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Because of the mechanism of TLS system, noise, outliers, various occlusions, varying cloud densities, etc. 

inevitably exist in the collection of TLS point clouds. To achieve automatic TLS point cloud registration, 

many methods, based on the hand-crafted features of keypoints, have been proposed. Despite significant 

progress, the current methods still face great challenges in accomplishing TLS point cloud registration. 

In this paper, we propose a multi-scale neural network to learn local shape descriptors for establishing 

correspondences between pairwise TLS point clouds. To train our model, data augmentation, developed 

on pairwise semi-synthetic 3D local patches, is to extend our network to be robust to rotation transfor- 

mation. Then, based on varying local neighborhoods, multi-scale subnetworks are constructed and fused 

to learn robust local features. Experimental results demonstrate that our proposed method successfully 

registers two TLS point clouds and outperforms state-of-the-art methods. Besides, our learned descriptors 

are invariant to translation and tolerant to changes in rotation. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

With the rapid development of laser scanning technology, 3D

oint clouds acquired from LiDAR, Kinect, Range Cameras, etc., are

ecoming more and more prevalent. As a technology for collecting

oint clouds, a Terrestrial Laser Scanning (TLS) system [1] provides

n array of capabilities in terms of instrument range, scan speed,

eld of view, size and portability. At present, TLS is widely applied

o many practical applications such as preserving cultural heritage,

ngineering surveying, and manufacturing. TLS point clouds reg-

stration is the foundation for 3D reconstruction, object retrieval,

bject pose estimation, and camera localization. 

Classic methods, such as the Iteratively Closest Point (ICP) algo-

ithm [2] and its variants [3–6] , which rely on the initial position,

annot satisfy the registration of real-world 3D point clouds. Exper-

mental results show the effectiveness of the 4-Points Congruent

ets-based (4PCS) methods [7 , 8] . However, as a result of operating

t a point level, these methods are sub-optimal in the direction of
� Fully documented templates are available in the elsarticle package on CTAN . 
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lippage. Many hand-crafted 3D local descriptors, such as those by

usu et al. [9] , Zhang et al. [10] , and Zou et al. [11] , have been pro-

osed for point cloud registration. These methods perform well in

he 3D models having manifold completed surfaces, but are insuf-

ciently robust to real-world 3D point clouds. Although carefully

ollowing the paradigm shift to deep neural networks [12] and [13] ,

ecent trends try to naively extend the networks from a 2D to a 3D

omain. Due to sparse rendering data, lots of spatial details are lost

hich leads to sub-optimal. Therefore, TLS point cloud registration

till presents a challenge because of low scene overlap severe oc-

lusion and self-occlusion, and without prior positional informa-

ion. The main difficulties are summarized as follows: 

Data size : TLS point clouds can be acquired at a speed of

0 0,0 0 0 pts/s so that large-scale point clouds can be collected eas-

ly. Thus, many typical methods are invalid on such large amounts

f data. 

Noise and outliers : Noise is presented as a form of randomly

uctuating data, outliers are considered as those points far from

he surface. Both noise and outliers are common and unavoidable. 

Various occlusion : Because of different scanning views, data is

ften missing and incomplete when the objects are the same.

hus, the descriptions from corresponding keypoints are often
nconsistent. 

gistration of TLS point clouds by deep multi-scale local features, 
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Varying densities : The scanning mechanism of the TLS system

presents that, the closer the target is to the TLS system, the denser

the acquired points are, which makes large variations in the den-

sity of TLS point clouds. The varying densities lead to failure of

existing registration methods. 

PointNet [14] , pioneering efforts that directly processes 3D

point sets, computes two types of features in a point cloud in-

cluding a single global feature vector for the entire point cloud

and a set of local features vectors for each point. However, this

reliance on only either fully local or fully global feature vectors

makes it difficult to estimate features of keypoints that depend on

local neighborhood information. As an improved method of Point-

Net, Qi et al. [15] proposed PointNet ++ that is able to learn local

features with increasing contextual scales. Inspired by the method

of PointNet ++ [15] , we design a novel multi-scale network to learn

the description of local neighborhood. Specially, by varying neigh-

bor sizes around a point, a novel multi-scale learning network is

developed for robust estimation of local shape descriptors over a

range of TLS point clouds. The key here is that local shape de-

scriptors can be robustly estimated by suitably accounting for noise

margin, occlusion, and varying densities. 

The main contributions of this work are summarized as fol-

lows: (1) Based on varying local neighborhoods, we propose a

Multi-Scale Siamese Network (MSSNet), which directly consumes

unorder point clouds, to learn local shape descriptors. (2) To build

a training set, we develop a novel data-augmented method by ran-

domly removing points, adding noise, and rotating for 3D local

patches. (3) Geometric constraints of matching are used to extract

more correct corresponding pairs. 

The remainder of this paper is as follows. Section 2 provides

a brief review on the representative works of registration meth-

ods including ICP-like, RANSAC-like, and features of keypoints-

based. Section 3 introduces the pipeline of our registration method,

including learning local features by MSSNet and rejecting false

correspondences with geometric constraints. Section 4 presents

experimetal results and analyses. Section 5 contains some

conclusions. 

2. Related work 

Using transforming parameters with six degrees of freedom, 3D

point cloud registration is usually considered as rigid registration.

Many related methods have been proposed for the related applica-

tions. In this Section, we briefly review the representative related

work in rigid registration of point cloud. 

ICP [2] , one of most popular methods, alternates between

estimating the point correspondence and the transformation ma-

trix. Besides, many variations of this method [16–19] based on

different applications have been proposed. However, such ICP-like

methods first rely on the assumption that all points have pairwise

counterparts between two sets. Furthermore, the methods are

very sensitive to a given initialization. Yang et al. [20] proposed

a globally optimal solution to ICP in 3D Euclidean registration,

which combines ICP with a Branch-and-Bound (BnB) scheme. Sim-

ilarly, Campbell and Petersson [21] replaced the objective function

with a convolution of Gaussian Mixture Models (GMMs). How-

ever, these models cannot guarantee the global optimality of the

solutions. To describe point cloud and surface normal densities,

Straub et al. [22] proposed a method of Bayesian non-parametrics,

which includes BnB optimization to estimate relative transfor-

mation. Because BnB is exponentially complex, these methods

are computationally expensive, and are sensitive to missing data.

Fan et al. [23] proposed a Convex Hull indexed Gaussian Mixture

Model (CH-GMM) by incorporating proximity, area conservation

and projection consistency. The CH-GMM algorithm works well on
Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re
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mall-scale 3D point set, but it still faces challenges on large-scale

LS point clouds. 

Following the method of RANSAC, Aiger et al. [7] proposed a

andomized alignment approach and the idea of planar congruent

ets to compute optimal global rigid transformation. However, their

ethod has a complexity of O (n ∗ 2 + k ) , where n denotes the size

f the point clouds, and k is the set of candidate congruent 4-

oints (called 4-PCS). Thus, 4-PCS has great limitations when sam-

ling numbers are large. Mellado et al. [8] proposed Super-4PCS al-

orithm, which has a complexity of (n + k 1 + k 2 ) , where k 1 is the

umber of pairs in source point cloud at a given distance, r and k 2 
s the number of congruent sets. Theiler et al. [24] used DoG and

arris detectors to extract keypoints and then adapted the 4PCS

lgorithm for registration. However, due to their point-level oper-

tion, these RANSAC-like methods are easy to sub-optimal when

omputing their transformation relations. The problem of varying

ensity in the TLS point clouds makes the performance of the

PCS-based method even worse. 

Many 3D local descriptors, based on hand-crafted methods,

ave been proposed. Johnson and Hebert [25] constructed a local

hape descriptor, whose points are oriented with associated direc-

ions, and used it to match surfaces. Tombar et al. [26] pointed

ut the key issues of uniqueness and repeatability of the local

eference frame, and encompassed a new unique, repeatable lo-

al reference frame as well as a new 3D descriptor. To optimize

nitial alignment, Rusu et al. [27] proposed a Sample-Consensus-

ased method that combines the local features called Fast Point

eature Histograms (FPFH), and Signatures of Histograms. How-

ver, their method still cannot guarantee global convergence. Yang

nd Zang [28] extracted crest lines as matching primitives and

hen proposed a deformation energy model to find correspon-

ences. In their experiments, they obtained accuracy registration

esults. To reduce the required processing dramatically, Kechagias-

tamatis and Aouf [29] propose a 3D covariance descriptor, which

verrides the necessity of a local reference frame or axis (LRF/A).

ang et al. [30] proposed a registration method based on semantic

eature points extracted from large-scale urban scenes. Zai et al.

31] proposed an adaptive covariance (ACOV) descriptor that, in

ome TLS point clouds, is invariant to rigid transformation and ro-

ust to noise and varying resolutions. However, the robust ACOV

escriptors relies on RGB color and intensity of the points. Yang

t al. [32] proposed a local reference frame (LRF) together with a

riple orthogonal local depth images (TOLDI) representation. Navar-

ete et al. [33] proposed a 3D compression and decompression

ethod using GMMs for registration of 3D point clouds. Yang

t al. [34] revealed that different spatial information encoding ap-

roaches would bring significant effect on a local shape descrip-

or. However, All of the manually designed descriptors are usually

ased on the property of the data itself and work well on small-

cale models. Thus, it is difficult to adapt to large-scale TLS point

louds. 

Recently, with the advent of deep learning, multi-scale infor-

ation has been exploited both in 2D and 3D keypoint descrip-

ions. To optimally combine feature maps from different scales for

isual correspondence, Wang et al. [35] proposed a scale-attention

etwork. However, this method is limited to 2D keypoint descrip-

ion. Fathy et al. [36] proposed a CNN-based hierarchical match-

ng framework for 2D and 3D matching. However, to compare ex-

racted feature vectors and establish correspondences, the training

rocess of this method requires strong supervision in the form of

er-pixel ground-truth labels. Besides, the tasks of 2D and 3D in-

erest point matching and refinement are very different from our

D point cloud registration. Learning local geometric representa-

ion on 3D point clouds is becoming more and more popular. Some

orks tried to naively extend the networks, usually in form of

 binary-occupancy grid, from 2D to 3D domains. This idea was
gistration of TLS point clouds by deep multi-scale local features, 

https://doi.org/10.1016/j.neucom.2019.12.074


W. Li, C. Wang and C. Wen et al. / Neurocomputing xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 7, 2020;16:48 ] 

Fig. 1. Algorithm framework, consisting of testing (registration) and training. In the registration section, pairwise point clouds P and Q are used as the registration input. 

Then, the Harris algorithm is used to detect keypoints, and the trained MSSNet is used to describe the corresponding local patches. Finally, matches are extracted based 

on the similarity measure of local features and geometric constraints, and rigid transformation parameters are estimated. In the training section, first, a training dataset, 

including matching and non-matching patches, is constructed. Then, MSSNet is used to train the dataset. Finally, for TLS point cloud registration, the trained MSSNet, is used 

to transform the 3D local patches into robust local features. 
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1 http://www.semantic3d.net/ . 
uickly extended to more informative encoding such as TDF [37] ,

SDF [38] (Truncated Signed Distance Field). Because mainly used

n the context of 3D retrieval, entire 3D objects were represented

ith small voxel grids 30 3 limited by the maximum size of the 3D

onvolution kernels. Zeng et al. [38] presented 3DMatch, a data-

riven model that learns a local volumetric patch descriptor for es-

ablishing correspondences between partial 3D RGB-D data. Huang

t al. [13] proposed a learning method of local shape descriptors

sing multi-view convolutional networks. Both of these methods

gnore the raw nature of the input: sparsity and unstructured-ness.

he methods use dense local grids and 3DCNNs to learn the de-

criptor. Thus, they fall short in performance of training/testing

erformance and recall. Elbaz et al. [39] proposed an auto-encoder

eep learning network to learn local features for registration. How-

ver, such a method cannot adopt this approach for similar sized

oint clouds with partial overlap. 

Compared with current methods of deep learning, in this paper,

e propose a novel multi-scale network that directly consumes 3D

aw point set, to learn robust local shape descriptors. 

. The proposed method 

Inspired by the methods of PointNet [14] and Pointnet ++ [15] ,

hich directly consume unordered 3D point sets, we designed a

SSNet network to learn robust local shape features. Then, com-

ining corresponding learned local shape features, the keypoints

ere used to construct correspondences between two partial point

louds. Here, the pairwise matching of local descriptors is trans-

ormed into classifying as well as corresponding interest points

match) and non-corresponding interest points (no-match) by Eu-

lidean distance. As shown in Fig. 1 , the framework of our pro-

osed algorithm can be summarized mainly as the following three

ections: constructing training datasets, training local features and

airwise registering of point clouds. First, training datasets were
Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.12.074 
uilt from a semantic3d dataset, which provides a large quantity

f training datasets. Second, training datasets were constructed and

ed into the MSSNet network. Third, superior local features, gener-

ted by the trained MSSNet network, were used for TLS point cloud

egistration. 

.1. Constructing training datasets 

Because each point cloud is large-scale and contains millions of

oints in the semantic3d dataset, 1 it can provide a large quantity

f 3D local patches to train of our MSSNet network. Constructed

ike 3DMatch [38] , pairwise 3D local patches from many-view ob-

ervations of a scene can provide more reliable training datasets.

owever, because there is only a small number of different obser-

ations of the same scene in a semantic3d dataset, it cannot pro-

ides enough training samples. Therefore, we developed a method

f data augmentation to construct training samples. Especially, we

rst extracted keypoints from each point cloud by the 3D Har-

is method [40] . Second, one of the n 0 nearest neighbor points

 n 0 = 10 in our experiments) of each keypoint is randomly selected

s the matching keypoint. Any random point from another point

loud is selected as a non-matching keypoint. Third, based on the

bove keypoints (match and non-match), we randomly sampled

024 points within a given neighborhood with a radius of 0.5 m. 

To acquire robust 3D local descriptors, we constructed a semi-

ynthetic training dataset that includes processing as follows: (1)

dding Gaussian random noise by randomly vibrating 5, 10 and 30

ercent of the points; (2) randomly rotating the pairwise match-

ng local patches (0 ◦–360 ◦) over the Z − axis ; (3) simulating occlu-

ions by removing 15, 25, 45 percent of the local patches. See Fig 2 .
gistration of TLS point clouds by deep multi-scale local features, 

http://www.semantic3d.net/
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Fig. 2. simulating noise, density change, and occlusions. (a) View1 of a 3D local patch p 1 . (b) view2 of the same local patch. (c) A new 3D local patch which is added 

Gaussian noise ( σ = 0 . 06 ). (d) The 3D local patch simulating occlusions and noise is used as matching patch of p 1 . 

Fig. 3. Based on the Siamese architecture, we present a MSSNet, consisting of three subnetworks in each branch, to fuse the features of different scales. Specially, in the 

DESC section, based on varying neighborhood radii, we first construct three subnetworks to generate multi-scale features. Second, all the features were concatenated in each 

branch of the Siamese architecture. 
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These methods provide a large and diverse (match or non-match)

number local patches for training. 

Instead of the 3D volumetric representation of multi-view pro-

jected or voxel grid, each 3D local patch is the original represen-

tation (unordered point clouds). Given a 3D point cloud P , we ex-

tracted 3D Harris keypoints { c i } K k =1 
and obtained the correspond-

ing 3D local patches, respectively. In the TLS coordinate system,

each 3D local patch p n 
i =1 

, which is translated according to the cor-

responding keypoint, uses c i as the origin, and is normalized by

the distance of the furthest point from the origin. The translating

formulate is as follows. 

p ′ i = p i − c k (1)

where p ′ i represents coordinates of a point in the local coordinate

system. 

3.2. Network architecture 

Based on the PointNet-like encoder, MSSNet develops a multi-

scale fusing approach to learn local features. It is designed to oper-

ate on three subnetworks with varying neighbors size, as summa-

rized in Fig. 3 . 
Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.12.074 
The global features acquired by the PointNet-like approach sig-

ify that the larger the neighbor size, the more stable the global

nformation. Given different neighbors of a keypoint, however,

here exists great shape differences. Therefore, if a PointNet-like

ethod is used, the larger neighbor size leads to considerably less

ocal information. It is meaningful to fuse the features at different

eighbor size to generate more significant and stable feature. As

een in the righthand segment of Fig. 3 , local patch pairs (includ-

ng match and non-match) are fed into our MSSNet at a ratio of

:1. 

To fuse the geometric characteristics of varying neighbors, as

hown in the left of Fig. 3 , for each branch, three local patches are

ampled by varying neighborhood sizes r 1 , r 2 and r 3 . More specif-

cally, a three-layer, point-wise Multi-Layer Perception (MLP) fol-

ows the input layer and subsequently a max-pooling is used to

enerate a local feature using skip-links. This results in a more

owerful representation. To enhance the significance of local fea-

ures, we concatenate the above three local features to a new

lobal feature (384 dimension). Then, the global feature is used

o concatenate the following two-layer MLP in each subnetwork,

espectively. In the end, the local features are generated by Max

ooling and concatenated to a codeword (896 dimension). 
gistration of TLS point clouds by deep multi-scale local features, 
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Fig. 4. Evaluation of our method compared with some representative methods on 

3DMatch’s benchmark, which contains 10,0 0 0 pairs of samples with match or not. 
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In our experiments, a Siamese network based on PointNet (S-

ointNet) was constructed from 1024 kernels with a neighborhood

ize (r1) of 1.0 m. A 3-PointNet-like Siamese network, which neigh-

orhood sizes (r1, r2, and r3) of 0.3 m, 0.6 m and 1.0 m, was con-

tructed from 128, 256, and 512 kernels, respectively. Additionally,

e implement our MSSNet in tensorflow and use ADAM to train

ur network for 10,0 0 0 iterations using a base learning rate 10 −3 

nd an initial momentum 0.9. We decay the learning rate at 10,0 0 0

teps and decaying rate is set to 0.7. 

.3. Loss function 

We formulated matching issues as a binary classification includ-

ng match and non-match. Our objective is to reduce the cost be-

ween two matched 3D patches, and, conversely, increase the dis-

imilarity between two non-matched 3D patches. To learn robust

ocal features, we constructed a multi-scale network based on a

iamese fashion. To measure the similarity of 3D patch pairs, the

 2 norm as a metric, modeled by a contrastive loss function, was

sed. To avoid the phenomenon of over-fitting, we added the L 2 
egularization term to the objective function. The loss function for-

ula Eq. (2) is constructed as follows: 

(θ ) = 

1 

n 

n ∑ 

i =1 

( y (i ) d 2 i ) + (1 − y (i ) ) max (margin − d i , 0)) + 

λ

2 n 

∑ 

ω 

ω 

2

(2) 

here i represents the i -th pairwise local patches, n represents

he number of training pairs of local patches; y ( i ) is a matching

abel that represents the matching of the pairwise points, where

 

(i ) = 1 if the pair-wise points match and y (i ) = 0 if the pair-wise

oints non-match. d i is Euclidean distance, ω represents the learn-

ng weight parameters, θ represents the parameters when the ob-

ect function is minimized. 

.4. Geometric constraints 

Through the trained MSSNet, 3D local patches, with sampling

ased on keypoints, are transformed into robust features. To ex-

ract matches more effective, inspired by the reference [41] , we in-

roduce geometric constraints to reject mismatches. Here, we de-

ote F ( P ) = { F (p) : p ∈ P } , where F (p) , generated by trained MSS-

et, is a local feature corresponding to the keypoint p . Simi-

arly, F ( Q ) = { F (q ) : q ∈ Q } . In general, the initial correspondence

et κ is acquired by arbitrarily combining the keypoints between

ource point cloud P and target point cloud Q . To extract good

matched) correspondences, we introduce the following geometric

onstraints. 

First, for each keypoint p ∈ P , we find the nearest neighbor of

 (p) among F (Q ) , and at the same time, for each keypoint q ∈ Q ,

e find the nearest neighbor of F (q ) among F (P ) . Thus, the gen-

rated candidate correspondences, denoted by κ I , have a very high

atio of outliers. 

Second, for the pairwise test, a correspondence pair ( p , q ) is

elected as match pair from κ I if and only if F (p) is the nearest

eighbor of F (q ) among F ( P ) and F ( Q ) . The resulting candidate

orrespondence set is denoted by κ II . 

Third, for the tuples test, three correspondence pairs ( p 1 , q 1 ) ,

( p 2 , q 2 ) , ( p 3 , q 3 ) are selected randomly from κ III , and check if the

uples ( p 1 , p 2 , p 3 ) and ( q 1 , q 2 , q 3 ) are compatible. In detail, we

ollect the candidate correspondence set κ III if the following con-

ition is satisfied: 

 i � = j, λ < 

‖ p i −p j ‖ 

‖ q i −q j ‖ 

< 1 /λ (3)

here λ = 0 . 9 , p i , p j ∈ P represents the keypoints from point cloud

 and q i , q j ∈ Q represents the keypoints from point cloud Q . ‖ ∗‖

Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re
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epresents the L 2 norm. This test verifies if the correspondences

re compatible. 

. Experiment analysis 

In this section, first, we evaluate the quality of our learned

ocal shape features, which lies in the analysis of varying noise,

arying neighborhood size, and varying rotation. Second, compared

ith the state-of-the-art methods, our learned 3D local features

chieved superior registration results for 3D point clouds. Third,

e show several pairwise registration results of point clouds. Our

raining methods of local patches were used with tensorflow 1.7

nd cuda 9.0. Registration experiments were conducted in C ++ ,

nd on a PC with ubuntu 16.04, Intel Core(TM) i5-4460 3.2 GHz

PU and 16.0 GB RAM. 

.1. Dataset 

To validate our method, our evaluations for keypoints matching

re against the diverse 3DMatch RGBD benchmark [38] in with 62

ifferent real-world scenes retrieved from the pool of datasets. This

ollection is split into 2 subsets with 54 scenes for training and

alidation and 8 scenes for testing. The dataset typically includes

ndoor scenes like living rooms, offices, bedrooms, tabletops, and

estrooms. 

For TLS point cloud registration, our method was tested mainly

n TLS point clouds. As a huge dataset of 3D local patches, the

raining dataset, labeled match and non-match from Semantic3d

42] , was built to train our descriptors effectively. The dataset, con-

aining fifteen outdoor TLS point clouds from the training set of

emantic-8, and four fragments from the testing set of semantic-8,

ere used to construct local testing patches. Specially, we sampled

eypoints from the TLS point clouds, and obtained 20 0,0 0 0 pairs

f 3D local point clouds (i.e. local patches) at a given neighbor ra-

ius (0.5 m). For training, all the local patch pairs including match

r non-match, were labeled at a 1:1 ratio for training, Similarly,

0,0 0 0 pairs of local patches were labeled for testing. 

For registration test of TLS point clouds, eight fragments of TLS

oint clouds were selected from the Semantic3d, where two scenes

ncluding four fragments (See Fig. 10 ) were selected for evaluating

f registration. The information of the evaluated fragments is sum-

arized in Table 2 , the average resolution r̄ (the average of the

istances of all two adjacent points in the point cloud) of each
gistration of TLS point clouds by deep multi-scale local features, 
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Fig. 5. (a) PR Curves achieved by varying neighbor size. (b) Precision Curve achieved by Recall ratio = 0.5 of (a). 
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fragment. Additionally, another two fragments (See Fig. 11 (g) and

(h)) were selected for the registration test. 

4.2. Keypoint matching 

We used Precision–Recall (PR) curves to evaluate the distinc-

tiveness of these descriptors. The Precision and Recall are com-

puted as follows: {
P recision = T P/ (T P + F P ) 
Recall = T P/ (T P + F N) 

(4)

where TP is the number of true positive matches, FP is the number

of false positive matches, and FN is the number of false negative

matches. The PR Curve is generated by tuning the parameter ratio.

To demonstrate the superiority of our learned descriptors, we

focus on evaluating the different parameters of noise, varying

neighborhood radii, and varying rotation of pairwise 3D local point

clouds. Compared with several representative descriptors including

RoPS [43] , SHOT [26] , FPFH [9] , ACOV [31] , and 3Dmatch [38] , we

tested the ability of our descriptors to distinguish between match

and non-match. Implementation of ROPs was achieved based on

the open-source MATLAB code. 2 SHOT and FPFH were imple-

mented based on the open-source Point Cloud Library (PCL) [44] .

The default parameters in PCL were selected in our implementa-

tion. We first tested our descriptors on the benchmark of Zeng

et al. [38] that contains 10,0 0 0 pairs of local RGB-D patches and

their labels of ground truth correspondence (binary “1” for match

and “0” for non-match). As seen in Fig. 4 , the training and testing

datasets are from reference [38] . Our learned descriptors achieved

the best performance. 

To test the influence of neighborhood size, we evaluated the

quality of the descriptors at different neighborhood sizes. First,

keypoints were randomly extracted from training and testing point

clouds. Then, the corresponding local patches with different neigh-

borhood sizes were sampled by KNN. We designed five group ex-

periments with different neighborhood sizes (0.4 m, 0.5 m, 0.6 m,

0.7 m, 0.8 m) to validate the performance of keypoint matching. As

shown in Fig. 5 , the larger the neighborhood size, the better the

performance. However, a larger neighborhood size requires more

computational time. Therefore, in the following experiments, the

neighborhood radius for initial calculation is set to 0.5 m. 
2 http://yulanguo.me/img/RoPS.rar . 

Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re
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To test the robust performance, we designed six different levels

f Gaussian noise ( σ = 0 . 00 , 0 . 05 , 0 . 10 , 0 . 15 , 0 . 20 , 0 . 40 ) for each 3D

ocal patch. Fig. 6 shows the variation in a local point cloud with

arying levels of Gaussian noise. As shown in Fig. 7 (a–f), the train-

ng and testing datasets are constructed like the methods of Fig. 6 .

t is observed that our learned descriptors achieved the best per-

ormance. Especially, our learned local descriptor has significantly

etter performance than the other descriptors. 

To test the tolerance of varying rotations, we conducted twelve

airs of experiments on varying rotations. All the 3D local patches

re first decentralized by the corresponding keypoints, thus, it is

nvariant to the shifting transformation of the 3D local patches.

pecifically, we also built 10,0 0 0 pairs of 3D local patches ( P 1 and

 2 ). P 2 was copied and rotated at every π /12 radian to build an-

ther 3D local patches P 2 
i . Similarly, a series of 3D local patches

 P 2 
i } 12 

i =1 
, were generated and tested by our learned detectors. We

se precision 4 to evaluate the, performance. As Fig. 8 a shows, the

ccuracy of our method oscillated between 0.8 and 0.9. Therefore,

he experimental results indicate that data augmentation extends

ur network to be robust to rotation transformation. Additionally,

s seen from Fig. 8 b, the lowest precision is when the 3D local

atches are rotated π . 

.3. Registration 

To evaluate the registration performance, we first tested our

roposed method on the public Geometric Registration Bench-

ark 3 . As seen in Table 1 , our proposed method achieved the high-

st Precision and the second highest Recall on the public bench-

ark of 3DMatch. Therefore, it shows that our proposed method

as a certain superiority in RGB-D data registration. For TLS point

louds, we designed several experiments involving point cloud reg-

stration. Especially, as seen in Fig. 9 , two scenes, labeled “Scene1”

nd “Scene2”, were selected for pairwise TLS point cloud registra-

ion. The “Scene1” contains two TLS point clouds denoted by P 1 
nd Q 1 , and the “Scene2” also contains two point clouds denoted

y P 2 and Q 2 . The information pertaining to the tested point clouds

s given in Table 2 . Especially, the point clouds P 1 and Q 1 have

6.3% overlap, the point clouds P 2 and Q 2 have 35.3% overlap. Be-

ides, to make the algorithm more efficient, we detected keypoints

y 3D Harris detectors [40] . 
3 http://3dmatch.cs.princeton.edu/geometric-registration-benchmark . 

gistration of TLS point clouds by deep multi-scale local features, 

http://yulanguo.me/img/RoPS.rar
http://3dmatch.cs.princeton.edu/geometric-registration-benchmark
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Fig. 6. The variations of a 3D raw local patch. (a) A 3D raw local patch. (b–f) Different levels of Gaussian noise ( σ = 0 . 05 , 0 . 10 , 0 . 15 , 0 . 20 , 0 . 40 ). 

Fig. 7. PR Curves achieved by seven sets of comparative tests on our benchmark, which contains 10,0 0 0 pairs of samples with match or not. (b–f) show the corresponding 

PR Curves of different levels of Gaussian noise. 

Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise registration of TLS point clouds by deep multi-scale local features, 

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.12.074 
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Fig. 8. (a) Rotation tolerance test. PR Curves achieved by varying rotation. (b) Evaluation of rotating variation achieved by Recall ratio = 0.5 of Fig. (a). 

Fig. 9. Two scenes including two pairwise point clouds were selected for registration evaluation. (a,b) The first pairwise point clouds denoted by P 1 and Q 1 are acquired 

from “Scene1”. (c,d) The second pairwise point clouds by P 2 and Q 2 are acquired from “Scene2”. 

Table 1 

The performance of our proposed method is 

listed on the Benchmark Leaderboard. 

Method Recall (%) Precision (%) 

MSSNet 52.9% 58.9% 

3DMatch 66.8% 40.1% 

Spin-Images 51.8% 45.8% 

FPFH 44.2% 30.7% 

Table 2 

Information of the tested point clouds. 

Model Number of points Resolution r ( m ) Overlap(%) 

P 1 824,509 0.0411 

Q 1 13,986,927 0.0351 36.3 

P 2 2,018,953 0.0201 

Q 2 2,271,520 0.0211 35.1 
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Table 3 shows the time cost of each step in our proposed regis-

tration framework. The keypoints extraction step requires the ma-

jority of time. As seen in Table 4 , the comparative performance
Table 3 

Time cost of each step in the tested point clouds. 

Step Keypoints extraction 3D local patches generation Descr

Scene1 154.0 12.0 26.5 

Scene2 33.0 6.0 10.3 

Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.12.074 
f some representative methods is listed in terms of average RMS

istance and computational time. The proposed MSSNet was de-

igned with a 3-scale subnetwork. As seen in Fig. 10 , compared

ith features-based methods including FPFH, ACOV, 3DMatch and

-PointNet, (a-f) present the registration results of “Scene1”, (g–l)

resent the registration results of “Scene2”. RANSAC based on ge-

metric registration was used to align the TLS point clouds. In ad-

ition, our method, combined with geometric constraints, is used

o reject false correspondences. in terms of both registration er-

or and computational time, our method outperforms the other

ethods. However, these methods, proposed by FPFH [9] and ACOV

31] (no RGB color and intensity), fail to register pairwise of point

louds. Especially, Fig. 10 (f) and (l) present the registration re-

ults of our method combined with ICP algorithm, which achieved

he fine registration. Therefore, the experimental results demon-

trate that our learned local descriptors are more robust than other

ethods. 

To further demonstrate the feasibility and effectiveness, two

airs of TLS point clouds from Semantic3D and one pair of TLS

oint clouds acquired by RIEGL VZ-10 0 0 system, were selected as

esting data. The information of point clouds for the further test is
iptors calculation Correspondence generation Total time (s) 

5.2 197.7 

5.0 54.3 

gistration of TLS point clouds by deep multi-scale local features, 
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Fig. 10. Registration results on the point clouds of modelS Scene1 and Scene2. (a),(g) Achieved by FPFH. (b),(h) Achieved by Super4PCS. (c),(i) Achieved by ACOV. (d),(j) 

Achieved by 3DMatch. (e),(k) Achieved by MSSNet. (l) Achieved by MSSNet + ICP. 

Table 4 

Compared with some typical methods. 

FPFH Super-4PCS ACOV 3Dmatch Ours Ours + ICP 

Average RMS1 (cm) – 7.81 – 5.88 5.18 2.90 

Overlap1 (%) – 28.3 – 32.5 35.0 36.0 

Total time (s) – 1500.3 – 327.8 197.7 218.8 

Average RMS2(cm) – 6.33 – 5.39 4.51 2.52 

Overlap2(%) – 33.4 – 31.3 33.9 35.0 

Total time(s) – 1008.1 – 356.8 54.3 77.8 

s  

a  

a  

i  

c  

p  

4  

r  

a  

c  

F  

t  
hown in Table 5 . The first pair of point clouds, P 3 and Q 3 , covering

 range of approximately 30 m by 25 m, are shown in Fig. 11 (a)

nd (b). The true overlap rate, computed by means of manual reg-

stration and the ICP algorithm, is 40.5%. Fig. 11 (c) shows the suc-

essful registration result with an overlap rate of 40.6%. The second

air of point clouds, P 4 and Q 4 , covering a range of approximately
Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.12.074 
0 m by 15 m, are shown in Fig. 11 (d) and (e). The true overlap

ate is 20.9%. Fig. 11 (f) shows the successful registration result with

n overlap rate of 20.6%. The third pair of point clouds, P 5 and Q 5 ,

overing a range of approximately 80 m by 20 m, are shown in

ig. 11 (g) and (h). The true overlap rate is 44.5%. Fig. 11 (i) shows

he successful registration result with the overlap rate of 43.7%.
gistration of TLS point clouds by deep multi-scale local features, 

https://doi.org/10.1016/j.neucom.2019.12.074
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Fig. 11. Registration results on the point clouds of models. (a) and (b) are the first pairwise point clouds, (c) registration result of the first pairwise point clouds. (d) and (e) 

are the second pairwise point clouds, (f) registration result of the second pairwise point clouds. (g) and (h) are the third pairwise point clouds, (i) registration result of the 

third pairwise point clouds. 

Table 5 

Information of point clouds for further registration testing. 

Model Number of points Resolution r ( m ) Overlap(%) 

P 3 618,521 0.0335 

Q 3 83,925 0.0551 40.7 

P 4 13,789,069 0.0212 

Q 4 7,514,469 0.0121 21.0 

P 5 8,787,836 0.0143 

Q 5 8,318,075 0.0166 45.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

c  

a  

d  

a  

c

D

 

c  

i

A

 

S  

4  

e  

a  

m

R

 

 

 

Therefore, based on the local descriptors learned by MSSNet, we

obtain successful registration results. 

5. Conclusion 

We proposed a novel method to register TLS point clouds. Based

on inspired PointNet architecture, our method directly consume

point clouds. Different from existing methods, 3D local shape de-

scriptors, which learn by fusing multi-scale subnetworks, are more

robust and reliable. Especially, compared with the state-of-the-art

methods, first, the experiments involving public data sets show

that the learned local shape descriptors are more accurate and ro-

bust to large noise; Second, the learned local shape descriptors

are invariant to translation, and are tolerant to changes in rota-

tion; Third, our method performs accurate and efficient registration

even on very challenging scenes without any estimation of initial

position. Overall, our proposed method outperforms existing local

shape descriptors and registration methods by a significant margin.
Please cite this article as: W. Li, C. Wang and C. Wen et al., Pairwise re

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.12.074 
In this paper, to extend the size of training data, data augmen-

ation such as data rotation is used. The aim of rotation is to in-

rease rotation invariance in the feature extraction. However, data

ugmentation, especially the rotation, decreases the capability to

escribe features. Therefore, our method would be improved by

 future study of how to perform data augmentation without de-

reasing the capability to describe features. 
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