directly (i.e., as “NDVI transformation” in Fig. 15)
instead of recalculating the vegetation indices based on the
transformed channel reflectance (as “channel transformation”
in Fig. 15). Because of the direct transformation, the between-
sensor inconsistencies of NDVI are significantly alleviated
over all ranges. Meanwhile, there are obvious biases after the
recalculation based on the transformed reflectance although the
between-sensor comparability is generally improved. Actually,

we observed similar findings for the EVI2 (not shown) and
the TC transformed greenness (see Fig. 16). To improve
the between-sensor consistency of the derived variables from
different MSS observations, it is more rational to transform
the variables using their respective models directly.

E. Other Related Issues

Compared with the successive sensors (i.e., Landsat 4–5
TM, Landsat 7 ETM+, and Landsat 8 OLI), MSS has
characterization shortages in design, such as in spatial res-
olution, spectral channels (i.e., number and spectral region),
and radiometric resolution (see Table I). Significant omissions
(undetection and underdetection) in cloud and cloud shadow
are observable for the currently processed MSS archive in
the Collection 1 Level-1 data product although reliable inter-
pretation is largely possible for the region without cloud
cover (see Fig. 17). The interpretation of QA band infor-
mation is likely unreliable and affects autonomous analyses
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Fig. 17. Demonstration for the usability and uncertainty of the Landsat MSS
QA band information in data quality interpretation at the pixel level: color
image (R: NIR1 channel, G: green channel, and B; red channel). (Left) cloud
mask of a full scene. (Right) cloud mask, color image, and clear terrain mask
of four subsets covering different conditions (outlined with different colors
correspondingly). Masks of cloud (with high confidence) and clear terrain
were extracted according to the QA band information. The showcase is for
a Landsat 4 MSS scene (LM04_L1TP_123032_19860307_20180331_01_T2)
in the Collection 1 Level-1 data product, which was freely accessed at
EarthExplorer (https://earthexplorer.usgs.gov/).

further, especially when time-series analyses at pixel-level
are required [2]. Therefore, further improvements for the
QA information of the MSS archive are required, such
as in cloud detection [19]. Moreover, currently, the geo-
registration accuracy of the MSS archive processed usu-
ally does not meet the Tier 1 requirements. For Landsat
Collection 1 Level-1 data, scenes with the highest avail-
able data quality are placed into Tier 1 and are considered
suitable for time-series analyses (https://www.usgs.gov/land-
resources/nli/landsat/landsat-collection-1). From all the valid
MSS scenes (totally 215 scenes) in Fig. 2, only one scene
is assigned Tier 1. Taking into account impacts associated
with the georegistration uncertainty, the averaged reflectance
of a window with 7 × 7 pixels (locating within relative
homogeneity) around each randomly selected sample was
finally used in the comparison (see Fig. 11), as in [9].

The shortages in channel characterizations (i.e., spectral
channels and radiometric resolution) may limit the MSS
observations for the actual application, such as in land cover
mapping, while findings varied among cases [20], [57], [58].
Nevertheless, from the MSS archive well processed, with the
channels over the NIR region being sensitive to vegetation
characteristics [28], the derived spectral features or indices
(e.g., NDVI, EVI2, and the TC greenness as discussed in
this article) are suggested valuable for time-series analy-
ses. Further comparison and transformation to corresponding
features from observations of other successive sensors (i.e.,
Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI) are
required [9]. Major differences occur between the WRS-1
of Landsat 1–3 and the WRS-2 of the successive Land-
sats in repeat cycles, coverage, swathing patterns, and path/

row designators (https://landsat.gsfc.nasa.gov/the-worldwide-
reference-system/). Therefore, associated issues challenging
the Landsat consistency (both among the Landsat 1–5 MSS
and between the MSS and its successors) are necessary to
be tackled, whereas the spectral response function as the
importance for sensor characterization was discussed compre-
hensively in this article.

VI. CONCLUSION

The characterization and comparison of the Landsat 1–5
MSS were comprehensively investigated in terms of derived
spectral indices and the TC transformed features as well as
channel reflectance. The investigations were mainly based
on the synthesized reflectance obtained using a collection
containing 10 000 Hyperion profiles of hyperspectral surface
reflectance atmospherically corrected. The spectra profiles
were collected over diverse geographical conditions, which
suggests the investigation representativeness and the reliability
of findings, as asserted previously [9], [17]. The Landsat 1–3
MSS show disagreement with the Landsat 5 MSS in channel
reflectance, especially for the red channel (600–700 nm) (with
median RDs varying from 2.3% to 6.3%) and the NIR1 chan-
nel (700–800 nm) (with median RDs varying from −1.8%
to −4.8%). It results in significantly amplified biases with
the median RD approximating 10%, for derived vegetation
indices (i.e., NDVI and EVI2). Meanwhile, the Landsat 4 MSS
was generally comparable to the Landsat 5 MSS. Findings
suggested that the effect of the biases in individual channels
was likely amplified on the normalized indices (as a nonlinear
form) (i.e., NDVI and EVI2) through a complicated manner,
while it was moderate or alleviated in the TC transformed
features as a linear form.

To improve the comparability among the Landsat MSSs,
in terms of reflectance and derived variables, the univari-
ate linear transformation model through OLS regression was
discussed accordingly. Confidence intervals of the coefficient
estimates through OLS regression were overestimated due to
data heteroscedasticity (see Table V). However, for the cases
in this article, the overestimated confidence intervals did not
affect the model determination, and unbiased OLS regression
coefficient estimates were obtained. Overall, between-sensor
comparability of channel reflectance was able to be improved
through the OLS regression models, respectively. A small
bias in individual channels may result in an obvious differ-
ence in the normalized vegetation indices, especially for low
vegetation cases [10]. Consequently, to make the consistency
for the vegetation indices (i.e., NDVI and EVI2) and the
TC greenness, the direct strategy was more effective than
using their respective transformation models compared with
the indirect way by recalculating derived variables based on
the transformed channel reflectance. The effectiveness of the
transformation models was further demonstrated through case
applications. However, both the advantages and shortages of
the linear transformation model should be recognized, and
more other applicable strategies should be investigated further.

Investigations in this article provided insights on the conti-
nuity issue of the Landsat MSS, which were mainly based
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on the spectral response function served as an important
characterization of the sensor [13], [33]. Findings on the
Landsat 1–5 MSS may largely contribute to our knowledge
on Landsat series especially for consistency issues, whereas
most studies have focused on the successive sensors (e.g.,
TM, ETM+, and OLI) [6]. However, in practice, the con-
sistency of derived variables from the Landsat MSS archive
also relates to other factors, mainly including radiometric
calibration [47], [59], georegistration [60], and atmospheric
correction [7], [61], [62]. Resulted mainly from the shortages
of sensor characterization, reliable detections of cloud and
cloud shadow as well as atmospheric correction are difficult
to MSS observations compared with other successive sensors.
The georegistration problem of the MSS archive (i.e., mostly
assigned Tier 2) challenges time-series analyses at pixel-
level currently, which should be assessed further and to be
improved properly. Considering the fact that the Landsat 1–5
MSS archive is continuing to be reprocessed (currently in
the Landsat Collection 1 Level-1 data product), to take
advantage of its historical importance in Earth observation,
more investigations are necessary further. Furthermore, the
Landsat 1–5 MSS have two channels over the NIR region
although the NIR1 channel (700–800 nm) was used for
vegetation indices in this article, whereas the successors (i.e.,
Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI) have
one NIR channel. A proper interpolation method for vegetation
index comparability between the Landsat 1–5 MSS and the
successors is required. Therefore, more efforts are needed to
evaluate the long-term consistency of the Landsat archive,
including the MSS data, and to fully realize the benefit of
the archive [2] although investigations in this article provide
insights on continuity of the Landsat MSS data record. Finally,
the importance of the continuity of reflectance and derived
variables depends on specific applications.
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