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Abstract: Building extraction has been researched for decades as a prerequisite for many 16 

applications, and is still a challenging research topic in the field of photogrammetry and remote 17 
sensing. Due to the lack of spectral information, massive data processing, and approach 18 
universality, building extraction from point clouds is still a thorny and challenging problem. In 19 
this paper, a novel deep learning-based framework is proposed for building extraction from point 20 
cloud data. In particular, first, a sample generation method is proposed to split the raw 21 
preprocessed multi-spectral LiDAR data into numerous samples, the samples, which could be 22 
directly fed into convolutional neural networks and cover the original inputs. Then, a graph 23 
geometric moments (GGM) convolution is proposed to encode the local geometric structure of 24 
point sets. In addition, a hierarchical architecture equipped with GGM convolution, called GGM 25 
Convolutional Neural Networks, is proposed to train and recognize building points. Finally, the 26 
test scenes with varying sizes can be fed into the framework and obtain a point-wise extraction 27 
result. We evaluate the proposed framework and methods on the airborne multi-spectral LiDAR 28 
point clouds. Compared with a representative set of previous state-of-the-art networks, our 29 
method achieved the best performance with a completeness of 95.0%, a correctness of 87.1%, an 30 
F-measure of 90.3%, and an IoU of 82.4% on two test areas. The experimental results confirm the 31 
effectiveness and efficiency of the proposed framework and methods. 32 

Keywords: building extraction; airborne multi-spectral LiDAR point clouds; Graph Geometric 33 
Moments; Convolutional Neural Networks. 34 

 35 

1. Introduction 36 

Building extraction from remote sensing data is a prerequisite for many applications, such as 37 
3D (three-dimensional) building modeling, city planning, disaster assessment, and updating of 38 
digital maps and GIS databases [1,2,3,4,5]. Airborne Light Detection and Ranging (LiDAR) data 39 
have been extensively used for building extraction as they provide high accuracy, large area 40 
coverage, fast acquisition of dense point clouds, and additional information. Due to the lack of rich 41 
spectral information of LiDAR data, many studies integrated LiDAR data with high spatial 42 
resolution multi-spectral images to improve the performance of building extraction [27,28]. They try 43 
to combine the two different data sources in an optimal way so that their weaknesses can be 44 
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compensated effectively. However, how to accurately register different data sources to the same 45 
spatial coordinate system is still an open problem [6]. 46 

With the development of sensor technology, some institutes and companies have successively 47 
introduced prototypes of multi-spectral and even hyper-spectral LiDAR systems. For example, 48 
Teledyne Optech’s Titan, the first commercial multi-spectral LiDAR system, was released in 49 
Canada in December 2014. Multi-spectral LiDAR data provide relatively complete and consistent 50 
spectral information and spatial geometric structure information, which has obvious advantages for 51 
building extraction tasks. 52 

At the approach level, although there are recent advances in LiDAR data analysis, several 53 
challenges still remain, especially in the areas of massive data processing, approach universality, 54 
and process automation. Traditionally, the classical machine learning methods are still considered 55 
as a useful tool in this field [7]. The paradigmatic architectures initially transform the raw data into 56 
a multi-dimensional feature space, usually called “feature representation”, and then optimally 57 
estimate by linear or nonlinear associations so as to map the features into desired outputs. Typical 58 
techniques, including support vector machines (SVMs) [8], conditional Markov random fields [9], 59 
region-growing [10], k-means [11] and graph cut algorithms [12], are quite commonly used. 60 
However, the extraction performance of these methods is highly affected by the parameters and 61 
adopted features, which are usually content and/or application dependent. 62 

 In recent years, the success of deep convolutional neural networks (CNNs) for image 63 
processing has motivated the data-driven approaches to extract buildings from airborne LiDAR 64 
data. In current studies, CNNs were applied to the existing architectures [13][14], or simply served 65 
as a powerful classifier[15]. Nevertheless, due to the unstructured properties of point clouds, these 66 
CNN-based methods had to convert the raw point clouds, or the chosen feature representations 67 
from the raw point clouds, which still did not completely solve the drawbacks of traditional 68 
data-driven methods and did not make full use of the inference ability of CNNs. The key challenges 69 
of introducing deep learning methods into building extraction from airborne LiDAR data are still to 70 
be resolved. 71 

To address these issues, in this paper, we propose a novel deep learning-based framework for 72 
building extraction from point cloud data. With this framework, the LiDAR data or multi-spectral 73 
LiDAR data could be directly used for building extraction without transforming them into other 74 
data forms, e.g. the multi-view projected images, digital surface model (DSM) or digital terrain 75 
model (DTM). Besides, the universality of the framework allows to handle any size of scenes and 76 
any shape of buildings without beforehand limitations or assumptions. In addition, the flexibility of 77 
the framework allows to replace the model (CNNs) freely. 78 

The main contributions of this paper are listed as follows: 79 
 We propose a deep learning-based framework for building extraction from point cloud data, 80 

which only inputs raw point clouds and directly outputs point-wise building extraction results. 81 
 We propose a sample generation method to generate the samples from raw point cloud data, 82 

which not only have structured data form to meet the input requirement of CNNs, but also 83 
achieve the full coverage of the original input point clouds. 84 

 We propose a novel learn-from-geometric-moments convolution operator, called GGM 85 
convolution, which can explicitly encode the local geometric structure of a point set. 86 

 A hierarchical architecture equipped with the GGM convolution, called GGM Convolutional 87 
Neural Networks, is proposed. It achieves the best performance on two test areas, compared 88 
with a representative set of previous state-of-the-art networks. 89 
The rest of this paper is organized as follows: Section 2 discusses the related work to this 90 

subject. Section 3 introduces the study area and the data preprocessing method used in this paper. 91 
Section 4 details the methodology. Section 5 presents the experimental results. Section 6 provides 92 
the concluding remarks and suggestions for future work. 93 

2. Related Work  94 
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To our best knowledge, there are no previous studies about building extraction directly from 95 
multi-spectral LiDAR data. Thus, we can only review the previous works with two categories of 96 
input data, the raw LiDAR data and the integration of raw LiDAR data and additional remotely 97 
sensed data, at the data level. At the approach level, generally, there are two main branches of the 98 
methods for building extraction using LiDAR data: model-driven and data-driven approaches. The 99 
model-driven approaches estimate the buildings by fitting the input data to a hypothetical model 100 
library[10][16], e.g. flat and gable. Thus, the extraction result is always topologically correct and 101 
relatively robust as compared to data-driven approaches. However, for a complex building, the 102 
respective model may not present in the model library. For instance, [17] interpolate LiDAR raw 103 
data into grid digital surface model (DSM) by considering the steep discontinuities of buildings. In 104 
contrast, the data-driven approaches have no constraint on the building appearance, and can 105 
recognize the buildings with any shapes. Since the deep learning-based methods belong to the 106 
data-driven approaches, we will review the most important data-driven methods categorized by 107 
their inputs, and discuss the current published deep learning related methods in particular. 108 

2.1. The raw LiDAR input & data-driven methods 109 

Maas and Vosselman [18] presented two techniques for the determination of building models 110 
from laser scanner data. Based on invariant moments technique, the parameters of a standard gable 111 
roof type building model could be determinated as closed solutions. In addition, the analysis of 112 
deviations between the point cloud and the model does allow for modelling asymmetries. 113 
Nonparametric buildings with more complex roof types can also be modelled by intersecting planar 114 
faces in triangulated point clouds. 115 

Dorninger and Pfeifer [10] proposed a comprehensive approach for automated determination 116 
of 3D city models from Airborne Laser Scanning (ALS) data. The approach was based on the 117 
assumption that individual buildings can be modeled properly by a composition of a set of planar 118 
faces. The approach consisted of a number of steps. The first step was to select the building region by 119 
a region-growing algorithm, which resulted in one complete building extracted from the point cloud. 120 
Then, the mean shift segmentation algorithm was used to estimate the boundaries of buildings, and 121 
the building outline determination was initiated by mean shift segmentation and planar face 122 
extraction. Finally, the building outline was regularized by the determination of a 2D-shape, and the 123 
building model was generated by the determination of polygonal boundaries of each planar face. 124 
The approach can generate the detailed 3D building models with rooftop overhangs, but there are 125 
manual interventions required during the preprocessing and post-processing steps. Besides, for the 126 
complex building rooftop structures, the interior structure lines cannot be well extracted. 127 

Zhou and Neumann [19] proposed an automatic algorithm which reconstructed building 128 
models from ALS data of urban areas. There are several major distinct features in their algorithm 129 
developed to enhance efficiency and robustness: (1) they designed a novel vegetation detection 130 
algorithm based on differential geometry properties and unbalanced SVM; (2) they used a fast 131 
boundary extraction method to produce topology-correct water tight boundaries; (3) they proposed 132 
a data-driven algorithm which automatically learned the principal directions of roof boundaries and 133 
used them in footprint production. However, since each primitive boundary was processed 134 
separately, the generated models via this approach cannot guarantee their compactness and 135 
watertightness. 136 

Poullis and You [20] proposed a method for the rapid reconstruction of photorealistic 137 
large-scale virtual environments. They represented a parameterized geometric primitive for the 138 
automatic building identification and reconstruction. They reconstructed buildings with complex 139 
roofs containing complex linear and nonlinear surfaces by using a linear polygonal and a nonlinear 140 
primitive, respectively. An extension of this work was proposed by Poullis [55], which proposed a 141 
complete framework for the automatic modeling of buildings over large areas. Furthermore, the 142 
segmentation and boundaries were refined by using a fast energy minimization process in this 143 
approach. Nevertheless, because all the building boundaries are regarded as piece-wise linear, the 144 
nonlinear boundaries cannot be well processed. 145 
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Sampath and Shan [12] presented a solution framework for the segmentation and 146 
reconstruction of polyhedral building roofs from ALS data. The proposed segmentation method 147 
contained three steps. Firstly, the eigen analysis was carried out for each roof point of a building 148 
within its Voronoi neighborhood. Then, the fuzzy k-means method was used to cluster the surface 149 
normals of all planar points. Finally, the parallel and coplanar segments were separated based on 150 
their distances and connectivity, respectively. Although the feature elements of the most sampled 151 
rooftops could be obtained by adjacency matrix, the complex rooftop models, e.g. dutch gable 152 
rooftop, would not be generated correctly. 153 

You and Lin [21] presented an approach based on the tensor voting framework for extracting 154 
building features from ALS data. They represented geometric features of ALS data by a tensor field, 155 
and extracted roof patches by a region-growing method with principal features developed from the 156 
properties of eigenvalues and eigenvectors of the tensor field. Additionally, they proposed three 157 
new indicators for strengthening, the features to reduce the effect of the number of points on feature 158 
identification, and a supervised method to determine the threshold of planar feature strength for the 159 
region-growing. 160 

Kim and Shan [22] presented a approach to building roof modeling from ALS data. The rooftop 161 
was segmented by minimizing an energy function formulated as a multiphase level set. The roof 162 
ridges or step edges were delineated by the union of the zero level contours of the level set functions. 163 
Finally, the coplanar and parallel roof segments were separated into individual roof segments based 164 
on their connectivity and homogeneity. 165 

Sun and Salvaggio [23] presented an automated method to create 3D watertight building 166 
models from ALS data. They used a graph cuts based method to segment vegetative areas from the 167 
rest of scene content, and proposed the hierarchical Euclidean clustering technique to extract the 168 
ground terrain and building rooftop patches. However, this approach assumed that the boundaries 169 
of all parts of a complex rooftop are rectilinear, which affects the extraction accuracy of building 170 
models with nonlinear boundary rooftops. 171 

Zou et al. [24] proposed a method for extracting building point sets from ALS data. The method 172 
was based on a strip strategy to filter building points and extract the edge point set in large-scale 173 
urban building groups. This approach divided the ALS data into small strips and classified each 174 
strip of data with an adaptive-weight polynomial in the x  or ydirection. Then, the building 175 

edge sets were extracted by utilizing the regional clustering relationships between points. 176 
Santos et al. [25] proposed a building roof boundary extraction method from ALS data. The 177 

method overcame the limitation of the original alpha-shape algorithm by applying an adaptive 178 
strategy. It estimated a local parameter   for each edge based on local point spacing, instead of 179 
using a global parameter. 180 

2.2. The fusion of raw LiDAR and additional data input & data-driven methods 181 

In contrast to the aforementioned building extraction approaches, which only use the raw ALS 182 
data as the input data, there are vast methods using the additional data, e.g. DSM, DTM, 183 
orthoimagery and multi-spectral orthoimagery, to enhance the extraction performance. 184 

Liu et al. [26] applied the Locally Excitatory Globally Inhibitory Oscillator Networks (LEGION) 185 
to the segmentation of buildings. They developed a modified LEGION segmentation model to 186 
extract buildings from high-quality digital surface models (DSMs). This approach extracted 187 
buildings without the assumptions on the underlying structures in the DSM data and without the 188 
prior knowledge of the number of regions. 189 

Mohammad et al. [28] proposed a method for automatic 3D roof extraction through an 190 
integration of ALS data and multi-spectral orthoimagery. They separated ground points and 191 
non-ground points by using the ground height from a DEM. The structural lines were extracted from 192 
the grey-scale version of the orthoimage, and classified into several classes such as ‘ground’, ‘tree’, 193 
‘roof edge’, and ‘roof ridge’ using the ground mask, the NDVI image, and the entropy image. Their 194 
further work [29] added the texture information from the orthoimagery for building extraction. The 195 
region-growing technique was iteratively applied to segment non-ground points. Finally, they 196 
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proposed a rule-based procedure to remove planes constructed on trees. Compared with their works 197 
[30], [31], which only use ALS data as the input data, this method has further enhanced the building 198 
extraction effectiveness. 199 

Gilani et al. [32] proposed a method to extract and regularize the buildings using features from 200 
ALS data and orthoimagery. Firstly, the method identified the candidate building regions and 201 
segmented them into grids via the building delineation process. Then, the method synthesized the 202 
point cloud and image data to eliminate vegetation, detect building and extract their partially 203 
occluded parts. Finally, the detected buildings were regularized by exploiting the image lines in the 204 
building regularization process. 205 

2.3. The deep-learning related methods 206 

With the success of deep convolutional neural networks for image processing, many 207 
researchers try to apply CNNs to extract buildings on ALS data. But it is still a primeval field to 208 
research. To our best knowledge, there are few approaches using the deep learning related methods 209 
to extract buildings from ALS data.  210 

Bittner et al. [13] proposed a method to automatically generate a building mask out of a DSM 211 
using a Fully Convolution Network (FCN) architecture. Firstly, the FCN was trained on a large set of 212 
patches consisting of normalized DSM as inputs and ground-truth building masks as target outputs. 213 
Then, the trained predictions from the FCN were enabled to create a final binary building mask. 214 
Although the method dosed not required any assumptions on the shape and size of buildings, it 215 
cannot directly work on raw ALS data, which needs to generate DSM from the ALS data first. 216 

Nahhas et al. [14] proposed a building detection approach based on deep learning using the 217 
fusion of ALS data and orthophotos. This approach utilized object-based analysis to create objects 218 
and transformed low-level features into compressed features via a feature-level fusion. Then, a 219 
convolutional neural network (CNN) was used to transform the compressed features into high-level 220 
features, which could be used to differentiate the buildings and the background. However, in this 221 
approach, the point clouds were filtered to create DSM, DEM, and nDSM samples, then they were 222 
fused with orthophotos feeding into the CNN, which means it also cannot directly work on raw ALS 223 
data. 224 

Maltezos et al. [15] proposed a building extraction method from ALS data by applying deep 225 
convolutional neural networks. Firstly, they augmented the raw ALS data with seven additional 226 
features, e.g. Normalized Height and Entropy. Then, a CNN model was adopted for coding the 227 
inputs into structures that were the best for the classification performance. Nevertheless, the method 228 
merely considered the CNN as a powerful classifier, extracted the additional features from raw ALS 229 
data and then combined with the orthoimage to feed to the classifier to enhance the performance. 230 

3. Study area and data preprocessing 231 

3.1. Study area 232 

As shown in Figure 1, the study area is a small town located in Whitchurch-Stouffville, Ontario, 233 
Canada with an area of 2,052m1,566m and the center position at latitude and longitude of 43°58'00", 234 
79°15'00", respectively[53]. We choose 13 typical scenes as the training and test scenes, which 235 
indicates with red boxes (training scenes) and blue boxes (test scenes) in Figure 1. Each selected 236 
scene contains a rich variety of objects, such as roads, trees, grass, buildings, and soil, which 237 
contribute to our method study in a real-world complex scene. Table 1 shows the size and total 238 
number of points in each selected scene. 239 

The experimental data were collected by using an airborne Titan multi-spectral LiDAR system, 240 
produced by the Teledyne Optech. The detailed specifications of the multi-spectral LiDAR system 241 
are presented in Table 2. Radiometric correction has been applied to the Titan multi-spectural 242 
LiDAR data [54] before we test them on building extraction tasks. Since the system parameters and 243 
trajectories were unavailable, the three channels of intensities were directly used from the LiDAR 244 
outputs without intensity calibration. Iterative closest points (ICP) was used to roughly register 245 
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these strips. Similarly, without control points or reference points, the geometric quality is not 246 
statistically reported. Thus, we selected the study area from the one strip for assessing our building 247 
extraction method. 248 

 

Figure 1. The study area, the general view of the selected scenes and a sample of the corresponding 249 
labeled data.  250 

Table 1. The size and total number of points in each selected scene.  251 

 Area_1 Area_2 Area_3 Area_4 Area_5 Area_6 Area_7 Area_8 Area_9 Area_10 Area_11 Area_12 Area_13 

Size(m2) 176938 98813 178668 104882 153575 108009 129332 149907 241053 149838 163088 165978 162742 

Points 697838 425409 747342 418220 556183 325924 598398 695190 887487 653780 864581 758588 626285 

Table 2. Specifications of the Titan Airborne System.  252 

Parameters Channel 1 Channel 2 Channel 3 

Wavelength(nm) 1550 (SWIR) 1064 (NIR) 532 (GREEN) 

Deflection Angle(°) 3.5 (forward) nadir 7 (forward) 

Flight Altitude(m) ~1000 ~1000 ~1000 

Point Density(/m2) 3.6 3.6 3.6 

3.2. Data preprocessing 253 

As we can see in Table 2, the original acquired raw Multi-spectral LiDAR data contains three 254 
channels of individual spatial coordinates and spectral values. Thus, we have to preprocess the 255 
original individual data into the fused data firstly. In this paper, we adopt the same data 256 
preprocessing strategy as in [53]. 257 

The Titan multi-spectral LiDAR system generates three independent point clouds in three 258 
channels, 1550 nm, 1064 nm, and 532 nm. To improve the efficiency of point cloud data 259 
preprocessing, especially for the Titan multi-spectral LiDAR data, we merged the three 260 
independent point clouds into a single point cloud, where each point contains three spectral 261 
wavelengths. Specifically, one of the three single-wavelength point clouds was taken as the 262 
reference data, in which each point was processed to find its neighbors in the other two 263 
wavelengths of point clouds using a nearest neighbor searching algorithm. Because the average 264 
point density of a single wavelength was about 3.6 points/m2, the searching distance in this study 265 
was set to 1.0 m to obtain sufficient points in the two wavelengths of point clouds. To obtain the 266 
intensities of the two other wavelengths, an inverse-distance-weighted (IDW) interpolation method 267 
was used. If there were no neighboring points in one of the two wavelengths, the intensity value of 268 
this wavelength was set to zero. In this way, three wavelengths were merged into a single, 269 
multi-spectral point cloud. 270 

4. Methodology 271 

4.1. Framework Overview 272 

Ontario

Whitchurch-Stouffville
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Figure 2. Framework of Building Extraction.  273 

After data preprocessing, we obtain the available multi-spectral LiDAR data. As a supervised 274 
method, we have to manually label each of the selected training and test areas before we feed them 275 
into the framework. 276 

As shown in Figure 2, our proposed building extraction framework consists of two main stages. 277 
Firstly, we feed the labeled training scenes into the GGM Convolutional Neural Networks. Then, 278 
we use the trained model to recognize the building points from the input test scenes. Remarkably, 279 
the framework requires only point cloud data as input and directly outputs the labels of each point 280 
in the test scenes. There are no limitations about the number of training and test scenes, and the size 281 

of each input scenes. The framework dose not require any assumptions of the shape and size of the 282 

buildings. Furthermore, the model used for training and test is replaceable. That is, any networks, 283 
only if they can output the required data form, can be applied in this framework. 284 

During the sample generation stage, the training and test scenes are split into individual 285 
samples with a fixed size. Thus, the sampled data could be directly fed into the neural networks. 286 
And the input scenes are completely covered by the sampled data at the same time. The details are 287 
illustrated in Section 4.2. 288 

For the building points recognition task, we design a convolution operator, called GGM 289 
Convolution, which learns local geometric features from geometric moments representation of a 290 
local point set. Then, a hierarchical architecture equipped with the GGM Convolution contributes to 291 
our model, called GGM Convolutional Neural Networks. The related details are illustrated in 292 
Section 4.3. 293 

4.2. Sample Generation 294 

Due to the unstructured properties of point clouds, the characteristics of point clouds in 295 
sparsity, permutation invariance, and transformation invariance, are the thorny problems for 296 
standard convolution implementations. For building extraction tasks, many researchers transform 297 
the point cloud data into multi-view projected images before feeding them to a standard 298 
convolutional neural network. And few researchers separate the whole scene into many cuboid 299 
regional subsets, and utilize the down-sampling and up-sampling techniques to meet the data form 300 
requirement of standard convolutional neural Networks. However, the number of points in unit 301 
area is not fixed and the sampling techniques damage the scene integrity, which cannot ensure that 302 
every point in the original scene could be labeled. 303 

Input Data Sample Generation Building Points Recognition

Model Training

Output Extraction Result

Training Scenes

Test Scenes

  
  

GGM 

Convolutional 

Neural 

Network

GGM 

Convolutional 

Neural 

Network
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Figure 3. Sample generation workflow with the FPS-KNN method. 304 

Inspired by RandLA-Net[33], we propose an FPS-KNN sample generation method to generate 305 
the training and test samples for neural networks. The samples generated by the FPS-KNN not only 306 
satisfy the data form requirement of standard convolutional neural Networks, but also achieve the 307 
full coverage of the scene. Figure 3 shows the data processing workflow with the FPS-KNN method. 308 
The details of the FPS-KNN sample generation method are carried out as follows: 309 

Step 1: For a given scene, we duplicate an identical point set as the evaluation point set. We 310 
randomly choose one point in the evaluation point set as the seed point, and search its K nearest 311 
neighbors in the original point set, the value of K is set depending on the sample size, e.g. if each 312 
sample contains 4096 points, then the value of K is configured as 4096. 313 

Step 2: We calculate the distance from the rest points in the evaluation point set to the seed 314 
point and select the most distant point as the next seed point. The seed point and its K nearest 315 
neighboring points are saved as one sample, and removed from the evaluation point set. 316 

Step 3: We iteratively find the farthest point as the seed point in the evaluation point set, search 317 
its K nearest neighbors in the original point set and remove the sampled points from the evaluation 318 
point set, until the evaluation point set is empty. 319 

Thus, we obtain numerous samples with the fixed number of points from the given scene, 320 
which can be directly fed into a standard convolutional neural network. At the same time, we can 321 
ensure that every point in the scene is contained in some samples, which means the full coverage of 322 
the scene. We also notice that some samples are inevitably overlapped. For the points within the 323 
overlapped part, we choose the most predicted label as its final predicted label. 324 

In this way, theoretically, for any scene, we can generate samples directly feeding into neural 325 
networks by using the FPS-KNN sample generation method and obtain the predicted label for 326 
every point in the scene. 327 

4.3. Graph Geometric Moments Convolutional Neural Networks 328 

4.3.1. Geometric Moments 329 

Moments and functions of moments have been widely utilized as pattern features in pattern 330 
recognition[34][35][36], edge detection[37][38], image segmentation[39], texture analysis[40] and 331 
other domains of image analysis[41][42] and computer vision[43][44]. 332 

The general two-dimensional qp th order moments of a density distribution function 333 

),( yxf  is defined as follows: 334 

·

··

Input Scene FPS-KNN Output Sampled Data

. . .

. . .
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For a raw point cloud, we define its geometric moments representation referring to [45] as 342 
follows: 343 
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1M and 2M  are the first and second order geometric moments of the original point cloud data, 344 

respectively. The higher order moments give more detailed shape characteristics[40], which means 345 
more comprehensive geometric features in deep learning. 346 

The moment-based methods have advantageous qualities like translation and rotation 347 

invariance, both of which are important properties for feature descriptors. Translation invariance is 348 

obtained by using the central moments for which the origin is at the centroid of the density 349 

function[40]. For 3D objects, the translation invariance is obtained by using the central moments 350 

pqr  defined in the same way as for 2D objects[34]. The central moments pqr  is defined as 351 

follows: 352 

3

( ) ( ) ( ) ( , , )p q r

pqr x x y y z z f x y z     , (6) 

where ),,( zyx  is the centroid of the object, which can be obtained from the first order moments 353 

100

000

m
x

m
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000

001

m

m
z  . (7) 

Mo-Net [45] firstly utilizes the second order geometric moments representation of point clouds 354 
as the input features fed into the networks. Compared with PointNet [46], which only considers the 355 
first order geometric moments, Mo-Net validates the function of higher order geometric moments. 356 
Inspired by that, we design our network to learn features from the geometric moments 357 
representation of point clouds. 358 

4.3.2. Graph Generation 359 

Since the Graph Neural Networks(GNNs) proposed by [47], it has been widely used in learning 360 
on unstructured data. GNNs apply neural networks for walks on the graph structure, propagating 361 
node representations until a fixed point is reached. The resulting node representations are then 362 
used as features in classification and regression problems [48]. To apply the graph neural network 363 
to the point cloud, first, we need to convert it to a directed graph. 364 

A graph G  is a pair ),( EP  with },,{ 1 nppP   denoting the set of vertices and 365 

PPE   representing the set of edges. As the consideration of computational complexity, most 366 

of the networks would rather construct a k-nearest neighbors(KNN) than a fully connected edges for 367 
the whole point cloud.  368 

As shown in Figure 4, we utilize the k-nearest neighbors of each point to construct a local 369 

directed graph. In this local directed graph, point ip is a central node, and ije  are the edges 370 

between the central node and its k-nearest neighbors, which are calculated as follows: 371 
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where ijp  are the neighbors of the central point ip . 372 
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Figure 4. Graph Construction of a point cloud. The ip , jp , kp , lp , mp are the points in the point 373 

cloud. The jp , kp , lp , mp on the left and 1 4{ , , }i ip p on the right are the nearest neighbors of374 

ip . The directed edges 1 4{ , , }i ie e  are the edges from the neighbors to the central point. 375 

4.3.3. GGM Convolution 376 

 

Figure 5. Architecture of the GGM Convolution. 377 

Consider an F -dimensional point cloud with n  points, denoted by 
F

n RppX  },,{ 1 . 378 

For the simplest setting of F = 3, each point only contains its 3D coordinates ),,( iiii zyxp  ; it is 379 

also possible to contain the additional per-point features, e.g. color, surface normal, and spectral 380 
value. In a hierarchical neural network, the subsequent layer operates on the output of the previous 381 

layer, so more generally the dimension F represents the feature dimension of a given layer[49], 382 
which indicates as the point features in Figure 5. 383 

As show in Figure 5, the point features are combined with its 3D coordinates as the input to the 384 
GGM convolution, and the GGM convolution contains two main branches. The bottom branch 385 
indicates the input point features directly fed into a Multi-Layer Perceptrons (MLP), through which 386 
the dimension of the input features would be raised. The other branch is designed to extract the 387 
local features of each point. Firstly, we construct a local directed graph by searching its k-nearest 388 
neighbors and calculate the first and second order geometric moments representations of the point 389 
and its local directed edges, respectively. Then, they were separately fed into two independent 390 
MLPs, and the output of the MLP on the top branch is aggregated by the average-pooling operation. 391 
Finally, an addition operation is utilized to fuse all the outputs. 392 

The reason why we use the average-pooling operation instead of the max-pooling operation to 393 
aggregate the extracted local features is that we want to obtain the local feature as the compensation 394 
of the point feature. The max-pooling operation takes only the max value at each feature channel, 395 
which tends to capture the most “special” features and shows less representativeness. To guarantee 396 
the extracted compensation feature is sufficiently reliable, the more reasonable local feature should 397 
be the average of all local features extracted from the edges. 398 

Although the concatenation and multiplication operations are quite commonly used in related 399 
methods. For example, PointNet++ [50] and DGCNN [49] fuse features by using concatenation 400 
operation, RS-CNN [51] and GACNet [52] fuse features by using multiplication operation. Here, we 401 
choose the addition operation to fuse features. The main reasons are as follows: (1) the 402 
concatenation operation is effective to fuse the multiscale features, and the multiplication operation 403 
is commonly used in attention mechanism methods. However, we are fusing the features extracted 404 
from higher order geometric moments of original coordinates, which contain different forms of 405 
underlying geometric information. Thus, we cannot use the concatenation or multiplication 406 
operations roughly here. (2) Essentially, the feature space in deep learning is a kind of probability 407 
space, the convolution could be viewed as the filter. The value in different channel of the output 408 
feature shows the probability that passes the filter with specific parameters. The addition operation 409 
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could highlight the befitting filters and restrain the improper filters, which effectively refine the 410 
point feature. 411 

4.3.4. Network Architecture 412 

 

Figure 6. GGM Convolutional Neural Networks architecture. ),( DN  represents the number of 413 

points and feature dimension respectively. GGM: Graph Geometric Moment Convolution, FPS: 414 
Farthest Point Sampling, FP: Feature Propagation, MLP: Multi-Layer Perceptrons. 415 

Figure 6 shows the detailed architecture of the GGM Convolutional Neural Networks. The 416 
network follows the widely-used hierarchical structure. After sample generation, the point clouds of 417 
each test area are split into many batches, and each batch contains 4096 points. Through the GGM 418 
Convolutional Neural Networks, the input points, which contains spatial coordinates and three 419 
spectral values, are labeled with their predict labels, e.g. 1 indicates the building point and 0 420 
indicates the background point. The details of GGM Convolutional Neural Networks are as follows: 421 

Hierarchical Structure: Our hierarchical structure is referenced from PointNet++. The 422 
hierarchical structure is composed of a number of set abstraction levels. The set abstraction level is 423 
made of two key layers: sampling layer and GGM convolution layer. The sampling layer selects a set 424 
of points from the input points via the Farthest Point Sampling (FPS) algorithm, which defines the 425 
centroids of local regions. The GGM convolution layer is illustrated in Section 4.3.3, which 426 
combines local feature extraction and grouping function. A set abstraction level takes an 427 

)( CdN   matrix as input that is from N  points with d -dimensional coordinates and C428 

-dimensional point feature. It outputs an )( CdN   matrix of N  subsampled points with 429 

d -dimensional coordinates and new C -dimensional feature vectors summarizing local features. 430 
Farthest Point Sampling (FPS): In the sampling layer, we utilize iterative farthest point 431 

sampling (FPS) to choose a subset of points. Given the input points  1 2, , , nx x x , firstly, the FPS 432 

randomly picks one point ix  as the seed point, then, calculates the distance from the input points 433 

to seed point and selects the most distant point as the next seed point. The selected points will be 434 
removed from the input points. Finally, all the selected seed points constitute the subset of input 435 
points with a specified size. In this way, the selected subset of input points could have good 436 
coverage of the entire input points. 437 

Multi-scale grouping (MSG): Inspired by PointNet++, we implement the MSG strategy to 438 
make our model more robust. For every set abstraction level, we apply a GGM convolution with 439 
three different scales, e.g. we set the k-nearest neighbors of 16, 32 and 48 for the first set abstraction 440 
level. Then, the features at different scales are concatenated to form a multi-scale feature. Thus, as 441 
shown in Figure 6, we use 3*D to indicate the number of scales and the dimension of features at 442 
different scales, respectively. 443 

Feature Propagation (FP): To predict the labels for all the original points, we need to propagate 444 

features from subsampled points to the original points. Here, we choose a hierarchical propagation 445 
strategy similar to PointNet++. Firstly, we find one nearest neighboring point for each point, whose 446 
point feature set is up-sampled through a nearest-neighbor interpolation. Then, the up-sampled 447 
features are concatenated with the intermediate feature produced by set abstraction layers through 448 
skip connections, which is indicated by the dotted lines in Figure 6. Finally, we apply a shared MLP 449 
and ReLU layer to the concatenated features to update each point’s feature vector. 450 
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Final Label Prediction: The final label of each point is obtained through two shared MLP with 451 
128 and 2 output dimensions. After a softmax operation, the max value of the two channels 452 
indicates the final predicted label. 453 

5. Experimental Results and Discussion 454 

5.1. Implementation details 455 

Our training strategy is the same as in [49]. We used the stochastic gradient descent (SGD) 456 
optimizer with 0.1 as the initial learning rate in our network, and the learning rate declined fifty 457 
percent after each thirty iterations. Since we applied the MSG strategy in our model, the number of 458 

the nearest neighbors k  varied from 16 to 64 in different set abstraction levels. The number of input 459 
points, batch size, and momentum were 4096, 16, and 0.9, respectively. For every MLP layer, we 460 
used the LeakyReLU with 0.2 negative slope as the activation function and applied Batch 461 
normalization. After training the whole network, we saved the best performance training variables 462 
of the network, and set it as the input in the retraining process. We adjusted the hyper-parameters 463 
during the retraining process. Furthermore, we trained our model on a NIVIDIA 2080 TI GPU. 464 

5.2. Accuracy evaluation metrics 465 

To assess the quality of the proposed methodology, we used some metrics commonly used for 466 
semantic segmentation and useful for binary classification task. Let TP, FP, FN denote the total 467 
numbers of true positives, false positives, and false negatives, respectively. Then we calculate 468 
precision/correctness, recall/completeness as following: 469 

TP
Precision

TP FP



, (9) 

TP
Recall

TP FN



 (10) 

where the Precesion  is the proportion of the true positives over the extracted building points, the 470 

Recall  is the proportion of true positives with regard to the labeled ground-truth building points. 471 
The higher these metrics, the better the performance of the method.  472 

Besides, we employed the F measure  derived from the precision and recall values for the 473 

point-wise overall evaluation, which is defined as follows: 474 

2

2 2

(1 )

(1 )

TP
Fmeasure

TP FN FP



 




  
. (11) 

For simplicity, we set =1 . 475 

Another useful metric is Intersection over Union (IoU), which is an average value of the 476 
intersection of the prediction and ground truth regions over the union of them. Here we adapted this 477 
metric to the binary case, because in our data there are many more points which belong to the 478 
background than those belonging to the building rooftops. Therefore, in our case, IoU is defined as 479 
the number of points labeled as building in on both the ground truth and predicted result, divided 480 
by the total number of points labeled as building in each of them. We calculate it as follows: 481 

pred gt

TP
IoU

n n



, (12) 

where predn  is the number of points labeled as buildings in the predicted result and gtn  is the one 482 

in the ground truth. 483 

5.3. Parameter Sensitivity 484 
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5.3.1. Spectral information 485 

To investigate the effect of the input feature selection, e.g. spatial and/or spectral information, 486 
we trained our model based on two sets of input data. Since the main characteristic of our model is 487 
learning local features from geometric moments, we considered the spatial coordinates as the 488 
essential feature. The first model was trained using 3D coordinates only. The second model was 489 
trained using both 3D coordinates and spectral information (three channels) for each point. 490 

We evaluated our model on area_6 and area_7. After sample generation, these two test scenes 491 
were split into 257 and 474 samples, respectively. As we mentioned in Section 4.2, for the overlapped 492 
part between samples, we counted the predicted labels from different samples of the same point, 493 
and chose the most predicted label as its final predicted label. After we obtained the predicted label 494 
for each point in the test scenes, we calculated a point-based evaluation result for each test scene by 495 
the four metrics mentioned above. Here, we defined the point-based evaluation result of the 496 
combination of the test scenes as the comprehensiveness result, instead of the commonly used 497 
average result. 498 

As shown in Table 3, the second model achieved better performance on Area_6, Area_7 and 499 
comprehensiveness for each metric. This suggests that combining both features could improve the 500 
accuracy of the results. It also validates the powerful geometric feature learning ability of our model. 501 
The results are quite promising even by only using 3D coordinates as input. 502 

Table 3. A comparison between training with the different input feature.  503 

Input Area Precision Recall Fmeasure IoU 

Coordinates 
Area_6 86.0 85.0 85.5 74.7 

Area_7 85.0 85.3 85.1 74.1 

comprehensiveness 86.6 86.1 86.3 76.0 

Coordinates 

and spectral 

values 

Area_6 92.0 88.1 90.0 81.9 

Area_7 95.0 86.3 90.4 82.5 

comprehensiveness 93.9 87.4 90.5 82.7 

5.3.2 Sample size 504 

Furthermore, we investigated the effect of sample size by training our model based on three 505 
different sample sizes. As we mentioned in Section 4.2, during the sample generation stage, we can 506 
set the number of points each sample contained. Considering the limitation of GPU memory, we set 507 
the maximum number of points as 4096, and the other two were set as 2048 and 1024. All the 508 
models were trained using the same input features (coordinates and spectral values). 509 

In Table 4, “#points” indicates the number of points in each sample. As we can see, the larger 510 
scale performed better than the smaller scale. For deep learning methods, the larger scale input 511 
sample provides the more comprehensive information and the better geometric continuity of 512 
objects in the scene, which decides “how good” feature the model can learn from. And that is the 513 
reason why the larger scale performed better. The results also confirmed our speculation. 514 

Table 4. A comparison between training with different sample sizes.  515 

#points Area Precision Recall Fmeasure IoU 

1024 
Area_6 85.6 85.7 85.6 74.9 

Area_7 89.2 85.4 87.2 77.4 

comprehensiveness 88.2 86.3 87.2 77.3 

2048 
Area_6 87.2 85.4 86.3 75.9 

Area_7 92.3 86.0 89.1 80.3 

comprehensiveness 90.6 84.9 87.6 78.0 

4096 
Area_6 92.0 88.1 90.0 81.9 

Area_7 95.0 86.3 90.4 82.5 

comprehensiveness 93.9 87.4 90.5 82.7 
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5.4. Results and Comparisons 516 

Since there is no previous method proposed for building extraction from ALS data fitting for 517 
our framework, to better evaluate our method, we compared our model with a representative set of 518 
previous state-of-the-art networks designed for semantic segmentation on point clouds. The 519 
compared networks include PointNet[46], KCNet[56], DGCNN[49], and RS-CNN[51].  520 

Table 5 shows the point-based evaluation comparison results for the two test scenes. All 521 

experiments used the same input data size (4096 points) and features (coordinates and three 522 

spectral values), and the training iteration was configured as 200 for all. As shown in Table 5, 523 

our model, GGM Convolutional Neural Networks, achieved significantly better performance 524 

than the other networks, especially on Recall and IoU metrics. The KCNet achieved higher 525 

precision in area_6, but the other three metrics were observably below ours. Hence, for the 526 

overall extraction quality, our model achieved a better performance, which was also 527 

demonstrated by the following visualization of results. 528 

Figure 7 shows the visualization of the comparison results. For each model, we selected the 529 
same test area to show its overall extraction result (left part) and chose three kinds of typical 530 
buildings in the scene for detailed inspections (right part). As reflected by the overall results, most 531 
of models recognized all buildings in object-level regardless of the building size, even the small-size 532 
buildings (less than 5 m2) could be recognized a part points. This demonstrated the powerful 533 
inference capability of deep learning methods. Our model achieved a more complete building 534 
extraction result with less misrecognition points. For example, the PointNet and RS-CNN 535 
misrecognized some powerline points as the building points, because they have the similar 536 
altitudes, which was indicated by the black circle in Figures 7 (a) and (d). 537 

To compare the extraction results of these models in detail, we chose three typical buildings to 538 
represent the extraction difficulty in three levels. In Figure 7, the details are showed in the right 539 
blue bounding rectangles, where the two images are, respectively, the vertical view and side view 540 
of a building, and the numbers “1”, “2”, and “3” with yellow background indicate the easy, normal 541 
and hard levels, respectively. In the easy case, the building structure is simple, and surrounding 542 
environment is clear (only flat grass). Our model completely recognized all the building points and 543 
separated them from the grass points clearly. The other models failed to recognize part of the 544 
building points. In the normal case, two buildings with different sizes and heights are combined, 545 
and they are surrounded by tall trees. Although it is much harder than the easy case, our model 546 
also completely recognized all the building points, but misrecognized three tree points as the 547 
building points. Similarly, the performance of our model is obviously better than the others. In the 548 
hard case, the building is a multi-story building with irregular rooftops, which has more complex 549 
structure than the former two cases. Our model relatively completely recognized the main rooftop 550 
and one side rooftop, but only few building points of the other side rooftop with chimney were 551 
recognized. As for the other models, only some cracked pieces were recognized. 552 

The accuracies and visualization results demonstrated the effectiveness and efficiency of the 553 
proposed framework and methods. Furthermore, the test scenes we used are more complicated than 554 
the commonly used urban areas, which dramatically increase the difficulty for building extraction 555 
tasks. In addition, the point-based evaluation we used has higher resolution, which means the 556 
stricter evaluation way, compared with pixel-based and object-based evaluations. 557 

Table 5. Point-based building extraction comparison results on test scenes.  558 

Model Area Precision Recall Fmeasure IoU 

PointNet 
Area_6 74.4 55.1 63.3 46.3 

Area_7 72.3 56.5 63.4 46.4 

comprehensiveness 72.6 56.1 63.3 46.3 

KCNet 
Area_6 96.0 77.8 85.9 75.3 

Area_7 92.8 78.6 85.1 73.9 

comprehensiveness 93.6 78.0 85.3 74.1 

DGCNN Area_6 79.5 76.2 77.8 63.7 
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Area_7 79.5 73.4 76.4 61.8 

comprehensiveness 79.3 73.6 76.4 61.8 

RS-CNN 
Area_6 80.9 77.8 79.3 65.8 

Area_7 87.3 78.6 82.7 70.6 

comprehensiveness 85.0 79.2 82.0 69.5 

Ours 
Area_6 92.0 88.1 90.0 81.9 

Area_7 95.0 86.3 90.4 82.5 

comprehensiveness 93.9 87.4 90.5 82.7 

 559 

 

Figure 7. The visualization of comparison results. The green colored points are the background 560 
(non-building) points, and the red colored points are the recognized or labeled building points. The 561 
blue circles in the left images indicate the selected three kinds of typical buildings, and the black 562 
circles in (a) and (d) indicate the misrecognized building points from powerline points. The three 563 
blue bounding rectangles on the right contain the corresponding detailed visualization in the left 564 
images. 565 

6. Conclusions 566 

In this paper, we proposed a novel deep learning-based framework for building extraction 567 
from multi-spectral point cloud data. Meanwhile, a sample generation method, a convolution 568 
operator and a convolutional neural network implemented in the framework were proposed. The 569 
proposed framework provided a novel architecture for the better application of deep learning 570 
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methods in this research field. Besides, with the characteristic of good universality, theoretically, the 571 
proposed framework could handle any point sets and be implemented in any networks, which 572 
could greatly promote the practical applications of the proposed framework. As for the point-based 573 
evaluation we used in this paper, obviously, it is more difficult to achieve the same accuracy, 574 
compared with the traditional used pixel-based and object-based evaluation. But it has higher 575 
resolution and reflects the direct connection with the real world, which is of greater practical 576 
significance. Compared with the other state-of-the-art networks, our method achieved the best 577 
comprehensive performance with regard to the four metrics. In addition, the corresponding 578 
visualization showed the strong capacity of our model, especially for the difficult cases such as the 579 
buildings surrounded by tall trees and the multi-storey buildings with complex structure rooftops, 580 
our model still achieved outstanding performance than the others. In future work, we will test the 581 
influence of adding the other additional features to our method, and try to process the larger area 582 
scenes by using our method in our framework. 583 
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