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A B S T R A C T

Rapid detection of 3D objects in indoor environments is essential for indoor mapping and modeling, robotic
perception and localization, and building reconstruction. 3D point clouds acquired by a low-cost RGB-D camera
have become one of the most commonly used data sources for 3D indoor mapping. However, due to the sparse
surface, empty object center, and various scales of point cloud objects, 3D bounding boxes are challenging to be
estimated and located accurately. To address this, geometric shape, topological structure, and object relation are
commonly employed to extract box reasoning information. In this paper, we describe the geometric feature
among object points as an intra-object feature and the relation feature between different objects as an inter-
object feature. Based on these two features, we propose an end-to-end point cloud geometric relation network
focusing on 3D object detection, which is termed as geometric relation network (GRNet). GRNet first extracts
intra-object and inter-object features for each representative point using our proposed backbone network. Then,
a centralization module with a scalable loss function is proposed to centralize each representative object point to
its center. Next, proposal points are sampled from these shifted points, following a proposal feature pooling
operation. Finally, an object-relation learning module is applied to predict bounding box parameters. Such
parameters are the additive sum of prediction results from the relation-based inter-object feature and the ag-
gregated intra-object feature. Our model achieves state-of-the-art 3D detection results with 59.1% mAP@0.25
and 39.1% mAP@0.5 on ScanNetV2 dataset, 58.4% mAP@0.25 and 34.9% mAP@0.5 on SUN RGB-D dataset.

1. Introduction

With the rapid development of urbanization and the prevalence of
commercial and residential buildings, 3D object detection plays a vital
role in many applications such as indoor mapping and modeling (Chen
et al., 2014), scene understanding (Lin et al., 2013), location-based
services (Li et al., 2019a; Chen et al., 2019), and building maintenance
(Wang et al., 2018). It seeks to localize and recognize objects in 3D
scenes (Li et al., 2019a), including their bounding box size, orientation,
and center position (Haala and Kada, 2010). Compared with images, 3D
point clouds have advantages in providing precise geometry and ro-
bustness to illumination variations. However, the primary problems of
3D object detection are: (1) points distribute sparsely and irregularly
(Qi et al., 2017a), (2) geometric patterns vary enormously (Ren and
Sudderth, 2018), and (3) points locate on the surface of objects, far

from their center (Qi et al., 2019). These challenges lead to the com-
plexity of localization and detection of 3D objects in indoor environ-
ments.

In existing 3D detection methods, there are three main 3D data
representations: voxel grids, multiview images, and point clouds
(Griffiths and Boehm, 2019). Voxel grids (Zhou and Tuzel, 2018) and
multi-view images (Kanezaki et al., 2018) are Euclidean-structured
data, which are first converted from point clouds and then input to 2D
convolutional networks for detection. For example, Zhou and Tuzel
(2018) transformed 3D point clouds to voxel grids, and Chen et al.
(2017) projected LiDAR data to bird’s eye view images, then 2D CNNs
were employed for object detection. However, these regular data for-
mats may obscure natural 3D geometric patterns and disturb the in-
variances of data. To leverage the spatial relation between 2D and 3D
data, Chen et al. (2016) first sampled candidate 3D bounding boxes in
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point clouds and then projected these boxes to 2D images for further
detection. Qi et al. (2018) proposed 3D box prediction that relies on 2D
detection results. However, these 2D-3D detection pipelines highly rely
on the 2D detection results from the first step. Recently, a set of papers
have proposed to process point clouds directly. PointRCNN (Shi et al.,
2019), STD (Yang et al., 2019b), VoteNet (Qi et al., 2019), and 3D-
BoNet (Yang et al., 2019a) detected 3D objects using end-to-end deep
point set networks. Local and global features are extracted for object
feature learning and bounding box reasoning. However, geometric
patterns and object relationships are not exploited in these networks.

When constructing our detection framework, we face two selections:
one-stage detection and two-stage detection. One-stage detection (Yang
et al., 2019a) generates bounding boxes directly from the extracted
point set features without any post-processing steps for refinement.
Two-stage detection methods (e.g., Qi et al., 2019; Yang et al., 2019b;
Shi et al., 2019; Hou et al., 2019) mainly consist of two steps: proposal
generation and bounding box refinement. One-stage detection is effi-
cient and straightforward but highly relies on the performance of the
proposed algorithm. If some difficult objects or geometric-salient ob-
jects that could be clearly distinguished are missed, they have no
chance to be retrieved (Qi et al., 2019). Two-stage detection considers
sufficient possible candidates in the first step and refines the coarse
results in the second step. This can sometimes avoid misdetection and
thus commonly has higher detection performance and computation cost
than the former (Yang et al., 2019a). In order to achieve a discriminate
performance, we select the two-stage pipeline to construct our model
and try to reduce the computation burden.

Different from previous work that inputs RGB-D data as images to
2D CNNs for detection (Gupta et al., 2014), we detect 3D objects from
point clouds lifted from depth maps. Geometric attributes and topolo-
gical structures of 3D objects can be exploited using such data re-
presentation (Li et al., 2019b; Xu et al., 2018b). For example, plane,
curve, line, and corner are more easily parameterized and described by
3D learners. In this paper, we introduce an efficient and novel bottom-
up two-stage 3D object detection framework from point clouds in in-
door scenes, termed as geometric relation network (GRNet). We mainly
focus on three challenges to improve the 3D detection performance:

(1) Bottom-up feature learning of representative points. Only certain
points are selected as candidate points for proposal selection. Their
intra-object and inter-object features are exploited.

(2) Centralization of object surface points. 3D object centers are likely
to be empty without any point (Qi et al., 2019). We centralize
surface points for more accurate bounding box prediction.

(3) Object relation learning. Relation features among 3D proposals can
attribute to the bounding box parameter refinement.

To encode the local geodesic information (e.g., coarse local shape)
for representative points, we mimic TGNet (Li et al., 2019b) to explore
geodesic correlations and attributes among local neighbors. We observe
that, in indoor scenes, the topological structure of points in the local
region has limited geometric variations. For example, most object sur-
faces (e.g., beds, desks, and tables) are flat or in regular shape. Thus, we
replace the Taylor-Gaussian geometric function with the exponentially
trilinear interpolation function to approximate local surface features.
We term this new convolution operation as GeoConv. GeoConv is si-
milar to TGConv, but simpler and has fewer parameters.

Our bottom-up backbone framework is constructed based on an
encoder-decoder structure, with four-layer down-sampling and two-
layer up-sampling layers. To extract both intra-object and inter-object
features, GeoConv is applied to the first two down-sampling layers to
exploit the intra-object geometric features. We leverage PointNet (Qi
et al., 2017a) in the last two down-sampling layers to extract inter-
object features. These features are then propagated and concatenated to
two up-sampling layers. The output of the backbone network is the
selected representative points and their propagated bottom-up features.

Due to the empty object center, VoteNet (Qi et al., 2019) proposes a
Hough voting module to regress the surface points to their center. Such
operation has been proved effective in 3D object detection. However,
the scaling problem is not considered, which results in the sub-optimal
regression for small or vertical objects. We follow VoteNet (Qi et al.,
2019) to propose a centralization module with a scalable loss function.
By adding a scaling control parameter in defining the centralization loss
function, object points within a different pattern are centralized in a
compact way, which further increases the bounding box prediction
results.

Proposals are sampled from these shifted representative points.
Their features are learned and aggregated from their nearest neigh-
boring points which are mostly from the same object. Many methods
(e.g., Qi et al., 2019; Shi et al. 2019; Yang et al., 2019a) predict
bounding boxes using such aggregated intra-object features. However,
the relation feature between proposals is not exploited. Thus, we pro-
pose a simple relation learning module to learn both intra- object and
inter-object features to increase the prediction results. Only features
from a certain number of nearest neighbors for each proposal are
considered for relation feature learning. These neighbors are searched
based on the predicted bounding box center and then the intra-object
features are aggregated. Bounding box parameters are generated as the
additive sum of prediction results from relation-based inter-object fea-
tures and aggregated intra-object features.

Our method achieves leading positions on indoor RGB-D datasets.
We have achieved 58.4% better 3D mAP@0.25 than VoteNet (Qi et al.,
2019) on SUN RGB-D dataset. Besides, our method outperforms Vo-
teNet (Qi et al., 2019) and 3D-SIS (Hou et al., 2019) on ScanNetV2
dataset. Compared with the previous best performance from VoteNet
(Qi et al., 2019), our method achieves at least 0.5% mAP@0.25 and
5.5% mAP@0.5 increases with high efficiency. The key contributions of
our work are as follows:

(1) A novel geometric convolution is proposed and applied in a bottom-
up backbone network. Intra-object geometric features and inter-
object relation features for each representative point are extracted
in a hierarchical way.

(2) A centralization module is presented to centralize object surface
points to its center. This contributes to an improved bounding box
prediction.

(3) An object relation learning module is introduced to exploit the re-
lation feature between proposals for better bounding box reasoning.

The rest of this paper is structured as follows. Section 2 reviews the
related work. Section 3 details the proposed method. Section 4 de-
scribes the environmental setup, presents and discusses the results.
Section 6 concludes this paper.

2. Related work

View-based Methods. In order to exploit existing 2D CNNs, some
approaches first project point clouds into 2D views and then apply 2D
CNNs to detect and localize objects from images. In early work by Xiang
et al. (2015), Chen et al. (2016) and Mousavian et al. (2017), point
clouds were projected initially to the camera image plane, then RGB
images and shape attributes or occlusion patterns were exploited to
predict 3D bounding boxes. Li et al. (2016) and Deng and Jan Latecki
(2017) treated depth data as 2D maps and applied 2D CNN learners to
detect objects in 2D images. Luo et al. (2019) proposed a detection
framework via fusing multi-view representations of point clouds to
extract high-level features. Wen et al. (2019) projected point clouds
into a horizontal plane and used a modified U-net to extract road
markings. MV3D (Chen et al., 2017) projected LiDAR point clouds to
bird’s eye view images first and then constructed a region proposal
network (RPN (Ren et al., 2015)) for 3D bounding box prediction.
However, these methods have sub-optimal performance in small object
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detection (e.g., pedestrians and cyclists) and multiple clutter object
detection in the vertical direction. View-based methods are effective
and lightweight. Due to the sparsity of point clouds, the projection of
point clouds to 2D image planes produces sparse 2D point maps and
losses 3D geometric information.

2D-3D Object Detection from RGB-D data. RGB-D data contain
RGB features and depth information for each object (Chen et al., 2014).
There are multiple methods to exploit these two features. Song and Xiao
(2014) proposed sliding shapes based on a 3D volumetric scene ex-
tracted from the RGB-D input image to predict 3D bounding boxes. 3D
RPN was proposed to learn the objectiveness based on geometric
shapes. 3D geometric features and 2D color attributes were learned via
a joint object recognition network (ORN). However, the spatial re-
lationship between the 2D imagery and the 3D geometry for joint fea-
ture learning is not considered. Lahoud and Ghanem (2017) presented a
2D-driven 3D object detection network that uses 2D detection results to
reduce 3D searching space. Then, a histogram of point coordinate was
input to simple fully connected networks to regress the bounding box
location and pose direction. Hou et al. (2019) integrated 2D images
with voxelized point cloud grids based on their geo-spatial relationship
to segment semantic instances in commodity RGB-D scans. Qi et al.
(2018) and Gong et al. (2020) proposed similar detection frameworks
as Lahoud and Ghanem (2017). But Frustum PointNet (Qi et al., 2018)
utilized a more flexible and effective PointNet (Qi et al., 2017a) net-
work to perform 3D object instance segmentation and amodal bounding
box regression. In comparison, we lift RGB-D data to point clouds and
propose a new 3D deep network that can exploit 3D geometry more
effectively using point clouds only.

3D-based methods. Compared with view-based detection methods
and 3D object detection using 2D-3D features, 3D-based approaches
focus more on utilizing geometric features from point clouds. In work
by Song and Xiao (2014) and Wang and Posner (2015), SVMs were
adopted to classify 3D objects using hand-designed geodesic features
extracted from point clouds. Then the object was localized via a sliding
window search. Engelcke et al. (2017) extended the work by Wang and
Posner (2015) by using 3D CNN instead of SVM on 3D voxelized grids.
Ren et al. (2016) designed new geometric features for 3D object de-
tection. Song and Xiao (2016) converted the entire scene represented by
point clouds into volumetric grids and applied 3D volumetric CNNs on
object proposal for classification. The computation costs for these
methods are usually high because 3D convolutions and 3D space
searching in large areas cost expensively. More recently, deep networks
on point clouds were adopted by GSPN (Yi et al., 2019) and PointRCNN
(Shi et al., 2019) to exploit the sparsity of the data. Considering the
scanned points lying on the surface of the objects and the empty object
center, Qi et al. (Qi et al., 2019) proposed a deep Hough voting network
to shift the surface point to the object center. This method achieved

discriminate performance in bounding box center prediction and box
size estimation.

Object Relation Methods. Recently, the attention mechanism has
received increasing noticing in 3D deep learning (Velicˇković et al.,
2017; Wang et al., 2019). The key advantage of attention mechanisms is
that it can consume different sized inputs, which is suitable for irregular
and unstructured point cloud data. Besides, its output only focuses on
the most relevant parts of the input by considering the relationship
between neighbors (Velicˇković et al., 2017). Wang et al. (2019) pro-
posed a novel graph attention convolution (GAC) to learn the most
relevant part of different neighboring points based on their dynamically
learned features. Such an operation can adjust kernels into specific
shapes to adapt to the structure of an object. Zhang and Xiao (2019)
introduced a Point Contextual Attention Network (PCAN) to predict the
importance of each local point feature considering the 3D context in-
formation. The attention mechanism was utilized when aggregating
local features to task-relevant features. Xie et al. (2018) also introduced
a contextual modeling mechanism inspired by the self-attention me-
chanism in constructing ShapeContextNet for point cloud recognition.
The above approaches show that the attention mechanism has the
strength in extracting the most relevant features by learning their re-
lationships. Therefore, motivated by these methods, in this paper, we
apply the attention mechanism to deal with the task of 3D object de-
tection. There exist geometric relationships between objects, such as
chairs usually locate near desks. We introduce an attention-based object
relation feature learning module to aggregate the most relevant
neighbors’ feature as an inter-object feature, which is combined with
the intra-object feature to predict accurate bounding box parameters.

3. Method

In this section, we introduce the detailed framework of our pro-
posed GRNet for 3D detection from point clouds. We first extract geo-
metric features withRC for M representative points using a bottom-up
backbone network. Such a network can help each representative point
to aggregate its intra-object and inter-object features. Then, a cen-
tralization module is proposed to centralize object surface points to its
center. After that, K proposal points are selected, and their features are
learned and aggregated from their neighboring points. Such features
with +R C( 3) are then passed to an object relation learning module for
bounding box refinement. The overall structure is illustrated in Fig. 1.
The input to our network is N points with their XYZ coordinates, and
the output is bounding box parameters with RCout . These parameters
are finally post-processed by non-maximum-suppression (NMS) for ac-
curate object bounding box prediction.

Fig. 1. The framework of GRNet: We first extract geometric features for M representative points using a bottom-up backbone network from N input points. Then a
centralization module is proposed to centralize object surface points to its center. After that, K proposal points are selected, and their features are learned and
aggregated from their neighboring points. Such features are then passed to an object relation learning module for bounding box refinement.
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3.1. Backbone network

The backbone network is proposed based on the following con-
siderations: (1) intra-object attributes extraction, such as geometric
shape, surface variation, and correlation between closed points; (2)
inter-object attributes exploitation, e.g., relation features between ob-
jects; (3) feature learning and aggregation in a hierarchical way, which
can extract point features in different scales; (4) representative points
selection, these points are selected to represent the input scene to re-
duce the computation cost. To meet the above requirements, we con-
struct a bottom-up hierarchical deep framework using a newly defined
geometric CNN, GeoConv. The following parts introduce the details of
the proposed backbone network.

3.1.1. GeoConv
Although TGNet (Li et al., 2019b) proposed the TGConv to explore

geodesic correlations and attributes among local neighbors for each
point. However, it introduces a high amount of parameters. Besides, we
observe that, in indoor scenes, most points and their local neighbors lie
on planes or regular shape surfaces, which can be described by a sim-
plified parameterized geometric function. To reduce the number of
parameters and exploit the geodesic intra-object feature of indoor ob-
jects, we propose a new geometric CNN, termed GeoConv. GeoConv is
similar to TGConv, but simpler and focuses on regular and simplified
geometric characteristics.

Given a 3D point cloud =P p p R{ , , }n1
3 according to their

Euclidean nearest neighbors, a graph =G V E( , ) is constructed.
=V n{1, 2, ..., } and ×E V V denote vertices and edges respectively.

The neighbor set for each vertex x is denoted as y xN( ). Let
=h h h h{ , , ..., }N1 2 be a set of input vertex features, each feature h RN

F

corresponds to a graph vertex i V . F represents each vertex’s feature
dimension. The output hy

' of GeoConv for each vertex is derived as
follows:

= +uh max g G x y h h y x( ( ( ( , )) )), N( )y y y
'

(1)

where G ( ) is a geometric mapping function: R R3 , which maps the

local Euclidean coordinates =u u ux y y x( , ) ( ) ( ) between each vertex
and its neighbors’ Euclidean coordinates to a geometric parameter.
Then the product of uG x y( ( , )) and feature hy is added with hy. g (Â·) is
the learnable feature mapping function: R RF K , max (Â·) denotes the
max aggregation function.

As mentioned in TGConv (Li et al., 2019b), a family of parametrized
Taylor-Gaussian filters were proposed to interpolate arbitrary values at
the vertexes of a graph and capture geometric spatial information in a
local region. These filters are defined as products of local neighbor
point features with geometric features extracted from local coordinates
expressed by a family of Gaussian weighted Taylor kernel functions.
TGConv is suitable for both indoor and outdoor objects with variable
geometric shapes. However, in indoor scenes, common objects have
regular geometric shapes. As mentioned in SpiderCNN (Xu et al.,
2018a,b), a family of parameterized trilinear interpolation based ker-
nels have been demonstrated to be effective in extracting geometric
features. To reduce the number of parameters but also maintain the
kernel’s expression ability, an exponential-based trilinear interpolation
function is used in this paper as the geometric mapping function
G u x y( ( , )) with learnable parameters as:

=

= + + + + + + +

G u x y G x y z

e

( ( , )) ( , , )
x y z x y x z y z x y z( )T T T T T T T T

0 1 2 3 4 5 6 7 (2)

where =i( 0, ,7)i
T is a ×1 1 learnable parameter. By varying these

parameters, G u x y( ( , )) can approximate different geodesic values for
each vertex x using its neighbor set y xN( ).

Because a multi-layer perception (MLP) can approximate an arbi-
trary continuous function and retains weight sharing as standard con-
volution (Xu et al., 2018b). We use an shared MLP as our feature
mapping function g (Â·) to map the addition of the original input
feature hy and the products of hy with a geometric feature G u x y( ( , )) to
a different feature dimension: R RF K . Max aggregation, which can
exploit the most effective features and adaptively explore related
neighbor features (Qi et al., 2017a), is then applied to aggregate the
learned new feature hy

' .

Fig. 2. Details of our proposed backbone network. (a) GeoConv on a graph representation of point clouds: given n nearest neighbors’ coordinates yi and features hi for
each vertex x with =i n1, , , a local operation is conducted. The product of local neighbor point feature with a geometric feature extracted from relative-
coordinates expressed by the parameterized exponential trilinear interpolation function and the input feature are added. Then a max-pooling operation is applied to
aggregate such newly generated feature to a new feature h' for vertex x. (b) The architecture of our backbone network, which has four downsampling layers and two
upsampling layers. GeoConv is applied to the first two downsampling layers to extract intra-object features, while PointNet (Qi et al., 2017a) is employed in the last
two downsampling layers to learn inter-object feature. Then these features are concatenated and interpolated in the following two upsampling layer using PointNet.
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3.1.2. Backbone framework
A good backbone framework should meet the above four require-

ments. In VoteNet (Qi et al., 2019), PointNet++ (Qi et al., 2017b) is
chosen as the backbone network, which is a hierarchical deep frame-
work with representative point selection. However, the intra-object and
inter-object features are not fully exploited. We construct our backbone
framework based on PointNet++, but also explore these two features.

Due to the high density of point clouds in the first two down-
sampling layers, the extracted local neighbors for each point still con-
struct part of the object surface. As shown in Fig. 2, we apply GeoConv
in these two upsampling layers to extract intra-object features. When
points are sampled sparsely, especially in the last two encoder layers,
geometric attributes (e.g., shape) among extracted neighbors are wea-
kened but the inter-object features (e.g., position or layout) are en-
hanced. Because using GeoConv in all four encoder layers cannot ex-
tract the inter-object features, it sharpens the detection performance.
Thus, in the last two downsampling layers, we adopt PointNet (Qi et al.,
2017a) to extract inter-object features. Then these features are con-
catenated and interpolated in the following two upsampling layers
using PointNet. The output of this backbone is a set of representative
points =r{ }i i

M
1 where =r x f[ ; ]i i i with x Ri

3 and f Ri
C .

3.2. Centralization module

Due to depth sensors mainly capturing surface points of objects,
there are limited points or no points around object centers. Thus, ex-
isting point-based networks have a problem in extracting scene context
around the object center. To solve this, VoteNet (Qi et al., 2019) pro-
posed a Hough voting module to generate new points (votes) that lie
close to the object center. Votes are generated from features of re-
presentative points. Then these votes can be grouped and aggregated
with a learnable module to generate proposals with enough context
information. A vote loss function is introduced to regress the dis-
placements of votes based on the Euclidean distance. This network has
been demonstrated to be effective in 3D object detection. However, the
scaling problem is not considered in defining their vote loss function.
Large objects (i.e., bed) can regress better than small objects (i.e., chair)
(Qi et al., 2019). To improve this, we follow VoteNet to construct our
centralization module but introduce a scaling control parameter in
defining the loss function.

Given a set of representative points =r{ }i i
M

1, the centralization module
generates offset from each representative point position to its center
independently. This module is composed of a shared MLP module with
three fully connected layers, ReLU and batch normalization. The input
is the feature f Ri

C of representative points, and the output is the 3D
position offset x Ri

3 in the Euclidean domain and a feature offset
f Ri

C. Thus, this module generates =c y g[ ; ]i i i from the re-
presentative point ri and has = +y x xi i i and = +g f fi i i.

The predicted 3D offset xi is supervised by the following loss
function:

=L
N

x x r on object1 1[ ]offset reg
pos i

i i
i

(3)

where r on object1[ ]i represents whether a representative point ri is on
an object surface, Npos is the total number of representative points on
object surface. xi is the ground truth displacement from the re-
presentative point position xi to the bounding box center of the object it
belongs to. is a scale control parameter, which is set to 0.1 in our
experiments. Because the offset of different object points varies. Thus,
we add a scaling control parameter to enlarge the distance-based re-
gression loss for small objects. Experimental results demonstrate the
effective of such scale control parameter.

3.3. Proposal selection and feature pooling

The centralization module moves the object surface points to the

object center compactly, while background points still distribute spar-
sely. Thus, proposal selection should consider such density variation. To
ensure the proposal can represent enough possible objects, the sampling
and clustering methods are selected according to spatial proximity. A
subset of K points are sampled using farthest point sampling (FPS) (Qi
et al., 2017b) based on the representative point position =x{ }i

M
i 1 in 3D

Euclidean space. The index of these points is then used to find proposals
in shifted representative points =y{ }i i

M
1, to get =p{ }k k

K
1.

After that, we cluster N group points for each proposal by searching
neighboring points pk

n( ) in =y{ }i i
M

1, if p p rk
n

k
( ) for =n N1, . The

corresponding feature for each grouped point is denoted as gk
n( ). Ball

query searching (Qi et al., 2017b) is adopted as the nearest neighbor
finding method, which only considers neighboring points in a fixed
radius r . N is set to 16 and the r is set to 0.2 according to experimental
results. Although smaller radius can include more clean neighbors
(from the same object), it loses context information from background
points. Increasing rcan contaminate neighbors because more nearby
object and clutter points are included.

For each proposal, we use a shared MLP for neighboring points'
feature mapping. The max operation is applied for feature aggregation:

= =F max
n N MLP r g1, { ([ ; ])}k k

n
k

n( ) ( )
(4)

where =r p pk
n

k
n

k
( ) ( ) is the relative coordinate between neighboring

points to its proposal, and +F Rk
C(3 ). This aggregated output feature

represents the intra-object attribute, because neighboring points mainly
come from the same object.

3.4. Object relation learning module

As for discriminate 3D object detection, intra-object feature and
inter-object feature are of the same importance. The above aggregated
proposal feature represents the intra-object feature generated from
points that lies on the same object surface. However, in the real scene,
there exists relationships between objects. To leverage the inter-object
feature between co-occurrence and locations of objects for better rea-
soning, we propose an object relation learning module.

We only consider S nearest neighboring proposals for each proposal
to leverage their relation features. These neighboring proposals are
searched based on the predicted bounding box center position. In this
paper, a 3D bounding box is represented as x y z h w l( , , , , , , ), where
x y z( , , ) is the object center coordinates, h w l( , , ) is the object size
(height, width, length), and is the object orientation. Three fully
connected layers are applied to predict bounding box parameters
B x y z h w l( , , , , , , )k k k k k k k k,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 using the intra-object feature Fk.

Each proposal neighbors are searched using the predicted bounding
box center position x y z( , , )k k k,1 ,1 ,1 . We formulate the relation between a
proposal to its neighboring proposals as a region-to-region undirected
graph = ( , )G V E , where = S{1, 2, ..., }V and ×E V V denote
vertices and edges respectively. The ith neighboring proposal feature is
denoted asFi k, . We then seek to learn the relation parameter

=× +R i S( 1, .. )i k
C

,
1 (3 ) , and the object relation feature Frk as follows:

=
=

F
F

exp( )
exp( )

i k
i k i k

i
S

i k i k
,

, ,

1 , , (5)

= +
=

F F Frk i

S
i k i k k1 , , (6)

where =i S( 1, .. )i k, is a × + C1 (3 ) learnable parameter. This newly
generated relation feature Frk is then sent to three fully connected layers
for bounding box parameter prediction, which is denoted as
B x y z h w l( , , , , , , )k k k k k k k k,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 . The final output of this network is
the additive sum of Bk,1 and Bk,2. Fig. 3 illustrates the framework of this
module.

Following VoteNet (Qi et al., 2019), we use a hybrid of classification
and regression formulation. For angle prediction, we pre-define Na as
equally split angle bins and classify the proposal angle into different
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bins. Residual is regressed with respect to the bin value. Na is set to 12
in our experiments. Finally, the NMS based on the objectness score and
semantic classification score is applied to eliminate redundant propo-
sals. Specifically, we keep up to 256 proposals during training and
testing.

3.5. Loss function

To optimize the proposed end-to-end framework, a multi-task loss is
applied. It includes a centralization loss, a 3D bounding box estimation
loss, a semantic classification loss, and an objectness loss:

= + + +L L L L LGRNet offset reg box sem cls obj cls1 2 3 (7)

where = 1,1 = 0.12 and = 0.53 . These parameters are used to
weight the losses to maintain that they have similar scales.

Loffset reg is as defined in Section 3.2. As for the last three losses, we
follow VoteNet (Qi et al., 2019) to construct them. Both the objectness
loss and the semantic classification loss are cross-entropy loss, but for
two classes and C semantic classes, respectively. Only positive propo-
sals are considered in calculating the box and semantic losses, which
are normalized by the total number of positive proposals. Those pro-
posals, whose distances to their nearest ground truth center are less
than 0.2 m, are defined as positive proposals. For those proposals with
distance larger than 0.5 m are denoted as negative proposals. Those
proposals whose distances are between these two thresholds are ne-
glected. These distance thresholds are determined by experimental re-
sults.

The box loss is composed of the center regression, heading estima-
tion and size estimation sub-losses using L1-smooth loss (Qi et al.,
2018):

= + + + +L L L L L L0.1 0.1box center reg ang cls angle reg size cls size reg (8)

where center regression loss Lcenter reg is defined by Chamfer loss (Fan
et al., 2017).

4. Results and discussion

4.1. Experimental setup and Implementation

Dataset. The performance of our method is evaluated on two indoor
datasets: SUN RGB-D (Song et al., 2015) and ScanNetV2 (Dai et al.,
2017). SUN RGB-D is collected using multiple different RGB-D cameras
with varying resolutions from different indoor scenes. It contains 5,285
training images and 5,050 testing images, respectively. There are 37
object categories labeled with amodal oriented 3D bounding boxes. We
report model performance on the testing set. Point cloud data are ac-
quired following the method provided by VoteNet (Qi et al., 2019).
Detection results on the 10 most common categories are reported.

ScanNetV2 contains 1,201/312 training/testing RGB-D images col-
lected from various indoor rooms. These scenes are labeled with 18
object classes for semantic segmentation and instance segmentation.
Compared with SUN RGB-D dataset, scenes in this dataset are annotated
with more categories and cover larger areas. Point clouds are sampled
from the reconstructed meshes. Because the orientation of the bounding
box is not annotated, the axis-aligned bounding boxes are predicted, as
in VoteNet (Qi et al., 2019).

Evaluation Criteria. Following VoteNet (Qi et al., 2019) and 3D-
BoNet (Yang et al., 2019a), the average precision metric AP D3 of 3D
detection results is adopted as our evaluation criteria. The predicted
bounding box Bp is treated as a valid detection result only its 3D overlap
area (IoU) between the predicted bounding box Bp and the ground truth
bounding box Bgt exceeds a certain ratio. IoU is calculated using the
following evaluation metric:

=IoU
area B B
area B B

( )
( )

p gt

p gt (9)

Predicted bounding boxes with 3D IoU results exceeding 0.25 and
0.5 are used to evaluate the detection performance for all classes in
both two datasets.

Implementation Details. In our experiments, we implement our
model based on VoteNet (Qi et al., 2019), an open-source framework

Fig. 3. The framework of the object relation learning module.
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for 3D object detection built on the PyTorch platform. This framework
is composed of three-part: backbone network, Hough voting module,
and object proposal and classification module. The backbone network is
based on PointNet++ (Qi et al., 2017b), which has several set-ab-
straction (SA) layers and feature propagation (FP) layers with skip

connections. In the first two SA modules, we replace the PointNet (Qi
et al., 2017a) with our proposed GeoConv. Our centralization module is
similar to the Hough voting module, but we replace the vote loss
function with our proposed scalable loss function. The last module is
also replaced by our object relation learning module for discriminate
object bounding box reasoning and refining. The training epoch is set to
200.

The general setting of our backbone network for these two datasets
are listed in Table.1. The input number of points, sampling radius, the
number of nearest neighbors, and the mlp output sizes to each layer are
introduced. Most hyper-parameters in the same layer of two datasets
are similar, only limited parameters are different. Because SUN RGB-D
has more sparse point density than ScanNetV2, the sampling radius in
SUN RGB-D is reduced to 0.1 and 0.2 in the first two SA layers with the
same number of nearest neighbors as 32. Such changes can ensure that
the GeoConv in the first two layers extract enough intra-object geo-
metric information in both two datasets.

4.2. Ablation studies

To demonstrate the effectiveness and importance of each proposed
individual module, some ablation studies were conducted on both SUN-
RGBD and ScanNetV2 datasets. When testing each module, the re-
maining modules kept unchanged. The followings are the detailed
evaluation of these modules.

4.2.1. Contribution of GeoConv in backbone network
As mentioned in the Section 4.1.2, the backbone network is based

on PointNet++ (Qi et al., 2017b), which has several SA modules and
FP modules with skip connections and PointNet (Qi et al., 2017a) for
feature mapping. We replace PointNet in some SA modules with our
proposed GeoConv to extract geometric intra-object features for re-
presentative points. When testing the effectiveness of GeoConv, the
scaling parameter of centralization loss for ScanNetV2 was set to 0.1
and SUN RGB-D was set to 0.2, and the neighboring number in the

Table 1
General setting of the backbone network on ScanNetV2 and SUN RGB-D datasets.

Layer Backbone (Dataset) #Point Sampling radius (m) #neighbors mlp

SA1(GeoConv) ScanNetV2 2048 0.2 64 [4,64,64,128]
SUN RGB-D 2048 0.1 32 [4,64,64,128]

SA2(GeoConv) ScanNetV2 1024 0.4 32 [128,128,128,256]
SUN RGB-D 1024 0.2 32 [128,128,128,256]

SA3(PointNet) ScanNetV2 512 0.8 16 [256,128,128,256]
SUN RGB-D 512 0.8 16 [256,128,128,256]

SA4(PointNet) ScanNetV2 256 1.2 16 [256,128,128,256]
SUN RGB-D 256 1.2 16 [256,128,128,256]

FP1(PointNet) ScanNetV2 512 – 3 [512,256,256]
SUN RGB-D 512 – 3 [512,256,256]

FP2(PointNet) ScanNetV2 1024 – 3 [512,256,256]
SUN RGB-D 1024 – 3 [512,256,256]

Table 2
Contribution of GeoConv in backbone network on ScanNetV2 and SUN RGB-D datasets.

SA1 SA2 SA3 SA4 FP1 FP2 mAP@0.25 (%) mAP@0.5 (%)

ScanNetV2 SUN RGB-D ScanNetV2 SUN RGB-D

PointNet++ (Qi et al., 2019) PT PT PT PT PT PT 58.29 57.22 37.84 33.91
#1GeoConv-PointNet++ GC PT PT PT PT PT 57.59 57.52 36.65 33.70
#2GeoConv-PointNet++ GC GC PT PT PT PT 59.14 58.40 39.13 34.91
#3GeoConv-PointNet++ GC GC GC PT PT PT 58.55 57.35 37.67 33.48
#4GeoConv-PointNet++ GC GC GC GC PT PT 57.67 56.60 36.92 32.86

Note: #GeoConv-PointNet++: represents the number of PointNet in PointNet++ replaced by our proposed GeoConv in SA modules. PT represents PointNet (Qi
et al., 2017a), GC means GeoConv.
The bold values represent the highest performances for both two datasets were achieved when the PointNet in the first two SA modules was replaced by GeoConv
while keeping others unchanged.

Table 3
Effectiveness of different scaling parameters on ScanNetV2 and SUN RGB-D
datasets.

Scaling parameter mAP@0.25 (%) mAP@0.5 (%)

ScanNetV2 SUN RGB-D ScanNetV2 SUN RGB-D

0.05 56.99 56.74 37.99 34.31
0.1 59.14 57.32 39.13 33.74
0.15 57.91 56.94 38.15 34.32
0.2 58.68 58.40 38.56 34.92
0.25 58.09 56.61 37.48 33.27

The bold values represent the best scaling parameters' results for ScanNetV2
and SUN RGB-D, respectively.

Table 4
Effectiveness of Object relation learning module on ScanNetV2 and SUN RGB-D
datasets.

Relation module mAP@0.25 (%) mAP@0.5 (%)

ScanNetV2 SUN RGB-D ScanNetV2 SUN RGB-D

w/2nn 57.12 57.43 36.54 34.08
w/3nn 59.14 58.40 39.13 34.92
w/4nn 56.82 56.98 36.63 34.39
w/5nn 57.94 56.93 38.32 32.83
w/6nn 57.54 56.68 37.95 31.91
w/o 57.78 57.71 37.32 33.45

The bold values show the best results of the relation learning module with 3
nearest neighbors on ScanNetV2 and SUN RGB-D datasets.
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object relation learning module for both two datasets was set to 3. We
found that, as shown in Table 2, the highest performances for both two
datasets were achieved when the PointNet in the first two SA modules
was replaced by GeoConv while keeping others unchanged. Because the
GeoConv is mainly focused on the intra-object geometric features
learning, with an increased sampling ratio, the relation features be-
tween those remaining points are increasing. The geometric attributes
among these points are weakened. Thus, the performance dropped
when replacing more PointNet layers among SA modules with the
GeoConv layer.

4.2.2. Comparison of different scaling parameters
In this part, we tested different scaling parameters to see their ef-

fectiveness. We selected 0.05, 0.1, 0.15, 0.2 and 0.25 in our experi-
ments, as shown in Table 3. The highest results for ScanNetV2 with
59.14% mAP@0.25 and 39.13% mAP@0.5 were achieved using 0.1,
while the best results for SUN RGB-D were accomplished with 58.40%
mAP@0.25 and 34.92% mAP@0.5 using 0.2. Because SUN RGB-D has
more sparse point density than ScanNetV2, the best scaling parameter
for SUN RGB-D was 0.2. The performances for these two datasets with
larger or smaller scaling parameters than the parameters with the best
results were decreased. The reduced scaling parameter leads to a
compact grouping, which causes the contamination of non-object points

Table 5
3D object detection scores per category on the ScanNetV2 (validation) dataset, evaluated with mAP@0.25 and mAP@0.5.

3DSIS Geo (Hou
et al., 2019)

3DSIS 5views(Hou
et al., 2019)

VoteNet(Qi et al.,
2019)

GRNet
(Ours)

3DSIS Geo (Hou
et al., 2019)

3DSIS 5views(Hou
et al., 2019)

VoteNet(Qi et al.,
2019)

GRNet (Ours)

mAP@0.25 (%) mAP@0.5 (%)

cab 19.76 12.75 36.27 39.45 5.06 5.73 8.07 9.76
Bed 69.71 63.14 87.92 88.78 42.19 50.28 76.06 80.34
Chair 66.15 65.98 88.71 89.18 50.11 52.59 67.23 71.01
Sofa 71.81 46.33 89.62 88.34 31.75 55.43 68.82 75.95
Tabl 36.06 26.91 58.77 58.16 15.12 21.96 42.36 44.55
Door 30.64 7.95 47.32 48.46 1.38 10.88 15.34 20.58
Wind 10.88 2.79 38.10 32.70 0.00 0.00 6.43 8.89
Bkshf 27.34 2.30 44.62 46.97 1.44 13.18 28.00 38.21
Pic 0.00 0.00 7.83 4.94 0.00 0.00 1.25 1.22
Cntr 10.00 6.92 56.13 63.48 0.00 0.00 9.52 29.71
Desk 46.93 33.34 71.69 69.81 13.66 23.62 37.52 49.00
Curt 14.06 2.47 47.23 48.46 0.00 2.61 11.55 18.42
Fridg 53.76 10.42 45.37 49.06 2.63 24.54 27.80 34.19
Showr 35.96 12.17 57.13 66.37 3.00 0.82 9.96 13.44
Toil 87.60 74.51 94.94 94.07 56.75 71.79 86.53 90.12
Sink 42.98 22.87 54.70 49.70 8.68 8.94 16.76 20.9
Bath 84.30 58.66 92.11 90.90 28.52 56.40 78.87 82.57
Ofurn 16.20 7.05 37.20 35.60 2.55 6.87 11.49 15.49
mAP 40.23 25.36 58.65 59.14 14.60 22.53 33.54 39.13

The bold values show the best detection performances for each object class from different algorithms on ScanNetV2 and SUN RGB-D, respectively.

Fig. 4. Qualitative results of 3D object detection in ScanNetV2. From left to right rows: labeled point clouds of the scene, 3D object detection by GRNet, and ground-
truth annotations.
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in proposal feature pooling. With a larger scaling parameter, the ag-
gregated intra-object feature cannot consume enough effective neigh-
boring features. Thus, detection results decreased.

4.2.3. Effectiveness of object relation learning module
We also tested the contribution of our proposed object relation

learning module on ScanNetV2 and SUN RGB-D datasets. As shown in
Table 4, without (w/o) the relation learning module, the detection re-
sults dropped 1.4% at mAP@0.25 and 1.7% mAP@0.5 on ScanNetV2
and decreased 0.7% mAP@0.25 and 1.8% mAP@0.5 on SUN RGB-D,
compared to their best results. Relation learning from 3 nearest
neighbor proposals achieved the best results with 59.14% mAP@0.25

and 39.13% mAP@0.5. An increasing number of neighboring proposals
may induce more irrelevant features for bounding box reasoning. Thus,
the detection performance was weakened. With a reduced number of
neighboring proposals, e.g., 2 neighbors, some important relation fea-
tures are missing. This results in a decreased performance.

4.3. Object detection results

4.3.1. ScanNetV2 detection results
Quantitative detection results of ScanNetV2 are listed in Table.5.

GRNet outperforms all previous methods by at least 0.5% mAP@0.25
and 5.5% mAP@0.5 increases. The important improvement mainly
comes from mAP@0.5 results. Compared with VoteNet (Qi et al., 2019),
our method improves the previous state of the art by more than 20% AP
in the category “counter”, 11% AP in “desk”, 10% AP in “bookshelf”,
7% AP in 3 categories such as sink, and 4% AP in the other 8 categories.
As illustrated in the ablation studies, the centralization module cen-
tralized the surface points in a compact way, which contributes to a
more effective proposal feature aggregation. The object relation
learning module extracted the useful nearest neighbors feature for
better bounding box reasoning. These two modules improve the de-
tection results for mAP@0.5. As for the results at mAP@0.25, GeoConv

Table 6
3D object detection scores per category on the SUN RGB-D (test) dataset, evaluated with mAP@0.25 and mAP@0.5.

Model Input Bathtub Bed Bookshelf Chair Desk Dresser Night-stand Sofa Table Toilet mAP

mAP@0.25 (%)
DSS (Song and Xiao, 2016) Geo& RGB 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1
COG (Ren and Sudderth, 2016) Geo& RGB 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51 51.3 70.1 47.6
2D-driven (Lahoud and Ghanem, 2017) Geo& RGB 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37 80.4 45.1
F-PointNet (Qi et al., 2018) Geo& RGB 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54
PointFusion (Xu et al., 2018a) Geo& RGB 37.3 68.6 37.7 55.1 17.2 24.0 32.3 53.8 31.0 83.8 45.4
VoteNet (Qi et al., 2019) Geo only 74.4 83 28.8 75.3 22 29.8 62.2 64 47.3 90.1 57.7
GRNet (Ours) Geo only 76.8 84.3 29.3 76.2 26.0 26.1 59.2 64.8 51.1 90.4 58.4
mAP@0.5 (%)
VoteNet (Baseline) Geo only 41.4 49.5 5.4 52.3 4.9 12.1 33.9 42.9 18.5 60.5 32.1
GRNet (Ours) Geo only 41.3 54.9 5.0 55.9 5.8 14.9 36.1 46.1 24.6 63.9 34.9

The bold values show the best detection performances for each object class from different algorithms on ScanNetV2 and SUN RGB-D, respectively.

Fig. 5. . Qualitative results on SUN RGB-D. From left to right rows: an image of the scene (not used in GRNet), 3D object detection by GRNet, and ground-truth
annotations.

Table 7
Model size and processing time (per frame or scan).

Method Model size SUN RGB-D ScanNetv2

F-PointNet (Qi et al., 2018) 47.0 MB 0.09 s –
3D-SIS (Hou et al., 2019) 19.7 MB – 2.85 s
VoteNet (Qi et al., 2019) 11.2 MB 0.10 s 0.14 s
GRNet (ScanNetV2) 17.8 MB – 0.22 s
GRNet (SUN RGB-D) 13.5 MB 0.10 s –
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improves the performance of the representative points' feature by
considering both intra-object and inter-object features. Fig. 4 shows
some examples of the detection result. Small and shape-similar objects
are easy to be mis-detected. There also exists wrong detection in den-
sity-compact areas, e.g., corners.

4.3.2. SUN RGB-D detection results
Quantitative results in Table 6 illustrates the detection performance

for all classes on SUN RGB-D dataset. GRNet outperforms all previous
methods by at least 0.7% mAP@0.25 increase and 2.8% mAP@0.5 in-
crease in SUN RGB-D with point clouds input only. Compared with
other detection performances (Song and Xiao, 2016; Ren and Sudderth,
2016; Lahoud and Ghanem, 2017; Qi et al., 2018; Qi et al., 2019), our
algorithm can achieve the state-of-art or on-par-with mAP@0.25 de-
tection results on large and geometric-salient objects, such as bed, sofa,
bathtub, table and chair. For geometric-weak objects, such as picture
and dresser, the improvements are limited. As for detection results on
mAP@0.5, our algorithm outperforms the VoteNet (Qi et al., 2019) on 8
categories and on-par-with it on 2 categories. As shown in Fig. 5, the
large object with enough scanned point clouds, such as beds, can be
detected accurately. However, for thin and density-sparse objects (e.g.,
bookshelves, desks, and dressers), misdetection occurs commonly. Be-
sides, for shape similar objects, such as tables and nightstands, they are
easy to be mis-predicted.

4.4. Optimizer, model size, memory usage and timing

We implemented our model with Python 3.5 and PyTorch 1.0 on
one GTX 1080ti GPU. ADAM optimizer (Kingma and Ba, 2014), with an
initial learning rate of 0.001, was adopted. The learning rate was de-
cayed at 80, 120, 160 epochs, respectively, with a 0.1 decay rate. The
batch size was set to 8 for both training and testing our GRNet-
SUNRGB-D and GRNet-ScanNetV2 models. As shown in Table7, the
model for GRNet-SUNRGB-D with 20,000 input points has 13.5 M
parameters and 17.8 M parameters for GRNet-ScanNetV2 with 40,000
input points. GRNet-SUNRGB-D runs 0.12 s per frame or scan for
training, while GRNet-ScanNetV2 runs 0.10 s per frame or scan for
training. Because the GRNet (ScanNetV2) has larger model size than
VoteNet, its computation cost increases. However, as for GRNet (SUN
RGB-D), although it increases around 2 MB model size compared to
VoteNet, their computation costs are the same. The main reason is that
the GRNet (SUN RGB-D) reduces the search radius and sampling
neighbors in the first two SA modules in the backbone network. Such
reduction largely relieves the computation burden.

4.5. Detailed analysis of the proposed method

We have tested our GRNet in two indoor environments, which show
some differences in point density, room layout, and area. SUN RGB-D
has a larger room area, sparser point density, and less labeled objects
compared with ScanNetV2. Thus, the application of GeoConv should
consider such differences. The sampling radius of GeoConv in the first
two SA modules is 0.1 and 0.2 in SUN RGB-D, 0.2 and 0.4 in
ScanNetV2, respectively.

In addition, the scaling parameter is also different. Labeled objects
in ScanNetV2 are smaller and more compact than SUN RGB-D. As
mentioned in VoteNet, voting is only useful for points that are far away
from the object center (Qi et al., 2019). Thus, in order to improve the
centralization results for small objects, 0.1 scaling parameter was ap-
plied as the scaling parameter. However, in SUN RGB-D dataset, labeled
objects are larger than ScanNetV2, the best detection result was
achieved using 0.2 scaling parameter. We also found that the scaling
parameter and relation learning module are more effective in predicting
mAP@0.5 bounding box parameters. A compact centralization attri-
butes to neighbors' inter-object and intra-object features learning,
which results in a more accurate bounding box prediction. The sub-
graph (a) in Fig. 6 shows the centralization effects. The further im-
provement for both mAP@0.25 and mAP@0.5 should consider the RGB
information, especially for geometric-weak objects, such as the picture.

Finally, as shown in Fig. 6, those proposals can cover all the labeled
objects. However, the post-processing by using NMS based on object-
ness score and semantic classification score removed low confident
proposals (which were actually true positive proposals). Thus, the final
detection results missed the true bounding box for objects. From the
subgraph (f) in Fig. 6, we can see that the right nightstand is not de-
tected. Additionally, the position of confident proposals affects the
predicted bounding box position, which can be seen in the subgraph (e)
and (f) in Fig. 6. Thus, how to associate objectness score with the ac-
curacy of the predicted bounding box should be studied in the future to
improve our final detection results.

5. Conclusions

In this paper, we have proposed an end-to-end point cloud geo-
metric relation network (GRNet) focused on 3D object detection in in-
door scenes. We mainly estimated the oriented 3D bounding boxes (i.e.,
center, heading angle, and size) and semantic classes of objects. Our
network can exploit both intra-object and inter-object features in a
bottom-up hierarchical way using our proposed backbone network for
representative points. Then, a centralization module with a scalable loss

Fig. 6. Staged outputs of GRNet. (a) Raw input of point clouds with ground truth bounding boxes, (b) Representative points with ground truth bounding boxes, (c)
Shifted points from the centralization module with ground truth bounding boxes, (d) Positive proposal points with ground truth bounding boxes, (e) Confident
proposal points with objectness score (larger than 0.5) and ground truth bounding boxes, and (f) Predicted bounding boxes (blue color) and ground truth bounding
boxes.
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function was introduced to centralize object points to its center.
Proposal points were sampled from these shifted representative points,
following a proposal feature pooling operation. Finally, an object-re-
lation learning module was applied to predict bounding box para-
meters. Such parameters are the additive sum of prediction results from
relation-based inter-object features and aggregated intra-object fea-
tures.

Our model has achieved state-of-the-art 3D detection results with
59.1% mAP@0.25 and 39.1% mAP@0.5 on ScanNetV2 dataset, 58.5%
mAP@0.25 and 34.1% mAP@0.5 on SUN RGB-D dataset. Quantitative
comparison performance and qualitative results demonstrated the ef-
fectiveness of our proposed framework in 3D object detection.
However, RGB features are not exploited in this paper, which may
contribute to a further improvement for geometric-weak objects.
Besides, how to associate the objectness score with the accuracy of the
predicted bounding box should be studied in the future to improve the
performance of our method.
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