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Abstract— Recently, the advancement of deep learning (DL) in
discriminative feature learning from 3-D LiDAR data has led to
rapid development in the field of autonomous driving. However,
automated processing uneven, unstructured, noisy, and massive
3-D point clouds are a challenging and tedious task. In this
article, we provide a systematic review of existing compelling DL
architectures applied in LiDAR point clouds, detailing for specific
tasks in autonomous driving, such as segmentation, detection, and
classification. Although several published research articles focus
on specific topics in computer vision for autonomous vehicles,
to date, no general survey on DL applied in LiDAR point clouds
for autonomous vehicles exists. Thus, the goal of this article is to
narrow the gap in this topic. More than 140 key contributions in
the recent five years are summarized in this survey, including the
milestone 3-D deep architectures, the remarkable DL applications
in 3-D semantic segmentation, object detection, and classification;
specific data sets, evaluation metrics, and the state-of-the-art
performance. Finally, we conclude the remaining challenges and
future researches.

Index Terms— Autonomous driving, deep learning (DL),
LiDAR, object classification, object detection, point clouds,
semantic segmentation.

I. INTRODUCTION

ACCURATE environment perception and precise local-
ization are crucial requirements for reliable naviga-

tion, information decision, and safely driving of autonomous
vehicles (AVs) in complex dynamic environments [1], [2].
These two tasks need to acquire and process highly accurate
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and information-rich data of real-world environments [3].
To obtain such data, multiple sensors, such as LiDAR and
digital cameras [4], are equipped on AVs or mapping vehicles
to collect and extract target context. Traditionally, image data
captured by the digital camera, featured with 2-D appearance-
based representation, low cost, and high efficiency, is the
most commonly used data in perception tasks [5]. However,
image data lack of 3-D geo-referenced information [6]. Thus,
the dense, geo-referenced, and accurate 3-D point cloud data
collected by LiDAR are exploited. Besides, LiDAR is not
sensitive to the variations of lighting conditions and can work
under day and night, even with glare and shadows [7].

The application of LiDAR point clouds for AVs can
be described in two aspects: 1) real-time environment per-
ception and processing for scene understanding and object
detection [8] and 2) high-definition maps and urban mod-
els generation and construction for reliable localization and
referencing [2]. These applications have some similar tasks,
which can be roughly divided into three types: 3-D point cloud
segmentation, 3-D object detection and localization, and 3-D
object classification and recognition. Such a technique has led
to an increasing and urgent requirement for automatic analysis
of 3-D point clouds [9] for AVs.

Driven by the breakthroughs brought by deep learning (DL)
techniques and the accessibility of 3-D point clouds, the 3-D
DL frameworks have been investigated based on the extension
of 2-D DL architectures to 3-D data with a notable string
of empirical successes. These frameworks can be applied to
several tasks specifically for AVs, such as semantic segmen-
tation and scene understanding [10]–[12], object detection
[13], [14], and classification [10], [15], [16]. Thus, we provide
a systematic survey in this article, which focuses explicitly on
framing the LiDAR point clouds in segmentation, detection,
and classification tasks for autonomous driving using DL
techniques.

Several related surveys based on DL have been published in
recent years. The basic and comprehensive knowledge of DL
is described in detail in [17] and [18]. These surveys normally
focus on reviewing DL applications in visual data [19], [20]
and remote sensing imagery [21], [22]. Some are targeted
at more specific tasks, such as object detection [23], [24],
semantic segmentation [25], and recognition [26]. Although
DL in 3-D data has been surveyed in [27]–[29], these 3-D data
are mainly 3-D computer-aided design (CAD) models [30].
In [1], challenges, data sets, and methods in computer vision
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Fig. 1. Existing review article related to DL and their application with
different tasks. We summarize that our article is the first one to survey
the application of LiDAR point clouds in segmentation, detection, and
classification tasks for autonomous driving using DL techniques.

for AVs are reviewed. However, DL applications in LiDAR
point cloud data have not been comprehensively reviewed and
analyzed. We summarize these surveys related to DL in Fig. 1.

There also have several surveys published for LiDAR point
clouds. In [31]–[34], 3-D road object segmentation, detection,
and classification from mobile LiDAR point clouds are intro-
duced, but they are focusing on general methods not specific
for DL models. In [35], comprehensive 3-D descriptors are
analyzed. In [36] and [37], approaches of 3-D object detection
applied for autonomous driving are concluded. However, DL
models applied in these tasks have not been comprehensively
analyzed. Thus, the goal of this article is to provide a system-
atic review of DL using LiDAR point clouds in the field of
autonomous driving for specific tasks, such as segmentation,
detection/localization, and classification.

The main contributions of our work can be summarized as
follows.

1) An in-depth and organized survey of the milestone
3-D deep models and a comprehensive survey of
DL methods aimed at tasks, such as semantic
segmentation, object detection/localization, and object
classification/recognition in AVs, their origins, and their
contributions.

2) A comprehensive survey of existing LiDAR data sets
that can be exploited in training and evaluating DL
models for AVs.

3) A detailed introduction for quantitative evaluation met-
rics and performance comparison for semantic segmen-
tation, object detection, and object classification.

4) A list of the remaining challenges and future researches
that help to advance the development of DL in the field
of autonomous driving.

The remainder of this article is organized as follows. The
tasks in autonomous driving and the challenges of DL using
LiDAR point cloud data are introduced in Section II. A sum-
mary of existing LiDAR point cloud data sets and evaluation
metrics are described in Section III. Then, the milestone
3-D deep models with four data representations of LiDAR
point clouds are described in Section IV. The DL applica-
tions in semantic segmentation, object detection/localization,
and classification/recognition for AVs based on LiDAR

point clouds are reviewed and discussed in Section V.
Section VI proposes a list of the remaining challenges
for future researches. We finally conclude this article in
Section VII.

II. TASKS AND CHALLENGES

A. Tasks
In the perception module of autonomous vehicles, semantic

segmentation, object detection, object localization, and object
classification/recognition constitute the foundation for reli-
able navigation and accurate decision [38]. These tasks are
described as follows, respectively.

1) 3-D point cloud semantic segmentation. Point cloud
semantic segmentation is the process to cluster the input
data into several homogeneous regions, where points
in the same region have the identical attributes [39].
Each input point is predicted with a semantic label,
such as ground, tree, and building. This task can be
concluded as given a set of ordered 3-D points X =
{x1, x2, xi , . . . , xn} with xi ∈ R3 and a candidate label
set Y = {y1, y2, . . . , yk}, assign each input point xi with
one of the k semantic labels [40]. Segmentation results
can further support object detection and classification,
as shown in Fig. 2(a).

2) 3-D object detection/localization. Given an arbitrary
point cloud data, the goal of 3-D object detection is
to detect and locate the instances of predefined cate-
gories [e.g., cars, pedestrians, and cyclists, as shown
in Fig. 2(b)], and return their geometric 3-D loca-
tion, orientation, and semantic instance label [41]. Such
information can be represented coarsely using a 3-D
bounding box which is tightly bounding the detected
object [13], [42], [42]. This box is commonly repre-
sented as (x, y, z, h, w, l, θ, c), where (x, y, z) denotes
the object (bounding box) center position, (h, w, l) rep-
resents the bounding box size with width, length, and
height, and θ is the object orientation. The orientation
refers to the rigid transformation that aligns the detected
object to its instance in the scene, which are the trans-
lations in each of the of x-, y-, and z-directions and
a rotation about each of these three axes [43], [44].
c represents the semantic label of this bounding box
(object).

3) 3-D object classification/recognition. Given several
groups of point clouds, the objectiveness of classifica-
tion/recognition is to determine the category [e.g., mug,
table, or car, as shown in Fig. 2(c)] the group points
belong to. The problem of 3-D object classification
can be defined as: given a set of 3-D ordered points
X = {x1, x2, xi , . . . , xn} with xi ∈ R3 and a candidate
label set Y = {y1, y2, . . . , yk}, assign the whole point
set X with one of the k labels [45].

B. Challenges and Problems

In order to segment, detect, and classify the general objects
using DL for AVs with robust and discriminative perfor-
mance, several challenges and problems must be addressed,
as shown in Fig. 2. The variation of sensing conditions and
unconstrained environments results in challenges on data.
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Fig. 2. Tasks and challenges related to DL-based applications on 3-D point
clouds. (a) Point cloud segmentation [10]. (b) 3-D object detection [41].
(c) 3-D object classification [10]. (d) Challenges on LiDAR point clouds.
and (e) Problems for DL models.

The irregular data format and requirements for both accuracy
and efficiency pose the problems that DL models need to solve.

1) Challenges on LiDAR Point Clouds: Changes in sens-
ing conditions and unconstrained environments have dramatic
impacts on the appearances of objects. In particular, the objects
captured at different scenes or instances and even for the same
scene, the scanning times, locations, weather conditions, sen-
sor types, sensing distances, and backgrounds are all brought
about differences. All these conditions produce significant
variations for both intraclass and extra-class objects in LiDAR
point clouds.

1) Diversified point density and reflective intensity. Due
to the scanning mode of LiDAR, the density and the
intensity for objects vary a lot. The distribution of
these two characteristics highly depends on the distances
between objects and LiDAR sensors [46]–[48]. Besides,
the ability of the LiDAR sensors, the time constraints
of scanning and needed resolution also affect their
distribution and intensity.

2) Noisy. All sensors are noisy. There are a few types of
noise that include point perturbations and outliers [49].
It means that a point has some probability of being
within a sphere of a certain radius around the place
it was sampled (perturbations), or it may appear in a
random position in space [50].

3) Incompleteness. Point clouds obtained by LiDAR are
commonly incomplete [51]. This mainly results from
the occlusion between objects [50], cluttered background
in urban scenes [46], [49], and unsatisfactory material
surface reflectivity. Such problems are severe in real-
time capturing of moving objects, which exist large
gaping holes and severe undersampling.

4) Confusion categories. In a natural environment, shape-
similar or reflectance similar objects have interference

in object detection and classification. For example, some
man-made objects, such as commercial billboards, have
similar shapes and reflectance with traffic signs.

2) Problems for 3-D DL Models: The irregular data format
and the requirements for accuracy and efficiency from tasks
bring some new challenges for DL models. A discriminate
and general-purpose 3-D DL model should solve the following
problems when designing and constructing its framework.

1) Permutation and orientation invariance. Compared with
2-D grid pixels, the LiDAR point clouds are a set
of points with irregular order and no specific ori-
entation [52]. Within the same group of N points,
the network should feed N! permutations in order to
be invariant. Besides, the orientation of point sets is
missing, which poses a great challenge for object pattern
recognition [53].

2) Rigid transformation challenge. There exist various rigid
transformations among point sets, such as 3-D rotations
and 3-D translations. These transformations should not
affect the performance of networks [12], [52].

3) Big data challenge. LiDAR collects millions to billions
of points in different urban or rural environments with
natural scenes [49]. For example, in the Kitti data
set [54], each frame captured by 3-D Velodyne laser
scanners contains 100k points. The smallest collected
scene has 114 frames, which has more than 10 million
points. Such amounts of data bring difficulties in data
storage and processing.

4) Accuracy challenge. Accurate perception of road objects
is crucial for AVs. However, the variation for both
intraclass and extra-class objects and the quality of data
poses challenges for accuracy. For example, objects in
the same category have a set of different instances,
in terms of various material, shape, and size. Besides,
the model should be robust to the unevenly distributed,
sparse, and missing data.

5) Efficiency challenge. Compared with 2-D images,
processing a large quantity number of point clouds
produces high computation complexity and time costs.
Besides, the computation devices on AVs have limited
computational capabilities and storage space [55]. Thus,
an efficient and scalable deep network model is critical.

III. DATA SETS AND EVALUATION METRICS

A. Data Sets
Data sets pave the way toward the rapid development

of 3-D data application and exploitation using DL networks.
There are two roles of reliable data sets: one for providing a
comparison for competing algorithms, another for pushing the
fields toward more complex, and challenging tasks [23]. With
the increasing application of LiDAR in multiple fields, such
as autonomous driving, remote sensing, and photogrammetry,
there is a rise of large scale data sets with more than millions of
points. These data sets accelerate the crucial breakthroughs and
discriminate performances in point cloud semantic segmenta-
tion, 3-D object detection, and classification. Apart from the
mobile LiDAR data, some data sets [56] acquired by terrestrial
laser scanning (TLS) by static LiDAR are also employed due
to they provide high-quality point cloud data.
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TABLE I

SURVEY OF EXISTING LIDAR DATA SET

As shown in Table I, we classify those existing data sets
related to our topic into three types: segmentation-based
data sets, detection-based data sets, and classification-based
data sets. Besides, the long-term autonomy data set is also
summarized.

1) Segmentation-Based Data Sets (Semantic3D [56]):
Semantic3D is the existing largest LiDAR data set for outdoor
scene segmentation tasks with more than 4 billion points and
around 110 000 m2 covering area. This data set is labeled
with eight classes and split into train and test sets with nearly
equal size. These data are acquired by a static LiDAR with
high measurement resolution and covered long measurement
distance. The challenges for this data set mainly stems from
the massive point clouds, unevenly distributed point density,
and severe occlusions. In order to fit the high computation
algorithms, a reduced-8 data set is introduced for training and
testing, which shares the same training data but fewer test data
compared with Semantic3D.

Oakland 3-D Point Cloud Data Set [57]. This data set is
acquired in an early year compared with the above-mentioned
two data sets. A mobile platform equipped with LiDAR is
used to scan the urban environments and generated around
1.3 million points, while 100 000 points are split into a vali-
dation set. The whole data set is labeled with five classes, such
as wire, vegetation, ground, pole/tree-trunk, and facade. This
data set is small and, thus, suitable for lightweight networks.
Besides, this data set can be used to test and tune the network
architectures without a lot of training time before final training
on other data sets.

IQmulus & TerraMobilita Contest [58]. This data set is also
acquired by a mobile LiDAR system in the urban environment
in Paris. There are more than 300 million points in this data set,
which covered 10-km street. The data is split into 10 separate

zones and labeled with more than 20 fine classes. However,
this data set also has severe occlusion.

Paris-Lille-3D [59]. Compared with Semantic3D [56], Paris-
Lille-3D contains fewer points (140 million points) and
smaller covering area (55 000 m2). The main difference is
that this data set is acquired by a Mobile LiDAR system
in two cities: Paris and Lille. Thus, the points in this data
set are sparse and comparatively low measurement resolution
compared with Semantic3D [56]. But this data set is more
similar to the LiDAR data acquired by AVs. The whole data
set is fully annotated into 50 classes unequally distributed in
three scenes: Lille1, Lille2, and Paris. For simplicity, these
50 classes are combined into 10 coarse classes for challenging.

2) Detection-Based Data Sets (KITTI Object Detec-
tion/Bird’s Eye View Benchmark [60]): Different from the
above LiDAR data sets which are specific for the seg-
mentation task, the KITTI data set is acquired from an
autonomous driving platform and records six hours driving
using digital cameras, LiDAR, and global positioning system/
inertial measurement unit (GPS/IMU) inertial navigation
system. Thus, apart from the LiDAR data, the corresponding
imagery data are also provided. Both the Object Detection and
Bird’s Eye View (BEV) Benchmark contains 7481 training
images and 7518 test images and the corresponding point
clouds. Due to the moving scanning mode, the LiDAR data in
this benchmark is highly sparse. Thus, only three objects are
labeled with bounding boxes: cars, pedestrians, and cyclists.

3) Classification-Based Data Sets (Sydney Urban Objects
Data Set [61]): This data set contains a set of general urban
road objects scanned with a LiDAR in the CBD of Sydney,
NSW, Australia. There are 588 labeled objects which are
classified into 14 categories, such as vehicles, pedestrians,
signs, and trees. The whole data set is split into four folds
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TABLE II

EVALUATION METRICS FOR 3-D POINT CLOUD SEGMENTATION, DETECTION/LOCALIZATION, AND CLASSIFICATION

for training and testing. Similar to other LiDAR data sets,
the collected objects in this data set are sparse with incomplete
shape. Although it is small and not ideal for the classification
task, it is the most commonly used benchmark due to the
limitation of the tedious labeling process.

ModelNet [30]. This data set is the existing largest 3-D
benchmark for 3-D object recognition. Different from the
Sydney Urban Objects data set [61], which contains road
objects collected by LiDAR sensors, this data set is composed
of general objects in CAD models with evenly distributed
point density and complete shape. There are approximately
130K labeled models in a total of 660 categories (e.g., car,
chair, and clock). The most commonly used benchmark is
the ModelNet40 that contains 40 general objects and the
ModelNet10 with 10 general objects. The milestone 3-D deep
architectures are commonly trained and tested on these two
data sets due to the affordable computation burden and time.

Long-Term Autonomy. To address challenges of long-term
autonomy, a novel data set for autonomous driving has been
presented by Maddern et al. [64]. They collected images,
LiDAR, and GPS data while traversing 1000 km in central
Oxford in the U.K. for one year. This allowed them to
capture different scene appearances under various illumination,
weather, and season with dynamic constructions. Such long-
term data sets allow for in-depth investigation of problems
that detain the realization of autonomous vehicles, such as
localization, at different times of the year.

B. Evaluation Metrics

To evaluate the performances of those proposed methods,
several metrics, as summarized in Table II, are proposed for
those tasks: segmentation, detection, and classification. The
detail of these metrics is given as follows.

For the segmentation task, the most commonly used evalua-
tion metrics are the Intersection over Union (IoU) metric, IoU,
and overall accuracy (OA) [62]. IoU defines the quantify of
the percent overlap between the target mask and the prediction
output [56].

For detection and classification tasks, the results are com-
monly analyzed regionwise. Precision, recall, F1-score, and
Matthews correlation coefficient (MCC) [65] are commonly
used to evaluate the performance. The precision represents
the ratio of correctly detected objects in the whole detection
results, while the recall means the percentage of the correctly
detected objects in the ground truth, the F1-score conveys the
balance between the precision and the recall, and the MCC
is the combined ratio of detected and undetected objects and
nonobjects.

For 3-D object localization and detection task, the most
frequently used metrics are: average precision (AP3D) [66]
and average orientation similarity [36]. The average precision
is used to evaluate the localization and detection performance
by calculating the averaged valid bounding box overlaps,
which exceed predefined values. For orientation estimation,
the orientation similarities with different thresholded valid
bounding box overlaps are averaged to report the performance.

IV. GENERAL 3-D DEEP LEARNING FRAMEWORKS

In this section, we review the milestone DL frameworks
on 3-D data. These frameworks are pioneers in solving the
problems defined in Section II. Besides, their stable and effi-
cient performance makes them suitable for use as the backbone
framework in detection, segmentation, and classification tasks.
Although 3-D data acquired by LiDAR is often in the form
of point clouds, how to represent point cloud and what DL
models to use for detection, segmentation, and classifica-
tions remains an open problem [41]. Most existing 3-D DL
models process point clouds mainly in form of voxel grids
[30], [67]–[69], point clouds [10], [12], [70], [71],
graphs [72]–[75], and 2-D images [15], [76]–[78]. In this
section, we analyze the frameworks, attributes, and problems
of these models in detail.

A. Voxel-Based Models

Conventionally, convolutional neural networks (CNNs) are
mainly applied to data with regular structures, such as the 2-D
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Fig. 3. Deep architectures of 3-D ShapeNet [30], VoxNet [67],
3-D-GAN [68].

pixel array [79]. Thus, in order to apply CNNs to unordered
3D point clouds, such data are divided into regular grids
with a certain size to describe the distribution of the data
in 3-D space. Typically, the size of the grid is related to
the resolution of the data [80]. The advantage of voxel-based
representation is that it can encode the 3-D shape and the
viewpoint information by classifying the occupied voxels into
several types, such as visible, occluded, or self-occluded.
Besides, 3-D convolution (Conv) and pooling operations can
be directly applied in voxel grids [69].

3-D ShapeNet proposed by Wu et al. [30] and shown
in Fig. 3, is the pioneer in exploiting 3-D volumetric data
using a convolutional deep belief network. The probability dis-
tribution of binary variables is used to represent the geometric
shape of a 3-D voxel grid. Then, these distributions are input to
the network, which is mainly composed of three Conv layers.
This network is initially pretrained in a layerwise fashion and
then trained with a generative fine-tuning procedure. The input
and Conv layers are modeled based on the contrastive diver-
gence, where the output layer was trained based on the fast-
persistent contrastive divergence. After training, the input test
data is output with a single-depth map and then transformed to
represent the voxel grid. ShapeNet has notable results in low-
resolution voxels. However, the computation cost increases
cubically with the increment of input data size or resolution,
which limits the model’s performance in large-scale or dense
point clouds. Besides, multiscale and multiview information
from the data is not fully exploited, which hinder the output
performance.

VoxNet is proposed by Maturana and Scherer [67] to
conduct 3-D object recognition using 3-D convolution filters
based on volumetric data representation, as shown in Fig. 3.
Occupancy grids represented by a 3-D lattice of random vari-
ables are employed to show the state of the environment. Then
a probabilistic estimate is used to estimate the occupancy of
these grids, which is maintained as the prior knowledge. Three
different occupancy grid models, such as binary occupancy
grid, density grid, and hit grid, are experimented to select the
best model. This network framework is mainly composed of

Conv, pooling layer, and fully connected (FC) layers. Both
ShapeNet [30] and VoxNet employ rotation augmentation for
training. Compared with ShapeNet [30], VoxNet has a smaller
architecture that has less than 1 million parameters. However,
some occupancy grids contain useless information but only
increase the computation cost.

3-D-GAN [68] combines the merits of both general-
adversarial network (GAN) [81] and volumetric convolutional
networks [67] to learn the features of 3-D objects. This net-
work is composed of a generator and a discriminator, as shown
in Fig. 3. The adversarial discriminator is conducted to classify
objects into synthesized and real categories. This operation has
the following two merits: the generative-adversarial criterion
has the advantage in capturing the structural variation between
two 3-D objects; and the employment of generative-adversarial
loss is helpful to avoid the possible criterion-dependent over-
fitting. The generator attempts to confuse the discriminator.
Both generator and discriminator consist of five volumetric
fully Conv layers. This network provides a powerful 3-D
shape descriptor with unsupervised training in 3-D object
recognition. But the density of data affects the performance of
adversarial discriminator for finest feature capturing. Conse-
quently, this adaptive method is suitable for evenly distributed
point clouds.

In conclusion, there are some limitations of this general
volumetric 3-D data representation.

1) First, not all voxel representations are useful because
they contain occupied and nonoccupied parts of the scan-
ning environment. Thus, the high demand for computer
storage is actually unnecessary within this ineffective
data representation [69].

2) Second, the size of the grid is hard to set, which affects
the scale of input data and may disrupt the spatial
relationship between points.

3) Third, computation and memory requirements grow
cubically with the resolution [69]. Thus, existing voxel-
based models are maintained at low 3-D resolutions, and
the most commonly used size is 303 for each grid [69].

A more advanced voxel-based data representation is the
octree-based grids [69], [82], which use adaptive size to divide
the 3-D point clouds into cubes. It is a hierarchical data
structure that recursively decomposes the root voxels into
multiple leaf voxels.

OctNet is proposed by Riegler et al. [69], which exploits the
sparsity of the input data. Motivated by the observation that
the object boundaries have the highest probability in producing
the maximum responses across all feature maps generated by
the network at different layers, they partitioned the 3-D space
hierarchically into a set of unbalanced octrees [83] based on
the density of the input data. Specifically, the octree nodes that
have point clouds are split recursively into its domain, ending
at the finest resolution of the tree. Thus, the size of leaf nodes
varies. For each leaf node, those features that activate their
comprised voxel is pooled and stored. Then, the convolution
filters are conducted in these trees. In [82], the deep model
is constructed by learning the structure of the octree and
the represented occupancy value for each grid. This octree-
based data representation largely reduces the computation
and memory resources for DL architectures, which achieves
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Fig. 4. PointNet [10] and PointNet++ [12] architectures.

better performance in high-resolution 3-D data compared with
voxel-based models. However, the disadvantage of octree data
is similar to voxels; both of them fail to exploit the geometry
feature of 3-D objects, especially the intrinsic characteristics
of patterns and surfaces [29].

B. Point Clouds Based Models

Different from the volumetric 3-D data representation, point
clouds can preserve the 3-D geospatial information and the
internal local structure. Besides, the voxel-based models that
scan the space with fixed strides are constrained by the local
receptive fields. But for point clouds, the input data and their
metric decide the range of receptive fields, which has high
efficiency and accuracy.

PointNet [10], as a pioneer in consuming 3-D point clouds
directly for deep models, learns the spatial feature of each
point independently via MLP layers and then accumulates their
features by max pooling. The point clouds are input directly to
the PointNet, which predicts per-point label or per-object label,
and its framework is shown in Fig. 4. In PointNet, a spatial
transform network and a symmetric function are designed to
improve the data invariance to permutation. The spatial feature
of each input point is learned through the networks. Then,
the learned features are assembled across the whole region of
point clouds. PointNet has achieved outstanding performances
in 3-D object classification and segmentation tasks. However,
the individual point features are grouped and pooled by max
pooling, which fails to preserve the local structure. As a result,
PointNet is not robust to fine-grained patterns and complex
scenes.

PointNet++ is proposed by Qi et al. [12] after PointNet,
which compensates the local feature extraction problems in
PointNet. Within the raw unordered point clouds as input,
these points are initially divided into overlapping local regions
using the Euclidean distance metric. In order to sample the
points evenly over the whole point set, the farthest point
sampling algorithm is applied. Local features are extracted
from the small neighborhoods around the selected points
using the K-nearest-neighbor (KNN) or query-ball searching

Fig. 5. Kd-tree structure in Kd-networks [70] and χ -Conv in PointCNN [71].

methods. These neighborhoods are gathered into larger clusters
and leveraged to extract high-level features via PointNet [10].
The sampling and grouping module are repeated until the
local and global features of the whole points are learned,
as shown in Fig. 4. For the segmentation task, these features
are backpropagated to the finest layer to extract per-point
features. This network, which outperforms the PointNet [10]
network in classification and segmentation tasks, extracts the
local features for points in different scales. However, features
from the local neighborhood points in different sampling
layers are learned in an isolated fashion. Besides, the max-
pooling operation based on PointNet [10] for high-level feature
extraction in PointNet++ fails to preserve the spatial infor-
mation between the local neighboring points.

Kd-networks [70] uses the kd-tree to create the order of
the input points, which is different from PointNet [10] and
PointNet++ [12] as both of them use the symmetric function
to solve the permutation problem. Klokov and Lempitsky [70]
used the maximum range of point coordinates along the
coordinate axis to recursively split the certain size point clouds
N = 2D into subsets with a top–down fashion to construct
a kd-tree. As shown in Fig. 5, this kd-tree is ending with
a fixed depth. Within this balanced tree structure, vectorial
representations in each node, which represents a subdivision
along a certain axis, are computed using kd-networks. These
representations are then exploited to train a linear classifier.
This network has a better performance than PointNet [10] and
PointNet++ [12] in small objects classification. However, it is
not robust to rotations and noise, since these variations can
lead to the change of tree structure. Besides, it lacks the over-
lapped receptive field, which reduces the spatial correlation
between leaf nodes.

PointCNN, proposed by Li et al. [71], solves the input
points permutation and transformation problems based on
an χ-Conv operation, as shown in Fig. 5. They proposed
the χ-transformation, which is learned from the input points
by weighting the input point features and permutating the
points into a latent and potentially canonical order. Then,
the traditional convolution operators are applied in the learned
χ-transformation features. These spatially local correlation
features in each local range are aggregated to construct a
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hierarchical CNN network architecture. However, this model
still has not exploited the correlations of different geometric
features and their discriminate information toward results,
which limits the performance.

Point cloud-based deep models are mostly focused on solv-
ing permutation problems. Although they treat points indepen-
dently at local scales to maintain permutation invariance, this
independence, however, neglects the geometric relationships
among points and their neighbors, presenting a fundamental
limitation that leads to the missing of local features.

C. Graph-Based Models

Graphs are a type of non-Euclidean data structure that can
be used to represent point clouds. Their node corresponds
to each input point, and the edges represent the relation-
ship between each point neighbors. Graph neural networks
propagate the node states until equilibrium in an iterative
manner [75]. With the advancement of CNNs, there is an
increment graph convolutional networks applied to 3-D data.
Those graph CNNs define convolutions directly on the graph
in the spectral and nonspectral (spatial) domain, operating on
groups of spatially close neighbors [84]. The advantage of
graph-based models is to explore the geometric relationships
among points and their neighbors. Thus, spatially local correla-
tion features are extracted from the grouped edge relationships
on each node. But there are two challenges for constructing
graph-based deep models as follows.

1) First, defining an operator that is suitable for dynami-
cally sized neighborhoods and maintaining the weight
sharing scheme of CNNs [75].

2) Second, exploiting the spatial and geometric relation-
ships among each node’s neighbors.

SyncSpecCNN [72] exploited the spectral eigendecompo-
sition of the graph Laplacian to generate a convolution filter
applied to point clouds. Yi et al. [72] constructed SyncSpec-
CNN based on those two considerations: the first is the coeffi-
cients sharing and multiscale graph analyzing, and the second
is information sharing across related but different graphs. They
solved these two problems by constructing the convolution
operation in the spectral domain: the signal of point sets
in the Euclidean domain is defined by the metrics on the
graph nodes, and the convolution operation in the Euclidean
domain is related to the scaling signals based on eigenvalues.
Actually, such operation is linear and only applicable to
the graph weights generated from eigenvectors of the graph
Laplacian. Although SyncSpecCNN has achieved excellent
performance in 3-D shape part segmentation, it has several
limitations.

1) Basis-dependent. The learned spectral filter’s coefficients
are not suitable for another domain with a different basis.

2) Computationally expensive. The spectral filtering is cal-
culated based on the whole input data, which requires
high computation capability.

3) Missing local edge features. The local graph neigh-
borhood contains useful and distinctive local structural
information, which is not exploited.

Edge-conditioned convolution (ECC) [73] considers the
edge information in constructing the convolution filters based
on the graph signal in the spatial domain. The edge labels

Fig. 6. EdgeConv in DGCNN [74] and attention mechanism in GAT [75].

in a vertex neighborhood are conditioned to generate the
filter weights. Besides, in order to solve the basis-dependent
problem, the convolution operator is dynamically generalized
for arbitrary graphs with varying sizes and connectivity. The
whole network follows the common structure of a feedforward
network with interlaced convolutions and pooling followed
by global pooling and FC layers. Thus, features from local
neighborhoods are extracted continually from these stacked
layers, which increase the receptive field. Although the edge
labels are fixed for a specific graph, the learned interpretation
networks may vary in different layers. ECC learns the dynamic
pattern of local neighborhoods, which is scalable and effective.
However, the computation cost remains high, and it is not
applicable for large-scale graphs with continuous edge labels.

Dynamic graph CNN (DGCNN) [74] also constructs a local
neighborhood graph to extract the local geometric features
and applies Conv-like operations, named EdgeConv, as shown
in Fig. 6, on the edges connecting neighboring pairs of
each point. Different from ECC [73], EdgeConv dynamically
updates the given fixed graph with Conv-like operations for
each layer output. Thus, DGCNN can learn how to extract
local geometric structures and group point clouds. This model
takes n points as input, and then find the K neighborhoods
of each point to calculate the edge feature between the point
and its K neighborhoods in each EdgeConv layer. Similar to
the PointNet [10] architecture, the features convolved in the
last EdgeConv layer are aggregated globally to construct a
global feature, while all the EdgeConv outputs are treated as
local features. Local and global features are concatenated to
generate results’ scores. This model extracts distinctive edge
features from point neighborhoods, which can be applied in
different point cloud-related tasks. However, the fixed size of
the edge features limits the performance of the model when
facing different scales and resolution point clouds.

ECC [73] and DGCNN [74] propose general convolutions
on graph nodes and their edge information, which is isotropy
about input features. However, not all the input features con-
tribute equally to its nodes. Thus, attention mechanisms [75]
are introduced to deal with variable sized inputs and focus
on the most relevant parts of the nodes’ neighbors to make
decisions.

Graph Attention Networks (GAT) [75]. The core insight
behind GAT is to calculate the hidden representations of
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each node in the graph, by assigning different attentional
weights to different node neighbors, following a self-attention
strategy. Within a set of node features as input, a shared linear
transformation, parametrized by a weight matrix is applied
to each node. Then, a self-attention, a shared attentional
mechanism which is shown in Fig. 6, is applied on the
nodes to computes attention coefficients. These coefficients
indicate the importance of corresponding nodes’ neighbor
features, respectively, and are further normalized to make them
comparable across different nodes. These local features are
combined according to the attentional weights to form the out-
put features for each node. In order to improve the stability of
the self-attention mechanism, multihead attention is employed
to conduct k independent attention schemes, which are then
concatenated together to form the final output features for each
node. This attention architecture is efficient and can extract
fine-grained representations for each graph node by assigning
different weights to the neighbors. However, the local spatial
relationship between neighbors is not considered in calculating
the attentional weights. To further improve its performance,
Wang et al. [85] proposed graph attention convolution to gen-
erate attentional weights by considering different neighboring
points and feature channels.

D. View-Based Models

The last type of MLS data representation is 2-D views
obtained from 3-D point clouds from different directions.
With the projected 2-D views, traditional well-established
CNNs and pretrained networks on image data sets, such as
AlexNet [86], VGG [87], GoogLeNet [88], and ResNet [89],
can be exploited. Compared with voxel-based models, these
methods can improve the performance for different 3-D tasks
by taking multiview of the interest object or scenes and then
fusing or voting the outputs for final prediction. Compared
with the above-mentioned three different 3-D data represen-
tations, view-based models can achieve near-optimal results,
as shown in Table III. Su et al. [90] experimented that
multiview methods have the optimal generalization ability
even without using pretrained models compared with point
cloud and voxel data representation models. The advantages
of view-based models compared with 3-D models can be
concluded as follows.

1) Efficiency. Compared with 3-D data representations,
such as point clouds or voxel grids, the reduced one
dimension information can greatly reduce the computa-
tion cost but with increased resolution [76].

2) Exploiting established 2-D deep architectures and data
sets. The well-developed 2-D DL architectures can better
exploit the local and global information from projected
2-D view images [91]. Besides, existing 2-D image
databases (such as ImageNet [92]) can be used to train
2-D DL architectures.

Multiview CNN (MVCNN) [76] is the pioneer in exploiting
2-D DL models to learn the 3-D representation. Multiple views
of 3-D objects are extracted without specific order using a
view pooling layer. Two different CNN models are proposed
and tested. The first CNN model takes 12 views rendered
from the object via placing 12 virtual cameras with equal
distance around the objects as the input, while the second

CNN model takes 80 views rendered in the same way as
the input. These views are first learned separately and then
fused through max-pooling operation to extract the most
representative feature among all views for the whole 3-D
shape. This network is effective and efficient compared with
volumetric data representation. However, the max-pooling
operation only considers the most important views and dis-
cards information from other views, which fails to preserve
comprehensive visual information.

MVCNN-MultiRes is proposed by Qi et al. [15] to improve
multiview CNNs. Different from traditional view rendering
methods, the 3-D shape is projected to 2-D via a con-
volution operation based on an anisotropic probing kernel
applied to the 3-D volume. Multiorientation pooling is com-
bined together to improve the 3-D structure capturing capa-
bility. Then, the MVCNN [76] is applied to classify the
2-D projects. Compared with MVCNN [76], multiresolution
3-D filtering is introduced to capture multiscale information.
Sphere rendering is performed at different volume resolu-
tions to achieve view-invariant and improve the robust to
potential noise and irregularities. This model achieves better
results in 3-D object classification task compared with the
MVCNN [76].

3DMV [77] combines the geometry and imagery data as
input to train a joint 3-D deep architecture. Feature maps
extracted from imagery data are first extracted and then
mapped into the 3-D feature extracted from the volumetric
grid data derived from a differentiable back-projection layer.
Because there exists redundant information among multiple
views, a multiview pooling approach is applied to extract use-
ful information from these views. This network has achieved
remarkable results in 3-D objects classification. However,
compared with models using one source of data, such as
LiDAR points or RGB images solely, the computation cost
of this method is higher.

RotationNet [78] is proposed following the assumption that
when the object is observed by a viewer from a partial set
of full multiview images, the observation direction should
be recognized to correctly infer the object’s category. Thus,
the multiview images of an object are input to the RotationNet,
which outputs its pose and category. The most representative
characteristic of RotationNet is that it treats viewpoints which
are the observation of training images as latent variables.
Then unsupervised learning of object poses is conducted based
on an unaligned object data set, which can eliminate the
process of pose normalization to reduce noise and individual
variations in shape. The whole network is constructed as a
differentiable MLP network with softmax layers as the final
layer. The outputs are the viewpoint category probabilities,
which correspond to the predefined discrete viewpoints for
each input image. These likelihoods are optimized by the
selected object pose.

However, there are some limitations of 2-D view-based
models.

1) The first is that the projection from 3-D space to
2-D views can lose some geometrically related spatial
information.

2) The second is redundant information among multiple
views.
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TABLE III

SUMMARIZING OF MILESTONE DL ARCHITECTURES BASED ON FOUR POINT CLOUD DATA REPRESENTATIONS

E. 3-D Data Processing and Augmentation

Due to the massive amount of data and the tedious labeling
process, there exist limited reliable 3-D data sets. To better
exploit the architecture of deep networks and improve the
model generalization ability, data augmentation is commonly
conducted. Augmentation can be applied to both data space
and feature space, while the most common augmentation
is conducted in the first space. This type of augmentation
can not only enrich the variations of data but also generate
new samples by conducting transformations to the existing
3-D data. There are several types of transformations, such as

translation, rotation, and scaling. Several requirements for data
augmentation are summarized as follows.

1) There must exist similar features between original aug-
mented data, such as shapes.

2) There must exist different features between original and
augmented data, such as orientation.

Based on those existing methods, classical data augmenta-
tion for point clouds can be concluded as follows.

1) Mirror x- and y-axes with the predefined
probability [59], [93].

2) Rotation around the z-axis with certain times and
angles [13], [59], [93], [94].
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3) Random (uniform) height or position jittering in certain
ranges [67], [93], [95].

4) Random scale with certain ratio [13], [59].
5) Random occlusions or randomly down-sampling points

within the predefined ratio [59].
6) Random artifacts or randomly down-sampling points

within the predefined ratio [59].
7) Randomly adding noise, following certain

distribution, to the points’ coordinates and local
features [45], [59], [96].

V. DEEP LEARNING IN LIDAR POINT CLOUD FOR AVS

The application of LiDAR point clouds for AVs can be
concluded into three types: 3-D point cloud semantic segmen-
tation, 3-D object detection and localization, and 3-D object
classification and recognition. Targets for these tasks vary a
lot; for example, the scene segmentation focuses on the per-
point label prediction, while the detection and the classification
concentrate on integrated point set labeling. But they all need
to exploit the input point feature representations before feature
embedding and network construction.

We first make a survey of input point cloud feature rep-
resentations applied in DL architectures for all these three
tasks, such as local density and curvature. These features are
representations of a specific 3-D point or position in 3-D space,
which describe the geometrical structures and features based
on the extracted information around the point. These features
can be grouped into two types: one is derived directly from the
sensors, such as coordinates and the intensity, we term them
as direct point feature representations; the second is extracted
from the information provided by each point’s neighbors,
we term them as geo-local point feature representations.

1) Direct Input Point Feature Representations: The direct
input point feature representations are mainly provided by
laser scanners, which include the x , y, and z coordinates,
and other characteristics (e.g., intensity, angle, and number
of returns). Two most frequently used features applied in DL
are listed in the following.

1) XY Z coordinates. The most direct point feature
representation is the XY Z coordinates provided by the
sensors, which means the position of a point in the
real-world coordinate system.

2) Intensity. The intensity represents the reflectance charac-
teristics of the material surface, which is one common
characteristic of laser scanners [97]. Different objects
have different reflectance, thus producing different den-
sities in point clouds. For example, traffic signs have a
higher intensity than vegetations.

2) Geo-Local Point Feature Representations: Local input
point feature embeds the spatial relationship of points and
their neighborhoods, which plays a significant role in point
cloud segmentation [12], object detection [42], and classifica-
tion [74]. Besides, the searched local region can be exploited
by some operations, such as CNNs [98]. Two most represen-
tative and widely used neighborhood searching methods are
KNNs [12], [96], [99] and spherical neighborhood [100].

The geo-local feature representations are usually generated
from the searched region using the above-mentioned two

neighborhood searching algorithms. They are composed of
eigenvalues [e.g., η0, η1 and η2 (η0 > η1 > η2)] or eigen-
vectors (e.g., −→v0 , −→v1 , and −→v2 ) by decomposing the covariance
matrix defined in the searched region. We list five most
commonly used 3-D local feature descriptors applied in DL
in the following.

1) Local density. The local density is typically determined
by the quantity of points in a selected area [101].
Typically, the point density decreases when the distance
of objects to the LiDAR sensor increases. In voxel-
based models, the local density of points is related to
the setting of voxel sizes [102].

2) Local normal. It infers the direction of the normal at a
certain point on the surface. The equation about normal
extraction can be found in [65]. In [103], the eigenvector−→v2 of η2 in Ci is selected as the normal vector for each
point. However, in [10], the eigenvectors of η0, η1 and
η2 are all chose as the normal vectors of point pi .

3) Local curvature. The local curvature is defined to be
the rate at which the unit tangent vector changes the
direction. Similar to the local normal calculation in [65],
the surface curvature change in [103] can be estimated
from the eigenvalues derived from the Eigen decompo-
sition: curvature = η0/(η0 + η1 + η2).

4) Local linearity. It is a local geometric characteristic
for each point to indicate the linearity of its local
geometry [104]: linearity = (η1 − η2)/η1.

5) Local planarity. It describes the flatness of a given
point neighbors. For example, ground points have
higher planarity compared with tree points [104]:
planarity = (η2 − η3)/η1.

A. LiDAR Point Cloud Semantic Segmentation

The goal of semantic segmentation is to label each point
as belonging to a specific semantic class. For AVs segmen-
tation tasks, these classes cloud be a street, buildings, cars,
pedestrians, trees, or traffic lights. When applying DL for
point cloud segmentation, the classification of small features
is required [38]. However, the LiDAR 3-D point clouds are
usually acquired in large scale, and they are irregularly shaped
with changeable spatial contents. In a review of the recent five-
year articles related in this region, we group these articles into
three schemes according to the types of data representation:
point cloud-based, voxel-based, and multiview-based models.
There is limited research focusing on graph-based models,
and thus, we combine the graph-based and point cloud-
based models together to illustrate their paradigms. Each type
of model is represented by a compelling deep architecture,
as shown in Fig. 7.

1) Point Cloud-Based Networks: For point cloud-based net-
works, they are mainly composed of two parts: feature embed-
ding and network construction. For the feature representing,
both local and global features have demonstrated to be crucial
for the success of CNNs [12]. However, in order to apply
conventional CNNs, the permutation and orientation problems
for unordered and unoriented points require a discriminative
feature embedding network. Besides, lightweight, effective,
and efficient deep network construction is another key module
that affects the segmentation performance.
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Fig. 7. DL architectures on LiDAR point cloud segmentation with three different data representations: point cloud-based networks represented by SPG [105],
voxel-based networks represented by MSNet [106], view-based networks represented by DeePr3SS [107].

The local feature is commonly extracted from point neigh-
borhoods [104]. The most frequently used local features
are the local normal and curvature [10], [12]. To improve
the receptive field, PointNet [10] has been proved to be
a compelling architecture to extract semantic features from
unordered point sets. Thus, in [12], [105], [108], and [109],
a simplified PointNet is exploited to abstract local features
from sampled point sets into high-level representations. Lan-
drieu and Simonovsky [105] proposed superpoint graph (SPG)
to represent large 3-D point clouds as a set of simple inter-
connected shapes coined superpoints, and then PointNet is
operated on these superpoints to embed features.

To solve the permutation problem and extract local features,
Huang et al. [40] proposed a novel slice pooling layer to
extract the local context layer from the input point features and
output an ordered sequence of aggregated features. To this end,
the input points are first grouped into slices, and then a global
representation for each slice is generated via concatenating
point features within the slice. The advantage of this slice
pooling layer is the low computation cost compared with
point-based local features. However, the slice size is sensitive
to the density of data. In [110], bilateral Conv layers (BCLs)
are applied to perform convolutions on occupied parts of
the lattice for the hierarchical and spatially aware feature
learning. BCL first maps input points onto a sparse lattice
and applies convolutional operations on the sparse lattice, and
then the filtered signals are interpolated smoothly to recover
the original input points.

To reduce the computation cost, in [108], an encoding–
decoding framework is adopted. Features extracted from the
same scale of abstraction are combined and then upsampled
by 3-D deconvolutions to generate the desired output sam-
pling density. Finally, these features are interpolated by the

latent nearest-neighbor interpolation to output per-point label.
However, the downsampling and upsampling operations are
hard to preserve the edge information, and thus, cannot extract
the fine-grained features. In [40], RNNs are applied to model
dependencies of the ordered global representation derived from
the slice pooling. Similar to the sequence data, each slice is
viewed as one timestamp, and the interaction information with
other slices also follows the timestamps in RNN units. This
operation enables the model to generate dependencies between
slices.

Although Zhang et al. [65] proposed the ReLu-NN to learn
embedded point features, which is a four-layer MLP archi-
tecture. However, for objects without discriminative features,
such as shrubs or trees, their local spatial relationship is not
fully exploited. To better leverage the rich spatial information
of objects, Wang et al. [111] proposed the spatial pooling to
learn point features. The input data are clustered into groups,
and then the minimum spanning tree-based pooling is applied
to extract the spatial information among the points in the
clustered point sets. Finally, an MLP is used for classification
with these features. In order to achieve multiple tasks, such
as the instance segmentation and the object detection with
simple architecture, Wang et al. [109] proposed a similarity
group proposal network-SGPN. Within the extracted local and
global point features by PointNet, a feature extraction network
generates a matrix which is then diverged into three subsets
that each passes through a single PointNet layer to obtain
three similarity matrices. These three matrices are used to
produce a similarity matrix, a confidence map, and a semantic
segmentation map.

2) Voxel-Based Networks: In voxel-based networks,
the point clouds are first voxelized into grids, and then
features are learned from these grids. The deep network is
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finally constructed to map these features into segmentation
masks.

Wang et al. [106] conducted a multiscale voxelization
method to extract objects’ spatial information at different
scales to form a comprehensive description. At each scale,
a neighboring cubic with selected length is constructed for a
given point [112]. After that, the cube is divided into grid
voxels with different size as a patch. The smaller the size
is, the finer the scale is to provide. The point density and
occupancy are selected to represent each voxel. The advantage
of this kind of voxelization is that it can accommodate
objects with different sizes without losing their spatial space
information. In [113], the class probabilities for each voxel are
predicted using 3-D-FCNN, which are then transferred back
to the raw 3-D points based on the trilinear interpolation.
In [106], after the multiscale voxelization of point clouds,
features at different scales and spatial resolutions are learned
by a set of CNNs with shared weights, which are finally fused
together for the final prediction.

In the voxel-based point cloud segmentation task, there
are two ways to label each point: 1) using the voxel label
derived from the argmax of the predicted probabilities and
2) further globally optimizing the class label of the point cloud
based on the spatial consistency. The first method is simple,
but the result is provided at the voxel level and inevitably
influenced by noise. The second one is more accurate but
complex with an additional computation. Because the inherent
invariance of CNN networks to spatial transformations affects
the segmentation accuracy [25]. To extract the fine-grained
details for volumetric data representations, the conditional
random field (CRF) [106], [113], [114] is commonly adopted
in a postprocessing stage. The CRFs have the advantage in
combining the low-level information such as the interactions
between points to output multiclass inferences for multiclass
per-point labeling tasks, which compensate the fine local
details that CNNs fail to capture.

3) Multiview-Based Networks: As for multiview-based
models, view rendering and deep architecture construction
are two key modules for the segmentation task. The first
one is used to generate structural and well-organized 2-D
grids that can exploit existing CNN-based deep architectures.
The second one is proposed to construct the most suitable and
generative models for different data.

In order to extract local and global features simultane-
ously, some hand-designed feature descriptors are employed
for representative information extraction. In [65] and [111],
the spin image descriptor is employed to represent point-based
local features, which contains the global description of objects
from partial views and clutters of local shape description.
In [107], point splatting was applied to generate view images
by projecting the points with a spread function into the image
plane. The point is first projected into the image coordinate
system of a virtual camera. For each projected point, its
corresponding depth value and feature vectors such as the
normal are stored.

Once the points are projected into multiview 2-D images,
some discriminative 2-D deep networks can be exploited,
e.g., VGG16 [87], AlexNet [86], GoogLeNet [88], and
ResNet [89]. In [25], these deep networks have been detailed

analyzed in 2-D semantic segmentation [25]. Among these
methods, VGG16 [87], composed of 16 layers, is the most
frequently used. Its main advantage is the use of stacked
Conv layers with small receptive fields, which produces a
lightweight network with limited parameters and increasing
nonlinearity [25], [107], [115].

4) Evaluation on Point Cloud Segmentation: Due to the
high volume of point clouds, which pose a great challenge for
the computation capability. We choose the models tested on the
reduced-8 Semantic3D data set to compare their performances,
as shown in Table IV. Reduced-8 shares the same training data
as semantic-8 but only use a small part of test data, which can
also suit the high computation cost algorithm for competing.
The metrics used to compare these models are IoUi , IoU,
and OA. The computation efficiency for these algorithms is
not reported and compared due to the difference between the
computation capacity, selected training data sets, and model
architectures.

B. 3-D Objects Detection (Localization)

The detection (localization) of 3-D objects in LiDAR point
clouds can be summarized as the bounding box prediction and
objectness prediction [14]. In this article, we mainly survey
the LiDAR-only paradigm, which takes advantage of the
accurate geo-referenced point information. Overall, there are
two ways for data representation in this paradigm: one detects
and locates 3-D objects directly from point clouds [118];
another first converts 3-D points into regular grids, such
as voxel grids or BEV images and front views, and then
utilizes architectures in 2-D detectors to extract objects from
images, the 2-D detection results are finally back projected into
3-D space for final 3-D object location estimation [50]. Fig. 8
shows the representative frameworks of the above-listed data
representations for 3-D object detection.

1) 3-D Objects Detection (Localization) From Point Clouds:
The challenges for 3-D object detection from sparse and large-
scale point clouds are concluded as follows.

1) The detected objects only occupy a very limited amount
of the whole input data.

2) The 3-D object centroid can be far from any sur-
face point thus hard to regress accurately in one step.
As LiDAR sensors only capture surfaces of objects, 3-D
object centers are likely to be in empty space, far away
from any point [42].

3) The incompleteness of 3-D object shapes.
Thus, to solve the above-mentioned problems, a common
procedure of 3-D object detection and localization is com-
posed of the following processes: first, the whole scene is
roughly segmented, and then the coarse location of interest
object is approximately proposed; second, the feature for each
proposed region is extracted; finally, the localization and the
object class are predicted through a bounding box prediction
network [118], [119].

In [119], the PointNet++ [12] is applied to generate per-
point feature within the whole input point clouds. Different
from [118], each point is viewed as an effective proposal,
which preserves the localization information. Then, the local-
ization and detection prediction is conducted based on the
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TABLE IV

SEGMENTATION RESULTS ON SEMANTIC3D REDUCED-8 DATA SET

Fig. 8. DL architectures on 3-D object detection/localization with three different data representations: point cloud-based networks represented by VoteNet [42],
voxel-based networks represented by VoxelNet [13], and view-based networks represented by ComplexYOLO [116].

extracted point-based proposal features and local neighbor
context information captured by increasing receptive fields
and input point features. This network preserves the accurate
localization information but has a high computation cost for
directly operating on point sets.

In [118], 3-D CNN with three Conv layers and multiple
FC layers is applied to learn features of objects. Then, an

intelligent eye window (EW) algorithm is applied to the scene.
The label of the point that belongs to the EW is predicted
using the pretrained 3-D CNN. The evaluation result is then
inputted to the deep Q-network (DQN) to adjust the size and
position of EW. Then, the new EW is evaluated by 3-D CNN
and DQN until the EW only contains one object. EW can
reshape the bounding box size and change the window center
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automatically, which is suitable for objects with different
scales. Once the position of the object is located, the object in
the input window is predicted with learned features. In [118],
the object features are extracted based on 3-D CNN models
and then fed into the residual RNN [120] for category labeling.

Qi et al. [42] proposed the VoteNet for 3-D object detection
based on Hough voting. The raw point clouds are input to
PointNet++ [12] to learn point features. Based on these
features, a group of seed points is sampled, and votes are
generated from their neighbor features. These seeds are then
gathered to cluster the object centers and generate bounding
box proposals for a final decision. Compared with the above-
mentioned two architectures, VoteNet can localize the object
center with high accuracy. However, such a voting scheme is
only suitable for objects without large orientation variances.

2) 3-D Objects Detection (Localization) From Regular
Voxel Grid: To better exploit CNNs, some approaches voxelize
the 3-D space into voxel grids, which are represented by
scalar values, such as occupancy or vector data, extracted from
voxels [8]. In [121] and [122], the 3-D space is first split into
grids with a fixed size, and then each occupied cell is converted
into a fixed-dimensional feature vector. Nonoccupied cells
without any points are represented with zero feature vectors.
A binary occupancy and the mean and the variance of the
reflectance, and three shape factors are used to describe the
feature vector. For simplicity, in [14], the grids are represented
by a 4-D array with length, width, height, and channels.
The binary value of one channel is used to represent the
observation status of points in the corresponding grid. Zhou
and Tuzel [13] voxelized the 3-D point clouds along with the
XY Z coordinates with the predefined distance and grouped
points in grids. Then, a voxel feature encoding (VFE) layer
is proposed to achieve the interpoint interaction within a
voxel, by combining per-point features and local neighbor
features. The combination of multiscale VFE layers enables
this architecture to learn effective features from the local shape
information.

The voting scheme is adopted in [121] and [122] to perform
a sparse convolution on the voxelized grids. These grids,
weighted by the convolution kernels and their surrounding
cells in the receptive field, accumulate the votes from their
neighbors by flipping the CNN kernel along each dimension.
Finally, the voting scores for potential interest objects are
predicted. Based on this voting scheme, Engelcke et al. [122]
then used a ReLU nonlinearity to produce a novel sparse
3-D representation of these grids. This process is iterated and
stacked in conventional CNN operations and finally output
the predicting scores for each proposal. However, the voting
scheme has high computation during voting. Thus, modified
region proposal networks (RPNs) are employed by [13] in
object detection to reduce computation. This RPN is composed
of three blocks of Conv layers, which are used to downsample
filter features and upsample the input feature map to produce
a probability score map, and a regression map for object
detection and localization.

3) 3-D Objects Detection (Localization) From 2-D
Views: Some approaches also project LiDAR point clouds
into 2-D views. Such approaches are mainly composed of
those two steps: first is the projection of 3-D points; second is

the object detection from projected images. There are several
types of view generation methods to project 3-D points into
2-D images: BEV images [43], [116], [123], [124], front
view images [123], spherical projections [50], and cylindrical
projections [9].

Different from [50], in [43], [116], [123], and [124],
the point cloud data are split into grids with fixed sizes. Then,
these grids are converted to a BEV image with corresponding
three channels which encodes height, intensity, and density
information. Considering the efficiency and performance, only
the maximum height, the maximum intensity, and the normal-
ized density among the grids are converted to a single-BEV
RGB map [116]. In [125], only the maximum, the median,
and the minimum height values are selected to represent the
channels of the BEV image to exploit conventional 2-D RGB
detectors without modification. Dewan et al. [16] selected
range, intensity, and height values to represent three channels.
In [8], the feature representation for each BEV pixel is
composed of occupancy and reflectance values.

However, due to the sparsity of point clouds, the projection
of point clouds to the 2-D image plane produces a sparse
2-D point map. Thus, Chen et al. [123] added front view
representation to compensate for the missing information in
BEV images. The point clouds are projected to a cylinder plane
to produce dense front view images. In order to keep the 3-D
spatial information during projection, points are projected at
multiview angles which are evenly selected on a sphere [50].
Pang and Neumann [50] first split 3-D points into cells with
a fixed size. Then, the scene is sampled to generate multiview
images to construct positive and negative training samples.
The benefit of this operation is that the spatial relationship
and the feature of the scene can be better exploited. However,
this model is not robust to a new scene and cannot learn new
features from a constructed data set.

As for 2-D object detectors, there exist enormous
compelling deep models, such as VGG-16 [87], faster
R-CNN [126]. In [23], a comprehensive survey of 2-D detec-
tors for object detection is concluded.

4) Evaluation on 3-D Objects Localization and Detection:
In order to compare 3-D objects localization and detection
deep models, KITTI BEV benchmark and KITTI 3-D object
detection benchmark [60] are selected. As reported in [60],
all nonoccluded and weakly occluded (<20%) objects which
are neither truncated nor smaller than 40 pixels in height are
evaluated. Truncated or occluded objects are not counted as
false positives. Only a bounding box overlap of at least 50%
results for pedestrian and cyclist, and 70% results for the
car are considered for detection, localization, and orientation
estimation measurements. Besides, this benchmark classifies
the difficulties of tasks into three types: easy, moderate, and
hard.

Both the accuracy and execution time are compared to
evaluate these algorithms because detection and localization
in real time are crucial for AVs [127]. For the localization
task, the KITTI BEV benchmark is chosen as the evaluation
benchmark, and the comparison results are shown in Table V.
The 3-D detection is evaluated on the KITTI 3-D object detec-
tion benchmark. Table V shows the run time and the average
precision (AP3D) on the validation set. For each bounding box

Authorized licensed use limited to: Jonathan Li. Downloaded on August 23,2020 at 00:59:34 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

3-D CAR LOCALIZATION PERFORMANCE ON KITTI BEV BENCHMARK: AVERAGE PRECISION ( APloc [%])

overlap, only 3-D IoU exceeds 0.25/0.5/0.7 is considered as a
valid detection box and 0.5/0.7 for a localization box [127].

C. 3-D Object Classification

Semantic object classification/recognition is crucial for safe
and reliable driving of AVs in unstructured and uncontrolled
real-world environments [67]. Existing 3-D object detection
are mainly focus on CAD data (e.g., ModelNet40 [30]) or
RGB-D data (e.g., NYUv2 [128]). However, these data have
uniform point distribution, complete shapes, limited noise,
occlusion, and background clutter, which pose limit challenges
for 3-D classification compared with LiDAR point clouds [10],
[12], [129]. Those compelling deep architectures applied on
CAD data have been analyzed in the form of four types of data
representations in Section III. In this part, we mainly focus on
the LiDAR data-based deep models for the classification task.

1) Volumetric Architectures: The voxelization of point
clouds depends on the data spatial resolution, orientation, and
the origin [67]. This operation which can provide enough
recognizable information but not increase the computation cost
is crucial for DL models. Thus, for LiDAR data, a voxel
with spatial resolution, such as (0.1 m)3 is adopted in [67]
to voxelize the input points. Then, for each voxel, binary
occupancy grid, density grid, and hit grid are calculated to esti-
mate its occupancy. The input layer, Conv layer, pooling layer,
and FC layer are combined to exploit the spatial structure
among data and extract global features via pooling. However,
the FC layer produces high computation cost and loses the
spatial information between voxels. In [130], based on the
VoxNet [67], 3-D voxel grids are input to two Conv layers
with 3-D filters followed by two FC layers. Different from
other category-level classification tasks, this task is treated as
a multitask problem, where the orientation estimation and the
class label prediction are processed parallel.

For simplicity and efficiency, Zhi et al. [93] and
Ma et al. [131] adopted the binary grid of [67] to reduce
the computation cost. However, they only consider the voxels
inside the surface, ignoring the difference between unknown
and free space. Normal vectors, which contain geo-local
position and orientation information, have been demonstrated
stronger than the binary grid in [132]. Similar to [130],
the classification is treated as two tasks: the voxel object class
predicting and the orientation prediction. To extract local and
global features, there are two subtasks in the first task: the
first is to predict the object label referencing the whole input
shape while the second predicts the object label with part of
the shape. The orientation prediction is proposed to exploit the
orientation augmentation scheme.

2) Multiview Architectures: The merit of view-based meth-
ods is their ability to exploit both local and global spatial
relationships among points. Luo et al. [45] designed the three
feature descriptors to extract local and global features from
point clouds: the horizontal geometric structure, the vertical
information, and the complete spatial information. To better
leverage the multiview data representations, You et al. [91]
integrated the merits of point cloud and multiview data to
achieve better results than MVCNN [76] in 3-D classification.
Besides, the high-level features extracted from view represen-
tations based on MVCNN [76] are embedded with an attention
fusion scheme to compensate the local features extracted from
point clouds. Such attention-aware features are proved efficient
in representing discriminative information of 3-D data.

However, for different objects, the view generation process
varies because the special attributes of objects can contribute
to computation saving and accuracy improving. For example,
in road marking extraction tasks, the elevation derived mainly
from Z coordinate contributes little to the algorithm. But
the road surface is actually a 2-D structure. As a result,
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TABLE VI

3-D CLASSIFICATION PERFORMANCE ON THE SYDNEY
URBAN OBJECTS DATA SET [45]

Wen et al. [47] directly projected 3-D point clouds onto a
horizontal plane and girded it as a 2-D image. Luo et al. [45]
input the acquired three-view descriptors separately to capture
low-level features. Then, high-level features are learned by a
convolutional operation based on the input features. Finally,
the prediction scores are fused as output. The well-designed
view descriptors help the network achieve compelling results
in object classification tasks.

Wen et al. [47] proposed a modified U-net model to classify
road markings. The point clouds are first mapped into the
intensity images. Then, a hierarchical U-net module is applied
to classify road markings by multiscale clustering via CNNs.
Due to such downsampling and upsampling operation is hard
to preserve the fine-grained patterns, a GAN network is
adopted to reshape small-size road markings, broken lane
lines, and missing markings considering the expert context
knowledge. This architecture exploits the efficiency of U-net
and completeness of GAN to classify the road markings with
high efficiency and accuracy.

3) Evaluation on 3-D Objects Classification: There is lim-
ited published LiDAR point cloud benchmark specific for the
3-D object classification task. Thus, the Sydney Urban Objects
data set is selected due to the performance of several state-of-
the-art methods are available. The F1 score is used to evaluate
these published algorithms [45], as shown in Table VI.

VI. RESEARCH CHALLENGES AND OPPORTUNITIES

DL architectures developed in recent five years using
LiDAR point clouds have made significant success in the
field of autonomous driving detailing for 3-D segmentation,
detection, and classification tasks. However, there still exists a
huge gap between cutting-edge results and human-level perfor-
mance. Although there is much work to be done, we mainly
summarize the remaining challenges specific for data, deep
architectures, and tasks as follows.

1) Multisource Data Fusion: To compensate the absence
of 2-D semantic, textual and incomplete information in 3-D
points, imagery, LiDAR point clouds, and radar data can be
fused to provide accurate, geo-referenced, and information-
rich cues for AVs’ navigation and decision making [133].
Besides, there also exists a fusion between data acquired

by low-end LiDAR (e.g., Velodyne HDL-16E) and high-
end LiDAR (e.g., Velodyne HDL-64E) sensors. However,
there exist several challenges in fusing these data. The first
is the sparsity of point clouds causes the inconsistent and
missing data when fusing multisource data. The second is
that the existing data fusion scheme using DL knowledge
is processed in a separate line, which is not an end-to-end
scheme [41], [119], [134].

2) Robust Data Representation: The unstructured and
unordered data format [10], [12] poses a great challenge
for robust 3-D DL applications. Although there are several
effective data representations, such as voxels [67], point
clouds [10], [12], graphs [74], [129], 2-D views [78], or novel
3-D data representations [135]–[137], there has not yet agreed
on a robust and memory-efficient 3-D data representation.
For example, although voxels solve the ordering problem,
the computation cost increases cubically with the increment
of voxel resolution [30], [67]. As for point clouds and graphs,
the permutation invariance and the computation capability
limit the processable quantity of points, which inevitably
constrains the performance of the deep models [10], [74].

3) Effective and More Efficient Deep Frameworks: Due
to the limitation of memory and computation facilities of
the platform embedded in AVs, effective and efficient DL
architectures are crucial for the wide application of automated
AV systems. Although there are significant improvements
in 3-D DL models, such as PointNet [10], PointNet++ [12],
PointCNN [71], DGCNN [74], RotationNet [78], and other
work [52], [138]–[140]. Limited models can achieve robust
real-time segmentation, detection, and classification tasks.
Researches should focus on lightweight and compact archi-
tecture designing.

4) Context Knowledge Extraction: Due to the sparsity of
point clouds and incompleteness of scanned objects, detailed
context information for objects is not fully exploited. For
example, the semantic contexts in traffic signs are crucial
cues for AVs navigation, but existing deep models can-
not extract such information completely from point clouds.
Those approaches [141]–[143] have demonstrated significant
improvements in context information extraction using the
multi-scale feature fusion strategy. Besides, GAN [47] can
be utilized to improve the completeness of 3-D point clouds.
However, these frameworks cannot solve the sparsity and
incompleteness problems for context information extraction in
an end-to-end trainable way.

5) Multitask Learning: The approaches related to LiDAR
point clouds for AVs consist of several tasks, such as scene
segmentation, object detection (e.g., cars, pedestrians, traffic
lights, and so on), and classification (e.g., road markings
and traffic signs). All these results are commonly fused
together and reported to a decision system for final control [1].
However, there are a few DL architectures combining these
multiple LiDAR point cloud tasks together [15], [130]. Thus,
the inherent information among them is not fully exploited
and used to generalize better models with less computation.

6) Weakly Supervised/Unsupervised Learning: The exist-
ing state-of-art deep models are commonly constructed
under supervised modes using labeled data with 3-D
objects bounding boxes or per-point segmentation masks [8],
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[74], [119]. However, there are some limitations for fully
supervised models. First is the limited availability of high-
quality, large-scale, and enormous general object data sets
and benchmarks. Second is the ineffective, fully supervised
model generalization capability to unseen or untrained objects.
Weakly supervised [144] or unsupervised learning [145], [146]
should be developed to increase the model’s generalization and
solve the data absence problem.

VII. CONCLUSION

In this article, we have provided a systematic review of the
state-of-the-art DL architectures using LiDAR point clouds
in the field of autonomous driving for specific tasks, such
as segmentation, detection, and classification. Milestone 3-D
deep models and 3-D DL applications on these three tasks
have been summarized and evaluated with merits and demerits
comparison. Research challenges and opportunities were listed
to advance the potential development of DL in the field of
autonomous driving.
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