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Abstract— Recent geometric deep learning works define con-
volution operations in local regions and have enjoyed remark-
able success on non-Euclidean data, including graph and point
clouds. However, the high-level geometric correlations between
the input and its neighboring coordinates or features are not fully
exploited, resulting in suboptimal segmentation performance.
In this article, we propose a novel graph convolution architecture,
which we term as Taylor Gaussian mixture model (GMM)
network (TGNet), to efficiently learn expressive and composi-
tional local geometric features from point clouds. The TGNet is
composed of basic geometric units, TGConv, that conduct local
convolution on irregular point sets and are parametrized by
a family of filters. Specifically, these filters are defined as the
products of the local point features and the neighboring geomet-
ric features extracted from local coordinates. These geometric
features are expressed by Gaussian weighted Taylor kernels.
Then, a parametric pooling layer aggregates TGConv features
to generate new feature vectors for each point. TGNet employs
TGConv on multiscale neighborhoods to extract coarse-to-fine
semantic deep features while improving its scale invariance.
Additionally, a conditional random field (CRF) is adopted within
the output layer to further improve the segmentation results.
Using three point cloud data sets, qualitative and quantitative
experimental results demonstrate that the proposed method
achieves 62.2% average accuracy on ScanNet, 57.8% and 68.17%
mean intersection over union (mIoU) on Stanford Large-Scale 3D
Indoor Spaces (S3DIS) and Paris-Lille-3D data sets, respectively.

Index Terms— Deep learning, LiDAR point clouds, semantic
segmentation.

I. INTRODUCTION

3 -D point clouds acquired by LiDAR sensors have been
widely applied in the field of remote sensing, computer

vision, and autonomous driving specific for multiple tasks,
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e.g., 3-D objects classification [1], [2], detection [3], [4], and
semantic segmentation [5], [6]. As one of these critical tasks,
semantic segmentation is urgently desired for a comprehensive
scene understanding. Similar to per-pixel image labeling, 3-D
semantic segmentation seeks to attribute a semantic classifica-
tion label to each 3-D-point. Given the features are hierarchi-
cally learned in an end-to-end trainable framework [7], deep
convolutional neural network (CNN) models has achieved
remarkable success in 2-D semantic segmentation tasks. How-
ever, compared with 2-D regular imagery data, 3-D point
clouds are uneven, unstructured, noisy, and irregular data,
which cannot exploit the classical 2-D CNNs directly.

Recently, several methods have been proposed to define con-
volution filters in non-Euclidean domain, which can directly
process irregular data such as point clouds. These approaches,
prompting the emerging field of geometric deep learning [8],
can be roughly classified into two types: spectral-based and
spatial-based methods. The spectral-based methods define
the convolution operations by exploiting the spectral eigen-
decomposition of the graph Laplacian [9]. The signal fre-
quencies of the graph constructed from point clouds are
commonly represented by the eigenvalues of the graph Lapla-
cian. They are filtered in the spectral domain, similar to the
Fourier domain filtering of conventional signals [10]. But
these spectral-based geometric CNNs have the following two
problems: 1) the learned spectral filter’s coefficients are not
suitable for another domain with a different basis [8] and 2) the
spectral filtering is calculated based on the whole input data,
which requires high computation capability.

Thus, Masci et al. [11] proposed the first spatial-based CNN
on non-Euclidean data, applying filters to local neighbors rep-
resented in geodesic polar coordinates. Qi et al. [3] constructed
spatial-based CNNs by defining convolution kernels in local
neighbors with respect to local Euclidean positional relation-
ships between points. Monti et al. [12] defined the convolution
kernels based on the degrees of the nodes. Then these learned
features are aggregated (e.g., sum or max) to generate new
point or vertex feature vectors. Compared with spectral-based
CNNs, spatial-based CNNs are not basis-dependent and, thus,
can be transformed into different domains [8]. In addition,
spatial filtering that is conducted in the local region has a
lower computation cost. However, the aforementioned spatial-
based CNNs suffer the following two limitations.

1) The high-level geometric correlations between the input
and its neighboring coordinates or features are not
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fully exploited in defining convolution kernels. These
correlations can enhance the kernel’s shape description
capability.

2) The traditional aggregation functions, e.g., max or mean,
discard or neglect the structural connection among local
neighbors because different neighbors contribute differ-
ently.

To address the above two challenges, we propose an alter-
native geometric graph convolution, termed TGConv, which is
designed to explore high-level geometric correlations among
local neighbors extracted from point clouds for semantic seg-
mentation. These filters are defined as products of local neigh-
bor point features with geometric features extracted from local
coordinates expressed by a family of Gaussian weighted Taylor
kernel functions. Although local coordinates can express the
low-level geometric characteristic for local neighbors, we use
our defined functions to map the position information to
high-level geometric attributes. Then a parametrized pooling
operation based on distance metric is proposed for effective
feature aggregation. Such aggregation is composed of the max
and a learnable distanced-based weight function, which can
harness the most representative features and adaptively exploit
related neighbor features.

Based on the proposed TGConv, we construct an end-to-
end geometric graph convolution architecture on the graph
representation of a point cloud, called Taylor Gaussian mix-
ture model (GMM) network (TGNet). To improve the scale
invariance of our network, TGNet employs a multiscale hier-
archical architecture by operating TGConv on neighborhoods
at multiple scales, which allows it to extract coarse-to-fine
semantic deep features. Besides, a conditional random field
(CRF) layer is combined within the output layer to further
improve the segmentation result. Compared with traditional
approaches, the proposed algorithm possesses three advantages
which are as follows.

1) We propose novel convolutional filters to capture local
correlations described by neighborhood features and
local geometric feature. Such a geometric feature is
mapped from local coordinates using a family of
Gaussian weighted Taylor functions and can enhance the
filter’s shape description capability.

2) We extract point features in a hierarchically multiscale
way, which can ensure the information from the coarse-
to-fine scale can be combined together to increase the
segmentation performance.

3) We construct an end-to-end trainable network while
adding a CRF layer after the output layer. Qualitative
and quantitative experimental results on three public
benchmarks demonstrate the effectiveness of the pro-
posed method.

II. RELATED WORKS

Point cloud segmentation algorithms based on deep learning
can be grouped into two main categories according to their
data structures: Euclidean-structured data and non-Euclidean
data [13]. The Euclidean-structured data refer to the volumetric
data structure which has gridded regular data structure, while

the non-Euclidean data refer to the irregular and unstructured
data formats such as point cloud and graphs.

A. Euclidean-Structured Data Models

The Euclidean-structured data are suitable for convolutional
operation to extract distinctive spatial features such as edges
and key-points. Volumetric-based models [14]–[17] are the
most representative frameworks in existing 3-D Euclidean-
structured deep models applied on large-scale point clouds.

The inputs of these methods are 3-D volumetric grids
voxelized from the raw point clouds. In early voxel-based
networks, convolution is operated in regular and uniform voxel
grids [15]. This leads to an excessive requirement of memory
footprints and high computation cost. Thus, the input point
clouds are reduced to low resolutions to decrease memory and
computation costs. For example, 3-D ShapeNets [15] inputted
volumetric grids with size 30*30*30 into CNN architecture,
the geometric 3-D shape was represented by binary variables
with a probabilistic distribution of a 3-D voxel grid. Instead
of limiting the size of the input volume, Kd-networks [16]
adaptively divided the input data into hierarchical grids, which
further reduce the computation cost and memory. OctNet [17]
hierarchically splitted the 3-D space into a set of unbalanced
octrees based on the density of the data. Then a modified
CNN was applied to such a hybrid grid-octree data structure.
However, the geometric features, especially the intrinsic char-
acteristic of 3-D shapes and surfaces, are not exploited.

B. Non-Euclidean Data Models

As for the non-Euclidean data models, point cloud-based
models and graph-based models have achieved compelling
results in several 3-D tasks, such as segmentation [1], [3] and
classification [16], [18].

1) Point Cloud-Based Models: Volumetric input of 3-D
point clouds is still computational and complex, a more
simpler network PointNet was proposed by Qi et al. [1] which
takes point cloud directly as input. Symmetry function was
used to handle unordered points and the spatial transform
network was exploited to improve the geometric invariance
of the proposed network. Spatial features of each input point
were learned through the network. Then, the learned features
were assembled across the whole region of point clouds.
The outstanding performance of PointNet has been achieved
in 3-D objects classification and segmentation tasks. However,
local structure feature is not considered, which constrains
its ability to learn fine-grained features and generalize to
complex scenes. To solve the above problems, PointNet++
was proposed later by Qi et al. [3] to compensate the local
feature extraction problem. This network was applied in raw
input point clouds with various resolutions and assembled
local features using a hierarchical architecture. PointCNN [19]
proposed the χ-Conv to assemble features in each local range
and developed a hierarchical network architecture. However,
these models have not exploited the high-level geometric
correlations of local neighbors, which limit their performance
in semantic segmentation.
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Fig. 1. TGConv on graph representation of point clouds: for each vertex x , given its KNNs coordinates yi and features hi , we conduct local operation
in such non-Euclidean domain, by parametrizing a family of convolutional filters. These filters are defined as products of local neighbor point features with
geometric features extracted from pseudocoordinates expressed by a family of Gaussian weighted Taylor kernel functions. Then they are aggregated via a
parametrized pooling operation to new feature h′ of vertex x . (a) Input. (b) Vertex x and its local graph. (c) Pseudocoordinate. (d) Geometric coordinate
mapping. (e) Weight function. (f) Feature mapping. (g) Output-Aggregation.

2) Graph-Based Models: Related works about convolution
on graphs can be classified into spectral and non-spectral
approaches. The spectral-based graph CNNs are analogous
to the operation between the Fourier transforms and eigen-
decomposition of the graph Laplacian [20]. Yi et al. [9]
defined the signal of point clouds in the Euclidean domain by
the metrics on the graph nodes, and related the convolution
operation to the scaling signals based on eigenvalues of graph
Laplacian. However, such operation is linear and dependent
on the eigenvectors of the graph Laplacian, meaning that
it is domain-dependent. Besides, the spectral filtering was
defined based on the whole input data, which result in high
computation cost. Thus, Wang et al. [21] carried out the graph
convolution on the local point set and applied a recursive
clustering and pooling operation to aggregate information from
spectral-close nodes.

Spatial-based graph CNNs are commonly operated on
groups of spatially close neighbors. In [22], features from
local neighborhoods were filtered and aggregated. Besides,
the edge information based on the graph signal in the spatial
domain was also exploited in constructing the convolution
filters. Wang et al. [18] also constructed a local neighborhood
graph to learn the local geometric features. The EdgeConv
was applied on the edges connecting neighboring pairs of each
point. Besides, the given fixed graph was dynamically updated
to extract high level local spatial information. However, not all
neighbors contribute equally. Wang et al. [23] introduced an
attention scheme in graph-based point cloud segmentation by
assigning specific attentional weights to different neighboring
points. This operation can dynamically adapt the kernel to
different objects with various structures.

In order to improve the expressiveness of convolutional
kernels in a spatial domain, Monti et al. [12] applied a

parametric construction of the convolution on local graph
patches extracted from spatial-domain neighborhoods. They
treated the patch operators as a function of a local graph and
learned a set of functions based on a mixture of Gaussian
kernels. In [24], a family of convolutional filters was para-
metrized by a Taylor polynomial to improve their geometric
expressions. Their filter was defined as a product of a step
function which extracts local geodesic information and a
Taylor polynomial which increases the filter’s expressiveness.
Our filter is constructed based on the above two works, but
we combine the Taylor functions and GMM weight functions
to map the low-level coordinate information into a high-level
geometric feature. Such an operation improves the perfor-
mance of point cloud semantic segmentation.

C. CRF in Deep Learning

In order to refine the coarse CNN segmentation results,
the CRF is commonly applied in many works [26]–[28]. The
CRFs have the advantage of combining low-level information
such as the interactions between points to output multiclass
inference for multiclass per-point labeling tasks, which com-
pensate the fine local details that CNNs fail to capture. For 3-D
point cloud, following a CRF-recurrent neural network (RNN)
[29], SegCloud [27] extends the implementation of CRF into
3-D point clouds after a fully CNN. However, as CRF is
applied as an individual part following the CNNs, it is difficult
to explore the power of the combination of CNNs and CRF.

III. METHODOLOGY

The goal of our network is to make a dense predicted
semantic label for each input point, such as ground, tree,
and building. This task can be concluded as: given a set
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TABLE I

CHOICE OF PSEUDOCOORDINATES AND WEIGHT FUNCTIONS OF SEVERAL GEOMETRIC CNN MODELS

of 3-D points P = {p1, p2, pi , . . . , pn} ∈ R3 and a candidate
label set L = {l1, l2, . . . , lk}, assign each input point pi with
one of the k semantic labels. Thus, in this section, we first
give the preliminary knowledge of geometric convolution,
which constitutes the important basis of our method. Then,
we introduce our TGConv in detail. Finally, an end-to-end
point cloud segmentation framework TGNet with our proposed
TGConv is presented.

A. Preliminary Knowledge

The convolution in a Euclidean domain can be defined as
extracting a template patch at each point of the domain and
learning the correlation of the patch with the function at that
point. Thus, for 2-D imagery convolution in regular Euclidean
domain, per-pixel patch extraction at each position is always
the same. However, due to the unstructured and unordered
data structure of point clouds and the different input shapes,
it is difficult to define an effective convolution operation in
non-Euclidean domains. There are two requirements in the
construction of non-Euclidean CNNs which are as follows.

1) The local patch extraction should be shift-invariant,
however, it is actually position-dependent.

2) The patch has to be represented in a local intrinsic
coordinate system because of the difficulty in global
parametrization in non-Euclidean domains.

To achieve these, Monti et al. [12] and Kipf and Welling
[25] constructed patch operators D(·) by defining a family of
learnable weight functions w1(u), . . . , wJ (u) of local patch
(e.g., local graph) represented by pseudocoordinates u. Given
vertex x and its neighbor [denoted as x ′ ∈ N (x)] features
f , the patch operator can be formulated as the weighted
summation of f

D(x) f =
∑

x ′∈N (x)

f (x ′)w j (u(x, x ′)), j = 1, . . . , J. (1)

Based on the above fact, a spatial geometric convolution on
non-Euclidean domains is defined as

( f � g)(x) =
J∑

j=1

gθ (D j (x) f ) (2)

where � represents the convolution operation, gθ denotes the
learnable coefficients applied on the patch extracted at each
point.

This kind of geometric convolution kernels has been applied
in several non-Euclidean CNNs such as GCN [25] and mixture
model network (MoNet) [12] by defining different weight

functions. However, these methods just use the local intrinsic
coordinate information, the high-level geometric feature is
not fully exploited, which is crucial for robust semantic
segmentation. Besides, the traditional aggregation method such
as max, sum, or mean pooling operation is not adaptable for
various inputs. To solve the above two challenges, we define
our TGConv as a product of local neighbor point features with
geometric features extracted from local coordinates expressed
by a family of Taylor kernel functions. In addition, we pro-
posed a learnable pooling function to aggregate features to
improve the performance of discriminative feature learning.

B. TGConv

Consider a graph G = (V, E,U) constructed from a given
3-D point cloud P = {p1, . . . , pn} ⊆ R3 according to their
spatial neighbors, where V = {1, 2, . . . , n} and E ⊆ V × V
represent the set of vertices and edges, respectively, and
U contains 3-D pseudocoordinates u(x, y) ⊆ R3 for each
directed edge (x, y) ∈ E . Denote each point y ∈ N (x)
as the neighbor set of vertex x , u(x, y) is a 3-D vector of
pseudocoordinates for each y. Let h = {h1, h2, . . . , hN } be a
set of input vertex features, each feature hi ∈ R

F is associated
with a corresponding graph vertex i ⊆ V , where F is the
feature dimension of each vertex.

To leverage spatially local correlation, we mimic (1) and (2)
to conduct local operations on the local graph, by parametriz-
ing a family of convolutional filters. These filters are defined
as products of local neighbor point features with geometric
features extracted from local coordinates expressed by a family
of Gaussian weighted Taylor kernel functions [see Fig. 1].
Then they are aggregated via a parametric pooling operation
to new point set features h′ = {h′

1, h′
2, . . . , h′

N } with h′
i ∈ R

K .
In (1), the patch operator is defined directly on the pseudo-

coordinates u(x, y). Although geometric information can be
extracted, however, high-level geometric spatial features are
not exploited. Thus, we map the pseudocoordinates to a high-
level geometric feature using a function T (u):R3 → R, which
can improve the geometric expression of the patch operator.
Besides, the summation is not suitable for aggregating the
effective and robust features. To solve this, we define a learn-
able aggregation function to adaptively pool local features.
As a result, we define our convolution operation as

( f � g)(x) = Agg

(
gθ

(
S∑

s=1

Ds(x)hy

))
, y ∈ N (x) (3)
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Fig. 2. Framework of our TGNet. It employs a multiscale hierarchical architecture by operating TGConv on neighbors at multiple scales, which allows it
to extract coarse-to-fine semantic deep features. Besides, a shared MLP is applied to the raw input to extract per-point features. These learned features are
combined with the interpolated features learned from the finest layer to predict per-point semantic label likelihood. Finally, a CRF layer is combined within
the output layer to further improve the segmentation result.

where Agg(·) represents the aggregation function, gθ (·) is the
learnable feature mapping function: RF → RK . The weight
function Ds(·) is defined as

Ds(x) = ws(T (u)), s = 1, . . . ,S (4)

with u representing the pseudocoordinates, w(T ) =
(w1(T ), . . . , wS(T )) being weight functions parametrized by
learnable parameters, and S being the number of kernels.

The critical construction of our proposed kernels is the
choices of the pseudocoordinates u, geometric pseudocoordi-
nates mapping function T (u), weight functions w(T ), feature
mapping function gθ (·), and aggregation function Agg(·).

1) Pseudocoordinates: Pseudocoordinates, such as polar,
spherical, or Cartesian coordinates, encode local positional
relationships between points [10] and can be used to describe
local geometric features. Table I lists the selection of pseudo-
coordinates u and weight function w(u) of some geometric
deep learning methods [3], [12], [18], [25]. For example,
MoNet [12] and GCN [25] define their kernels on the pseudo-
coordinates based on the degree of graph vertices. PointNet++
[3] and DGCNN [18] select the local Euclidean coordinates
as their pseudocoordinates. In order to reduce the computation
cost and exploit the original geometric feature from 3-D
coordinates, local Euclidean coordinates are selected as our
pseudocoordinates. For each vertex x and vertex y ∈ N (x) in
the neighborhood of x , we consider local pseudocoordinates
u(x, y) as

u(x, y) = y − x = (u1,u2,u3)
T (5)

where each vertex x is represented by 3-D Cartesian coordi-
nates, and (u1,u2,u3)

T represent the corresponding pseudo-
coordinate along each axis of each neighborhood point y to
point x .

2) Geometric Pseudocoordinates Mapping Function: The
pseudocoordinates leverage only the low-level spatial informa-
tion, and the high-level structural and geometric information
among pseudocoordinates is not exploited. Based on that,
we design our filters considering the high-level structural
information of pseudocoordinates to increase the CNN ker-
nels’ shape description ability. To ensure that the filters are
powerful enough to extract intricate local geometric features,
a mapping function T (u) is used to leverage the intrinsic
information among (u1,u2,u3)

T into high-level representation
g(u1,u2,u3).

There are two important considerations for choosing such a
mapping function T (u): 1) the optimization is convenient to
conduct and 2) it can interpolate arbitrary values in local graph.
Inspired by SpiderCNN [24], the order-3 Taylor expansions
of 3-D coordinates are used to map the local pseudocoordi-
nates u into high-level geometric attribute

T (u) = gTaylor
σ T (u1,u2,u3) = σ T

0

+
3∑

i=1

σ T
i ui

+
3∑

i=1

3∑
j=1 i≤ j

σ T
i j ui u j +

3∑
i=1

3∑
i=1 i≤ j

3∑
k=1≤k

σ T
i jk ui u j uk (6)

where σ T
0 , σ T

i , σ T
i j , and σ T

i jk are all 1 × 1 learnable parameters.
By varying these parameters, g(u1,u2,u3) can approximate
arbitrary values.

3) Weight Function: In [12], a GMM is used as the weight
functions w(u) with learnable parameters as

ws(u) = exp

(
− 1

2
(u − μs)

��−1
s (u − μs)

)
(7)
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where �s and μs are learnable d × d and d × 1 covariance
matrix and mean vector of a Gaussian kernel, respectively.
Their experimental results have demonstrated that they can
learn the geodesic features of non-Euclidean data with dis-
tinguished performance. Thus, we also adopt the GMM as
our weight functions. Because we have mapped our pseudo-
coordinates into a more powerful geometric feature with one
dimension, our weight function is defined as

ws(u) = exp

(
− 1

2
(g − gs)

2
)
, s = 1, . . . ,S (8)

where gs are learnable 1 × 1 mean vector of a Gaussian kernel.
The kernel number S is experimentally set to 10 in our method.

Based on the above function, we can get our intermediate
feature h′

m within the input feature h

h′
m =

S∑
s=1

exp

(
−1

2

(
gTaylor
σT (u)− gs

)2
)

h. (9)

Compared with traditional CNNs, these convolution kernels
can better exploit the learnable 3-D geometric features and
are easy to optimize.

4) Feature Mapping Function: The feature mapping func-
tion gθ (·) is applied on each vertex to map the intermediate
feature h′

m from RF to RK . In our article, gθ (·) is a multilayer
perception (MLP). Because, theoretically, an MLP with one
hidden layer can approximate an arbitrary continuous func-
tion [30]. Besides, MLP retains the crucial characteristic of
standard convolution in grid domain: weight sharing. Thus,
the input intermediate feature h′

m is mapped as

h′
θ

= M L P
(
h′

m

)
. (10)

5) Aggregation Function: Aggregation operation aims to
output the aggregated features on the vertices of a coarsened
graph. Traditionally, the most commonly used pooling function
is max function [3], which corresponds to the max pooling.
The main reason is that the most discriminate feature can better
represent the local pattern. However, max pooling operation
discards some other fine-grained features which results a
coarse prediction for semantic segmentation. To better leverage
the most discriminate features and local contextual features,
in this article, we use the max and a learnable weighted
average function for graph pooling and concatenate these
two pooling results as the output aggregated features. Thus,
the output feature set for vertex x is calculated as follows:

h′
x = max

{
h′
θy

}+

k∑
j=1

θ jw j h
′
θy

k∑
j=1

w j

, y ∈ N(x) (11)

where

w j = 1

d(py, px)p
(12)

and py , and px represent the coordinates of neighbor point
y and the vertex x . k represents the number of neighbors. θ j

is a learnable 1 × 1 vector, which is used to learn most rele-
vant neighbor features and reweight the nonrelevant neighbor
features with low values even if they are close to the vertex.
The distance metric p is set to 2 in our experiment. This
aggregation method improves the discriminative capability of
the network by considering nearby neighbors’ features to
influence prediction.

C. Taylor GMM Convolutional Network

Our TGNet builds a graph pyramid of point clouds by hier-
archically grouping the points and progressively abstracting
larger and larger local regions along the hierarchy, as shown
in Fig. 2. At each scale of the graph pyramid, TGConv
is applied for local feature learning. After that, the learned
features are interpolated back to the finest scale layer by layer.
Similar to PointNet++ [3], features at the same scale are
skip-connected. Besides, due to the limitation of computation,
TGConv can only be applied to the sampled input features
which cannot provide fine-grained per-point information for
semantic segmentation. Thus, a shared MLP is applied to the
raw input to extract per-point features. These learned features
are combined with the interpolated features learned from the
finest layer to predict the per-point semantic label likelihood.
Finally, considering the loss of feature fidelity caused by
the multiple graph pooling and feature interpolation layers,
an additional CRF layer is applied at the finest scale for feature
refinement.

1) Graph Sampling and Grouping Module: In order to
increase the receptive field of TGConv, the raw input point
clouds are hierarchically subsampled into different scales.
We use the farthest point sampling (FPS) algorithm [3] to
subsample the point set with a family of ratios. Given the
input point set P , FPS iteratively selects a subset of points
which is the most distant point from this set compared with the
remaining points. This method is data-dependent and adaptive
to various point clouds with uneven density. Thus, within the
input point set P , the subsampled point clouds are denoted
as P1, . . . , PL , where L represents the number of scales. For
each Pl(l = 0, . . . , L), a corresponding graph Gl = (Vl , El)
can be constructed as described above.

Because our TGConv is operated in the local region for
each vertex at multiple scales. Thus, how to find spatially
important neighbors is of great significance. There are two
ways to search the nearest neighbors: Spherical neighborhood
[31] and K-nearest neighbor (KNN) [32]. The first one selects
k neighbors randomly within radius γ , while KNN chooses the
point with k smallest distance neighbors among all the input
points. Thus, spherical neighborhood is adaptive to density
variation. Because the point clouds are commonly distributed
unevenly, the spherical neighborhood is selected to enhance
the framework’s invariance to density change.

We determine the radius of the local spherical neighbor
experimentally. Our method processes both indoor and outdoor
scenes. However, points in indoor scenes scanned by RGB-
D camera have uniform point distribution, while points in
outdoor scenes scanned by a mobile laser scanner (MLS) have
irregular and sparse point density. Fixed radius is simple and
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Fig. 3. TGNet model zoo for three different data sets. (a) ScanNet framework. (b) S3DIS framework. (c) Paris-Lille-3D framework. The input to the ScanNet
and S3DIS data sets is 4096 points, while for the Paris-Lille-3D, the input point number is 2048 points. The main difference between these three frameworks
is the sampling and grouping module with different subsampled ratio and nearest neighbors. Owing to the computation limitation, the last two frameworks
use the max pooling aggregation method instead of our proposed max and parametric weighted average pooling operator.

cost-effective, but not adaptive-efficient. An adaptive radius is
effective but not cost-efficient. Based on the above character-
istics and computation cost, we set our each sampling radius
to a fixed value experimentally.

2) Feature Propagation Module: Although the hierarchical
sampling can improve the receptive field of TGConv, the fine-
grained information is lost. Besides, semantic labeling needs
the feature for each point. Thus, to obtain a distinctive result,
the interpolation of learned point features between the coarsest
to raw scale must be conducted gradually. Let hl be the learned
feature set at the lth scale of the graph pyramid, Pl and Pl−1
are the spatial coordinates set of the lth and l − 1th scales,
respectively. To obtain features at the l −1th scale, we use the
inverse distance weighted average based on KNNs (denoted
as pi , i = 1, . . . , k) for each point p of Pl−1 in Pl (see (13),
k = 3, q = 2) to calculate the weighted sum of their features

hl−1 =
∑k

i=1 wi hl∑k
i=1 wi

, where wi (x) = 1

d(p, pi)q
. (13)

These interpolated features on Pl−1 are then concatenated with
skip linked point features from the corresponding TGConv
layer. Then a shared MLP is applied to these concatenated
features using 1 × 1 CNNs to update each point’s features.

3) CRF Layer: CRF [29] is commonly applied to post-
process the CNN’s prediction results in semantic segmentation
challenges. Because convolutional filters with large recep-
tive fields produce coarse semantic results for each point.
CRF inference formulates the label assignment task as the
probabilistic inference problem, which encourages spatially
close and appearance-similar points to share consistent labels.
Thus, CRF can help to refine our weak and coarse point-level
labeling results. However, CRF is commonly applied in the

post-process step, which cannot fully exploit the advantage of
the CRF, because it is not integrated with neural networks.
To harness it in deep learning frameworks, in [33], an approx-
imate inference method is proposed. It assumes independence
between semantic label distributions Q(X) = ∏i Qi (xi), and
derives the update equation

Q+
i (xi = l) = 1

Zi
exp

⎧⎨
⎩− ψu(xi )−

∑
l′∈L

μ(l, l ′)
K∑

m=1

w(m)

×
∑
j �=i

k(m)( fi , f j )Q j (l
′)

⎫⎬
⎭ . (14)

Based on that, Zheng et al. [29] formulated CRF inference
and learning as a RNN, termed CRFasRNN. We integrate this
CRF layer following our TGNet framework for joint training
and inference. Thus, the coarse semantic labeling results can
be further improved in a learnable scheme.

IV. RESULTS AND DISCUSSION

To verify the effectiveness of our proposed algorithm, qual-
itative and quantitative evaluations were conducted on indoor
and outdoor point cloud data sets, including ScanNet data set
[34], Stanford Large-Scale 3D Indoor Spaces (S3DIS) data
set [35] and Paris-Lille-3D data set [36]. Before we conduct
experiments on the above three data sets, some ablation studies
of TGNet is first analyzed to demonstrate the effectiveness of
our method.

A. Data Sets

1) ScanNet [34]: The ScanNet data set contains 1513 scans
by using RGB-D video streaming in indoor environments,
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TABLE II

ABLATION STUDIES ON SCANNET TEST SET

such as offices, apartments, conference rooms, etc. These scans
are split into 1201/312 scenes for training/testing in semantic
voxel labeling. This data set was manually interpreted and
labeled into 20 classes, such as the floor, desk, curtains, and
bathtubs.

2) S3DIS Data Set [35]: The S3DIS data set was generated
from three different buildings which contain five large-scale
indoor areas, covering a total of 6020 m2. These scenes
have different architectural styles and appearances, including
offices, conference rooms, open spaces, etc. The whole data set
was manually labeled with 12 semantic elements according to
their attributes, e.g., structural elements, common indoor items,
and furniture. Each point is represented by a nine-dimension
vector of XYZ, RGB, and normalized location.

3) Paris-Lille-3D [36]: Paris-Lille-3D data set contains
140 million points and covers 55 000-m2 area in outdoor
environments. This data set was acquired by a mobile LiDAR
system in two cities: Paris and Lille. Thus, the points in this
data set are sparse and relatively low measurement resolution
compared with the above two indoor data sets. The whole data
set was fully annotated into 50 classes unequally distributed
in three scenes: Lille1, Lille2, and Paris. For simplicity,
these 50 classes were combined into ten coarse classes for
challenging.

B. Evaluation Metrics

On ScanNet data set, we adopted accuracy and unweighted
average accuracy [3] as our evaluation metric, which is dif-
ferent from the overall accuracy (OA) used in PointWeb [42].
OA means the proportion of correctly classified points among
all the input points [43], while unweighted average accuracy
represents the unweighted average of each accuracy per class.
Because there exit biases between different semantic classes in
real scene. Points with large proportion have high probability
to be learned and predicted correctly. Objects with low propor-
tion are generally hard to be labeled accurately. To demonstrate
the effectivity of our TGNet that can learn and distinguish

small or uncommon objects, we selected unweighted average
accuracy as our evaluation metric.

On S3DIS and Paris-Lille-3D data sets, three metrics,
including per-class intersection over union (IoU) [18], mean
IoU (mIoU) of each class [18], and OA were employed
to quantitatively evaluate the performance of our method.
IoU evaluates per-class segmentation result, while mIoU can
reflect the average segmentation result considering all semantic
classes.

C. Ablation Studies and Analysis

In order to verify the effectiveness of our proposed aggrega-
tion method, CRFasRNN, and determine the number of nearest
neighbors, we conduct several ablation studies on ScanNet test
data set [34] and show their results in Table II.

1) Ablation Test of Aggregation Methods: Our base model is
PointNet++ [3], which achieves 57.82% unweighted average
accuracy. To demonstrate the effectiveness of our proposed
aggregation method in TGNet, we test two different aggrega-
tion methods: max pooling and max and parametric weighted
average pooling. Specifically, we only replace the max and
parametric weighted average pooling in TGConv with the max
operator while keeping the rest unchanged in our TGNet.
We can see that the average accuracy of our TGNet is
0.78% higher than the max pooling aggregation method, which
shows that our max and parametric weighted average pooling
has more advantages in discriminative feature learning than
the max operator. Because max operator only considers the
most representative features, however, the remaining features
are actually contributed differently to feature learning. Our
proposed aggregation method not only consider the most
representative features but also learn the remaining features
based on their spatial location and adapt learned features via
parameter optimization. Compared with the base model, our
TGNet improves 4.38% average accuracy in semantic voxel
labeling task.

2) CRFasRNN: CRF is commonly used to improve the seg-
mentation results by adding smoothness constraints between
points which have similar features. In GACNet [23], graph
attention convolution (GAC) is applied to process the finest
scale points in the last layer. However, due to the computation
limitation, we cannot apply TGConv to the same layer. Thus,
in the last layer, CRF in our framework plays a similar role
as GAC to consider weights in more relevant parts.

To experimentally verify its effectiveness in our model,
we add CRFasRNN layer in the last layer of our TGNet
using different iterations. Specifically, we use the Gaussian
kernels from [29] for the pairwise potentials of CRF. The
testing results on the ScanNet test data set are also provided
in Table II for comparing convenience. We can see that, within
the integration of CRFasRNN layer, the average accuracy
of semantic segmentation result is improved about 1.76%
compared with TGNet without CRFasRNN layer. With two
iterations, the CRF-RNN has basically converged, and more
iterations do not result in considerably increased accuracy.
Thus, in our TGNet, the iteration number is set to 2.

3) Effect of the Number of Nearest Neighbors: We also
study the number of nearest neighbors k chosen in TGNet,
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TABLE III

SEMANTIC VOXEL LABEL PREDICTION ACCURACY (%) ON SCANNET TEST SCENES

where the results are provided in Table II. The number of
nearest-neighbors k is analogous to the size of the receptive
field in the common convolution. 32 is the optimal choice,
achieving the 62.2% unweighted average accuracy, among
8, 16, 24, and 32-nearest neighbors. The higher number of
nearest neighbors is not tested due to the limitation of our
computation capability.

D. Segmentation Results

1) Semantic Voxel Labeling on ScanNet: There are
1201/312 scenes in ScanNet for training/testing our TGNet.
The framework and implementation details of this network
are depicted in Fig. 3. The input to the network is 4096 points
with XY Z information. The sampling point in each layer is:
1024, 512, 64, 16, and the number of nearest neighbors is
experimentally set to 32. Due to the limitation of computation
capability, the TGConv is only applied in these subsampled
points. We use max and parametric weighted pooling in
our TGConv filters. As for the MLP layers, we use 1 × 1
convolution kernels to process the extracted features. The
training epoch is set to 200.

Table III gives quantitative results of our semantic seg-
mentation on a voxel-basis for 20 classes. Our method
achieves the highest unweighted accuracy of 62.2%. Most
objects can be correctly labeled, except picture, cabinet, door,
window, counter, and desk objects. These six objects only
occupy a limited ratio of the whole scene, or share a similar
shape with other objects, thus their poor segmentation results
reduced the unweighted average accuracy. Compared with
[1], [34], [37]–[41], our approach learns geometry features
hierarchically. This is crucial for understanding scenes at
different scales and labeling objects with different sizes.
Although PointNet++ [3] learns hierarchical and geometry

features at different scales, the geometric coordinates is not
applied in defining their convolutions. Therefore, its perfor-
mance on small or uncommon objects is suboptimal. We can
note that the improvement of our TGNet mainly comes from
uncommon or shape-similar objects, e.g., sofa, curtain, and
window. Besides, our framework is based on PointNet++ [3],
we have tested their published code in our own computer on
this data set and achieved 57.8% unweighted accuracy, shown
in Table II. This can further demonstrate the effectiveness of
our method.

2) Semantic Segmentation on S3DIS: Although there are
six labeled indoor areas in S3DIS data set, for a principled
evaluation, we follow [1], [18], [23], [27], [44], [45] to choose
Area 5 as our testing set and train our TGNet on the rest.
Notably, Area 5 is not in the same building as other areas,
and there exist some differences between the objects in Area
5 and other areas. This across-building experimental setup is
better for measuring the model’s generalizability, while also
brings challenges to the segmentation task.

The input to the network is 4096 points with nine-dimension
features in training and testing our model. The sampling point
in each layer is 1024, 256, 128, 64, and the number of nearest
neighbors is experimentally set to 16. The TGConv is only
applied to the above layers. Because the S3DIS has larger
data than ScanNet and we have limited computation capability,
we replace the aggregation function as max pooling operation.
The other experimental setting is the same as the ScanNet
framework. The training epoch is set to 100.

The quantitative evaluations of the experimental results are
provided in Table IV. We can see that our TGNet achieves
the best OA than other competitive methods [1], [18], [23],
[27], [44], [45]. As the convolution weights of TGConv
are assigned according to not only the spatial positions
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TABLE IV

OA (%) AND MIOU (%) ON S3DIS DATA SET (TESTING ON AREA 5 AND TRAINING ON THE REST)

TABLE V

OA (%) AND MIOU (%) ON PARIS-LILLE-3D DATA SET

Fig. 4. Semantic segmentation results of S3DIS in six representative scenes
with different room shapes and furniture. (a) Conference room. (b) Lobby.
(c) Hallway 1. (d) Hallway 2. (e) Hallway 3. (f) WC.

but also the geometric attributes of the neighboring points,
the proposed TGNet is able to capture the discriminative
feature of point clouds even though the spatial geometry is
lost or weak. However, our mIoU is lower than the result of
GAT [23]. We guess the main reason is that they applied
GAC in the first and last layers which have 4096 points
and thus acquired more accurate per-point features for
segmentation.

In Fig. 4, semantic segmentation results of S3DIS within 6
representative scenes are presented. Compared to groundtruth,
most areas can be accurately predicted. But in the connected
area of several different objects, the predicted boundary is
unclear and blurred. This is mainly due to the limited receptive
field of TGConv constrains its geometric feature learning
ability to differentiate connected objects.

3) Semantic Segmentation on Paris-Lille-3D: This data set
is composed of three files, including Lille1, Lille2, and Paris,
and labeled with ten classes. The first unclassified class will
be ignored during training and test. We split the Lille1 data
set into two equal folds as Lille1-1 and Lille1-2. The Lille1-1,
Lille2, and Paris three folds are treated as training data sets and
the Lille1-2 is used as testing data set. To prepare our training
data following PointNet [1] and PointCNN [19], we first split
the data set along the XOY plane and then sampled them into
5 m × 5 m blocks with a 0.1-m buffer area on each side.
Points lying in the buffer area are regarded as the contextual
information and are not linked to the loss function for model
training or class prediction. In addition, points in each block
were sampled into a uniform number of 2048 based on the
point density and our computation capability.

The sampling point in each layer is 2048, 1024, 512, 256,
and the number of nearest neighbors is experimentally set to
12. The TGConv is also only applied to the above layers. Due
to the limitation on computation capability, we also use the
max pooling operation as our aggregation function in TGConv.
The other experimental setting is the same as the ScanNet and
S3DIS framework. The training epoch is set to 100.

The quantitative evaluations of the experimental results are
provided in Table V. In general, our performance is on par
with or better than other competitive algorithms for many
classes. Notably, most objects, such as bollard, car, building,
and vegetation are fragmented and incomplete due to the
mutual occlusion among points. However, our TGNet can still
learn to capture their discriminative features for segmentation
owing to the powerful structured feature learning capability of
TGConv.

Fig. 5 shows comparison semantic segmentation results of
DGCNN [18] and TGNet on Paris-Lille-3D data set. Com-
pared with groundtruth, DGCNN and TGNet can segment
most points correctly. But there exist some differences between
these two results. In the black rectangle, DGCNN misclassified
natural points as building points. In our segmentation results,
these points were correctly labeled. In the yellow rectangle,
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Fig. 5. Comparison semantic segmentation results of two algorithms on Paris-Lille-3D data set. (a) Ground-truth. (b) DGCNN [18]. (c) Ours.

TABLE VI

PARAMETER NUMBER AND RUNNING TIME COMPARISONS

there have five objects: signage, natural, car, trash can, and
ground. DGCNN classified the natural points as barrier, and
trash can as car. These incorrect segmentations did not appear
in our TGNet results. Although there have limited natural
points predicted wrongly as signage. Thus, we conclude that
the exploitation of geometric information in TGNet helps
the model to distinguish cluttered objects and shape-similar
objects.

E. Optimizer, Model Size, Memory Usage, and Timing

The proposed method was implemented with Python 3.5 and
TensorFlow 1.4 [46] on one GTX 1080ti GPU. We use
ADAM optimizer [47] with an initial learning rate of 0.001,
batch size 12 for the training of our three models. Parameter
number and running time are listed in Table VI. The model
for ScanNet semantic voxel labeling with 4096 input points
has 4.32M parameters for TGNet without CRF layer, and
8.54M parameters for TGNet. TGNet without CRF layer runs
0.058/0.064 s/batch for training/testing, while TGNet runs
0.064/0.068 s/batch for training/testing.

F. Discussion

We have tested our TGNet in both indoor and outdoor
environments, where the indoor data were acquired by RGB-D
camera and the outdoor data were collected by MLS. The
main differences between the above two data sets are the
point density and their distribution. Points in indoor scenes
are distributed uniformly, while points in outdoor scenes are
distributed unevenly and sparsely.

However, the OA (97%) in Paris-Lille-3D MLS data set
is much higher than that (88%) in S3DIS indoor data set.
We conclude two main reasons for this difference: first,
indoor scenes have strong occlusions and tight arrangements of
common objects [48]; second, compared with outdoor scenes,
some common objects in indoor scenes have similar shapes
and features, thus are hard to differentiate. For example, table
and chair, door and window, these object pairs are difficult to
distinguish, and they occupy a certain ratio among the whole
points. But in outdoor scenes, shape-similar objects are rare.
Although, there are sign-like objects (e.g., traffic sign and
billboard), they only occupy limited ratio among the whole
points.

Based on our experiments, we propose two suggestions
when dealing with these two different data sets. For sparse
and unevenly distributed MLS data, hierarchically applying
convolution in the finest scale points can extract and learn
a comprehensive geometric feature. Because geometric infor-
mation of objects may be severely lost during multiscale
sampling. As for evenly distributed RGB-D data, conducting
convolution in multiple scales can exploit both local and
global features. This can also reduce the computation cost with
guaranteed segmentation performance.

V. CONCLUSION

In this article, we address the 3-D point cloud segmentation
problem in both indoor and outdoor environments. We have
proposed a novel geometric graph convolution TGConv, which
is defined as products of local neighbor point features with
geometric features. Such geometric features are extracted
from local coordinates expressed by a family of Gaussian
weighted Taylor kernel functions. This operation can explore
the high-level geometric correlations among local neighbors
to improve TGConv performance in semantic segmentation.
We also defined a parametrized pooling operation, composed
of the max and a learnable distanced-based weight function for
feature aggregation. Based on that, an end-to-end geometric
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graph convolution architecture TGNet was constructed on the
graph representation of point clouds. It employs a multiscale
hierarchical architecture by operating TGConv on neighbors at
multiple scales and a CRF layer combined within the output
layer to further improve the segmentation result.

The experimental results on three different data sets have
demonstrated that the proposed method achieves 62.2% aver-
age accuracy on ScanNet, 57.8% and 68.17% mIoU on S3DIS
and Paris-Lille-3D data sets. Quantitative comparison results
with several related methods show that our TGNet is more
accurate in semantic labeling and has stronger geometric
feature expressiveness for 3-D point clouds. However, our
method still suffers one limitation in multiobject connected
area labeling, which is mainly caused by the limited receptive
field for TGConv. Thus, how to increase the receptive field
and reduce the computation cost will be studied in the future
to further improve our algorithm performance.
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