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H I G H L I G H T S  

� Satellite AOD and aerosol optical-mass relationships yield size-resolved exposure. 
� Chinese population on average was exposed to submicron sized particles in 2017. 
� Easterners more exposed to small particles, especially in warm seasons. 
� Region with high mass concentration also had smallest mean particle size.  
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A B S T R A C T   

Air pollution in China has reached unprecedented levels due to rapid economic and industrial development. 
More than 90% of Chinese population experience higher health risks attributable to ambient fine particulate 
matter (PM2.5) exposure. Although evidence suggests that particle size may be an effect modifier on PM2.5-related 
health risks, few studies have explored this due to lack of size-resolved exposure data. In this study, we derive 
size-resolved particle effective radius of PM2.5 using theoretical relationships between aerosol microphysical 
characteristics and satellite optical measurements to explore the spatial variability and population exposure to 
ambient particle size. Applying this method to China in 2017, we observed annual mean effective radii between 
0.3 and 1.3 μm with a mean average error of 0.1 μm. We find that 1% or less of the Chinese population was 
exposed to annual PM2.5 concentrations less than 10 μg/m3 and a mean particle effective radius greater than 0.7 
μm (i.e. aerodynamic diameter of PM1). Spatially, the Centre economic region had the highest annual-mean 
PM2.5 exposures, where 90% of the population was exposed to concentrations higher than 50 μg/m3 and 98% 
was exposed to particles with mean radius below 0.5 μm. Temporally, although the highest PM2.5 concentrations 
were more likely to occur in winter, summertime was the season during which the highest percentage of the 
national population (86%) lived in the regions in which the fine fraction had the smallest mean particle radii 
(<0.5 μm). This study demonstrates the potential of remote sensing techniques to enable large-scale PM2.5 
estimation, including concentrations and sizes. The revealed prevalence of exposure to PM1, and lack of particle 
size validation data, motivate further research to better understand size-resolved exposures and impacts of PM2.5 
at population scales.   

1. Introduction 

Exposure to ambient atmospheric pollutants, especially fine partic-
ulate matter (PM2.5), has been shown to significantly increase the risk of 
mortality from cardiovascular and respiratory illnesses (Pope et al., 

2018; Sacks et al., 2011). China has suffered from severe PM2.5 pollution 
with its rapid economic development and industrialization. In 2017, 
approximately 0.85 million premature death and 19.8 million 
disability-adjusted life-years (DALYs) lost were reported to be attribut-
able to ambient PM2.5 exposure in China, accounting for 29% of the 
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PM2.5-related premature deaths and 24% of the DALYs worldwide 
(Cohen et al., 2017). While epidemiologic relationships have been 
established for PM2.5 mass concentrations and a variety of health end-
points, other particulate characteristics, like composition and size, may 
be relevant in informing such relationships, e.g., via effect modification, 
or in identifying new ones. Size-resolved particular matter observations 
are thus pertinent for exposure assessment. Here, we aim to provide 
national population-scale size-resolved exposures to PM2.5. 

Using various exposure methods, previous toxicological and epide-
miological studies found that particles with different size ranges have 
independent effects on human health (Esposito et al., 2012; Gerlofs--
Nijland et al., 2009). Small particles can penetrate into the airways and 
alveoli, and finally into the bloodstream and cardiovascular system, 
leading to inflammation and oxidative stress (Delfino et al., 2005; Mills 
et al., 2009). Smaller particles may have higher toxicity since the rela-
tively large number and surface area of small particles may increase 
their risk of absorbing toxic substances (Hoek et al., 2009; Ostro et al., 
2015; Samoli et al., 2016). 

Despite such work indicating the significance of size, the scale of 
current size-resolved exposure and epidemiological studies is limited in 
terms of the exposed population, as well as spatial and temporal do-
mains. This is due primarily to typical exposure measurement tech-
niques, including fixed ground-based stations (Chen et al., 2017; Hu 
et al., 2018) and personal portable monitors (Gulliver and Briggs, 2007; 
Pacitto et al., 2018; Yu et al., 2012). Personal exposure monitors provide 
crucial individual-level detail and insights. Nonetheless, supplementary 
population-level exposures can inform individual-level studies, and may 
offer their own unique insights given the nature of environmental ex-
posures (Pekkanen and Pearce, 2001). Population-scale studies that 
involve some size-resolution in the fine fraction are primarily limited to 
station-based measurements, the spatial continuity and coverage of 
which are limited due to their high costs of station construction, oper-
ation and maintenance (Kumar et al., 2015). Wichmann et al. (2000) 
used measurements from a single monitoring station to assess particle 
exposure in Erfurt, Germany, with a population of approximately 200, 
000 people, indicating that exposure to ambient concentrations of fine 
and ultrafine particles had comparable effects. Lin et al. (2016) found 
the excess risk (ER) of cardiovascular mortality with PM1 was 6.48% 
(95% CI: 2.10%, 11.06%), higher than those associated with PM10 and 
PM2.5 reported in their study, demonstrating that PM1 might be an 
important characteristic of particulate matter pollution attributable to 
cardiovascular mortality in Guangzhou, China. Two monitoring stations 
were used in this study. 

The distribution of ambient particles shows variability, reflecting 
regional variations in aerosol emissions, transport and physicochemical 
processes (Pinto et al., 2004; Wang et al., 2013; Yang et al., 2018). Chen 
et al. (2018b) showed the station-based spatial distributions of PM1 and 
PM2.5 concentrations and the seasonal variations of the PM1/PM2.5 ratio 
the provincial level, demonstrating the spatial and temporal variability 
of size-fractioned particulate matter particles. Thus, exposure estimates 
based on in-situ measurements in a sparse monitoring network cannot 
fully represent the average exposure of the whole city population, 
especially, perhaps, for ultrafine particles (Pekkanen and Kulmala, 
2004), potentially limiting their use for population-based studies. 
Kodros et al. (2018, 2016) indicated that particle size measurements in 
polluted areas, such as India and China, are especially limited, leading to 
uncertainties. 

Many techniques are used to address the limited spatial coverage of 
fixed site measurements of particulate matter exposure based on mul-
tiple data sources. Ground-based measurements may be used to validate 
alternative estimates from numerical models and data-driven techniques 
(Knibbs et al., 2018; Ma et al., 2014; Xiao et al., 2018). These approaches 
differ in their current level of application to size-resolved exposure es-
timates. Numerical chemical transport models offer an approach to 
obtain aerosol components and behavior with a relatively high spatio-
temporal resolution and coverage (Brauer et al., 2012; Saari et al., 

2019). Further, they are capable of providing size-resolved exposures, as 
in Kodros et al., (2018); however, the application thereof remains 
limited as the use of size-resolved aerosol schemes greatly increases 
computational cost of simulations (Kodros and Pierce, 2017). 
Data-driven techniques are beginning to offer size-related information 
through the advent of novel and relatively low-cost particle-counting 
sensors. While such sensors do not provide size-resolved mass concen-
trations, particle number concentration can be related to the mass dis-
tributions. Recent work, reviewed and advanced in Saha et al., (2019), 
employed short-term fixed-site measurements to develop land use 
regression models of particle number concentration – a proxy for ul-
trafine exposure. Satellite remote sensing techniques have been applied 
to obtain concentrations of air pollutants with relatively with high 
spatial coverage (van Donkelaar et al., 2016; Yan et al., 2017). Zhang 
and Li (2015) established a theoretical relationship between fine par-
ticulate mass and satellite measurement based on aerosol microphysical 
behaviors. However, these methods have less commonly been applied to 
derive particle size (Hilboll et al., 2013; Larkin et al., 2017). Aside from 
the Angstrom Exponent (AE), which is inversely related to aerosol size 
(Qi et al., 2013; Wang et al., 2013), there is little information available 
on particle size, especially for submicron exposures at a population 
scale. 

The objective of this study is to reveal the extent of PM2.5 exposure 
by particle size in the submicrometer range. To achieve this, we 
employed a spatial statistical model for PM2.5 mass concentration 
retrieval and then combined aerosol microphysical characteristics with 
satellite optical measurements to estimate the ground-level particle 
effective radius of PM2.5. We applied this to examine the geographic 
variability and population exposure of the PM2.5 size-resolved mass 
concentrations over China in 2017. The uncertainty of our estimates is 
also discussed. 

2. Materials and methods 

2.1. Satellite-retrieved PM2.5 estimation 

Ground-level PM2.5 concentrations were estimated based on satellite 
and meteorological data using a Geographically Weighted Regression 
(GWR) model which were widely adopted for PM2.5 concentrations 
retrievals (Supplementary Material Part 9). Prior to GWR modelling, we 
corrected satellite-observed columnar aerosol optical depth (AOD) at 
the wavelength of 550 nm into ground-level extinction (bext) based on an 
assumption that the majority of atmospheric aerosols evenly suspend in 
the planetary boundary layer (PBL) due to the active mixing (Kaufman 
et al., 2003). Fine mode AOD was adopted based on a look-up table–-
spectral deconvolution algorithm, which was found to be closely related 
to PM2.5 (Yan et al., 2017; Zhang and Li, 2015). Hygroscopic growth 
functions were employed since aerosol hygroscopic characteristics affect 
extinction by changing the particle size. The correction formula is given 
below: 

bext;dry ¼
ηbext

fðRHÞ
¼

ητ
HfðRHÞ

(1)  

where bext;dry refers to extinction coefficient of fine particles under dry 
conditions; η refers to fine mode fraction; τ refers to satellite-derived 
AOD at 550 nm; H refers to the height of PBL; f (RH) refers to a hy-
groscopic growth function with independent variables of relative hu-
midity (RH), which are calculated based on the previous studies (Chen 
et al., 2014, 2015; Liu et al., 2019a; Yan et al., 2017). 

In addition to aerosol extinction, we include meteorological pa-
rameters expected to be associated the generation, accumulation, and 
removal of aerosols, including air temperature (T) (Day and Pandis, 
2011; Liu et al., 2007), surface wind speed (WS) (Zhou et al., 2015), 
horizontal visibility (V) (Xiao et al., 2018; You et al., 2016) and eleva-
tion (DEM) (Wang et al., 2018). These variables have been employed 
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previously in studies with acceptable performance (He and Huang, 
2018; Kloog et al., 2012; Liu et al., 2009; Ma et al., 2016, 2014). We 
considered and excluded additional variables, such as pressure, that did 
not independently improve performance (details in Supplementary 
Material Section 7). We employ these variables to estimate PM2.5 across 
China using the GWR model, according to the following model structure: 

PM2:5ði;jÞ ¼ β0ði;jÞ þ βbext;dry  ði;jÞ
bext;dry  ði;jÞ þ βTði;jÞTði;jÞ þ βWSði;jÞWSði;jÞ

þ βVði;jÞVði;jÞ þ βDEMði;jÞDEMði;jÞ þ εði;jÞ
(2)  

where PM2:5ði;jÞ is the ground-level PM2.5 concentration at location (i, j); 
β0 is the intercept; β with different subscripts denote the slope of cor-
responding variables. εði;jÞ is the error term at location (i,j). Gaussian 
distance decay functions were adopted to determine the weights. 
Considering spatial autocorrelation, 10-fold block cross validation (CV) 
was adopted to evaluate the model performance (Roberts et al., 2017). 
Four metrics, including the determination coefficient (R2), root mean 
square error (RMSE), mean absolute error (MAE) and mean bias error 
(MBE), were used to compare the retrieved and measured values. The 
variance inflation factor (VIF) was employed to measure the collinearity 
of the adopted variables (Table S5). It was less than 3 for all variables, 
indicating low collinearity. 

The detailed description of adopted parameters in above formulas is 
shown in Table 1 and in the Supplementary Material. All independent 
data were masked before resampling to 3 km using the cubic convolu-
tion algorithm and were unified with respect to coordinate system and 
data format, following the geophysical coverage of China and spatial 
resolution of MODIS AOD. 

2.2. Particle size calculation 

The aerosol radius was calculated with ground-level mass concen-
trations based on optical-mass theoretical relationships (Liu et al., 
2019b). We assumed aerosol particles were homogeneous spheres to 
statistically describe an ensemble of particles due to the aerosol 
complexity in terms of composition and geometry (Holben et al., 1998; 
Nakajima et al., 1996). The lognormal distribution was adopted to ex-
press the particle size distribution, which can be described by two pa-
rameters: geometric mean radius (rg) and geometric standard deviation 
(σg). Since aerosol extinction is proportional to r2, we used the effective 
particle radius (re), a weighted mean of size distribution, to represent the 
particle size according to the rule of lognormal distribution. 

re¼ 
R∞

0 r3nðrÞdr
R∞

0 r2nðrÞdr
¼  rgexp

�
5ln2σg

2

�

(3)  

where nðrÞ is the lognormal size distribution of accumulation mode 
aerosol; σg was set at 2, which refers to the general range of different fine 
particles (Reid et al., 2003; Steele et al., 2006). 

Consequently, the columnar particle mass concentration (M) and 
bext;dry can physically be defined and deduced: 

M¼
4
3

πρH
Z

r3nðrÞdr¼
4
3

πρHr3
g exp

�
9ln2σg

2

�

(4)  

bext;dry ¼
η

f ðRHÞ

Z ∞

0
Qextπr2nðrÞdr (5)  

where ρ is the mean bulk density of atmospheric particles, with a con-
stant value of 1.5 g/cm3 (Clarisse et al., 2010; Li et al., 2016), Qext is the 
extinction efficiency, which is related to visibility (Koschmieder, 1924), 

Qext¼
3:912=V

πðreÞ
2exp

�
� 3ln2σg

� (6) 

Equating with Eqs. (1) and (3) – (6) yields, 

re¼

 
3Mð3:912=VÞ

4πρτexp
�
� 3ln2σg

�

!1=3

(7) 

In Eq. (7), M was calculated based on the GWR model in Section 2.1; 
τ and V are spatial variables acquired from satellite and re-analysis 
datasets. The ρ and σg were treated as constants, the effect of which is 
examined in Section 4. 

2.3. Population data 

Gridded population data with a spatial resolution of 1 km were ob-
tained for 2015 from “Resource and Environmental Science Data Center 
of the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn/)”. 
This dataset provided 1 km gridded population using multi-factor 
weighting based on county-level demographic data, considering land 
use type, nighttime light intensity and residential density (Xu, 2017). 
The annual population in 2017 in each province was also acquired from 
the “Chinese National Bureau of Statistics (http://www.stats.gov.cn/t 
jsj/ndsj/)” to project the gridded 2015 population to 2017. To project 
the gridded data, the ratio of the gridded population to the whole 
population in each province in 2015 was first calculated. The gridded 
population in 2017 was then obtained by multiplying this ratio in each 
province by the whole population in the corresponding province in 
2017. The final gridded population was resampled to 3 km to match the 
spatial resolution of estimated PM2.5 concentrations and sizes. 

3. Results 

3.1. Ground-level PM2.5 concentration estimation 

As mentioned in Section 2.1, the GWR model was established using 
ground-based PM2.5 measurements with a total of 176,385 available 
samples. Table 2 shows the results of model fitting and cross validation 
based on the GWR model. The model fitting R2 between the estimated 
and measured PM2.5 mass concentration is 0.82, with RMSE of 15.7 μg/ 
m3 and MAE of 10.1 μg/m3. A negative MBE suggests PM2.5 concen-
trations were underestimated by � 6.63 μg/m3. Compared to the model 
fitting results, the CV R2 (0.80) decreases by only 0.04 and the CV RMSE 
increases by 2.3 μg/m3, indicating that there is no substantial overfitting 
in the model. Both overall R2 and CV R2 are higher than 0.80, showing 
that the accuracy of PM2.5 estimation results are acceptable. In addition, 
as shown in Fig. 1a, the spatial pattern of annual mean PM2.5 estimation 
appears to be visually consistent with that of ground observations in 
2017. The concentrations in eastern China are generally higher than 
those in the west, except for the Taklamakan Desert. As designated by 
Chinese National Bureau of Statistics (http://www.stats.gov.cn/tjsj/nd 

Table 1 
Detailed data description.  

Data (Unit) Spatial resolution Descriptive statistics of collocated data 

Min Max Mean 

PM2.5 (μg/m3) – 1.00 736.25 45.55 
AOD (Unitless) 3 km; 10 km 0.03 3.86 0.47 
T (K) 0.25� 260.81 309.67 289.04 
WS (m/s) 0.25� 0.16 15.82 3.49 
RH (%) 0.25� 9.04 96.83 56.93 
PBLH (m) 0.25� 25.90 6328.97 1837.02 
V (km) – 0.26 49.99 9.45 
DEM (m) 1 km � 13.46 4553.22 370.51 

Note: Ground-level PM2.5 concentrations were obtained from China National 
Environment Monitoring Center; AOD images obtained from NASA Atmosphere 
Archive and Distribution System; T, WS, RH, and PBLH were obtained from 
NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids; 
V was obtained from NCEP ADP Global Surface Observational Weather Data; 
DEM was obtained from Resources and Environmental Science Data Center. The 
detailed descriptions were provided in Supplementary Material. 
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sj/2017/indexeh.htm), we divided the entire study area into four re-
gions (East, West, Northeast and Centre) based on their economic 
development (Fig. 1b). The East is the most developed region in China, 
contributing 52.6% of overall GDP, while the Northeast has the smallest 
GDP, accounting for 6% of the total. The highest annual-mean growth 
rates of GDP and industrial added value occurred in the Centre region, 
with respective values of 10.8% and 12.5%, respectively (2006–2017). 

Results in Fig. 1 show that the highest annual-mean PM2.5 levels 
were observed in the Centre, with a mean concentration of 54.3 μg/m3, 
followed by the West, the East, and the Northeast region. Although the 
East had the second lowest PM2.5 levels, hotspots in the Beijing-Tianjin- 
Hebei (BTH) metropolitan region experienced high PM2.5 exposures, 
with concentrations exceeding 55 μg/m3. Elevated PM2.5 concentrations 
in the West were located in the Tarim Basin (Taklamakan Desert), the 
Guanzhong Plain, and the Sichuan Basin. The seasonal variations of 
PM2.5 concentrations are shown in the Supplementary Material, indi-
cating that winter was the most polluted season in 2017, with a mean 
value of 61.1 μg/m3. Following van Donkelaar et al. (2016), exposed 
population counts and cumulative distributions of PM2.5 concentrations 
by population for different regions are shown in Fig. 2. The national 
population-weighted average (PWA) of ambient PM2.5 is estimated to 
have been 52.1 μg/m3 in 2017. The highest PWA concentration was 

observed in the Centre (60.9 μg/m3), while the Northeast had the lowest 
value (38.4 μg/m3). The standard deviation (STD) of PWA in these two 
regions was below 20 μg/m3, indicating a mean separation of at least 
one STD between them. The PWA concentrations in the West (46.9 
μg/m3) were lower than those in the East (53.9 μg/m3), although this 
order is reversed for mass concentrations. The West and East had 
significantly higher STDs than the other regions, with the respective 
values of 96.2 μg/m3 and 39.9 μg/m3, indicating highly variable 
exposures. 

The cumulative distribution of population exposure to mass con-
centrations was also explored to describe the percentage of population 
experiencing high PM2.5 levels (Fig. 2b). The results show 12.3% of the 
Chinese population living where concentrations meet the China national 
ambient air quality standards (GB 3095–2012) (35 μg/m3) and less than 
20,000 people living in regions with concentrations lower than 10 μg/ 
m3 (World Health Organization (WHO) guideline) in 2017. Regionally, 
1% of the Northeast population was exposed to PM2.5 concentrations 
exceeding 50 μg/m3, compared to 90% of the Centre population. Typical 
ambient concentrations in the East and West regions range from 20 to 
80 μg/m3, while a larger percentage of the population in the East (56%) 
experienced PM2.5 concentrations higher than 50 μg/m3 than that in the 
West (36%), although the mean concentrations in the East are slightly 
lower than those in the West. 

3.2. Ground-level particle radius estimation 

The atmospheric aerosols over China were dominated by PM2.5 
particles with radius less than 1.0 μm in 2017. Due to the dearth of large- 
scale ground-level radius measurements, the estimated particle radius 
was validated against the available Aerosol Robotic Network (AERO-
NET) columnar radius retrievals provided by eight stations, with R ¼
0.66 (Fig. 3a). The detailed information for AERONET measurements is 
provided in the Supplemental Material. Both RMSE and MAE were less 
than 0.2 μm, enabling diverse particle sizes to be distinguished. A 

Table 2 
Validation of daily PM2.5 estimates.   

R2 RMSE 
(μg/m3) 

MAE 
(μg/ 
m3) 

MBE 
(μg/ 
m3) 

N Equations 

Model- 
fitting 

0.82 15.7 10.1 � 6.6 176,385 y ¼
0.81xþ14.32 

CV 0.80 18.0 11.9 � 6.0 176,385 y ¼
0.80xþ15.89 

Note: N: sample numbers; R2: determination coefficient; RMSE: root-mean- 
square error; MAE: mean absolute error; MBE: mean bias error. 

Fig. 1. Spatial patterns of (a) ground-based PM2.5 concentrations (b) satellite-estimated PM2.5 concentrations (c) population (d) economic regions in 2017 (Note that 
the following analysis did not take into account Taiwan because of the lack of population data). 
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positive MBE indicates that the ground-level estimated radius was 
slightly larger than the columnar AERONET retrievals, which could be 
due to a slight decrease in radius with altitude (Baars et al., 2012). We 
also plotted our radius estimates against the AERONET Angstrom 
Exponent (AE) values (using wavelengths 0.44 and 0.87 μm) in Fig. 3b. 
The result shows that the estimated radius decreased with increasing AE 
and the rate of decline is larger at lower AE values (inset in Fig. 3b). 
These findings are consistent with previous studies showing that AE is 
generally inversely associated with particle size (Giannakaki et al., 
2016; Müller et al., 2011; Schuster et al., 2006). 

Given that limited radius samples cannot fully reveal the nationwide 
spatial distribution, we also visually compared our estimates to MODIS 
AE products for each season. The spatial patterns of estimated particle 
radius are shown for annual and seasonal scales in Fig. 4. The mean 
particle size is larger in the West than in the Centre or East. The division 
coincides with the imaginary line (Heihe-Tengchong) dividing the ter-
ritory of China into western and eastern parts according to population 
density (Hu, 1935). This result indicates that the population in eastern 
China is exposed to PM2.5 pollution with a smaller mean particle size. 
This can also be supported by the national patterns of decadal mean 
mass concentrations of PM1 and PM2.5 from two studies (Chen et al., 
2018a; Ma et al., 2016) (details in Supplementary Material). The Tarim 
Basin (where the Taklamakan Desert is located) has the largest particle 
size in China, especially in the spring and summer. PM2.5 with smaller 
particle size are more likely to occur in the spring and summer in eastern 
China, while there is less spatial variation in autumn and winter. The 

seasonal variations and spatial patterns of the estimated particle radius 
are visually consistent with those of MODIS AE data. 

Fig. 5 presents the distribution of annual-mean particle effective 
radius by population and region. Nationally, more than 99% of the 
Chinese population lived in areas with effective particle radius less than 
0.7 μm (i.e. aerodynamic diameters lower than 1.0 μm under the as-
sumptions in this study) in 2017. The PWA effective radius of PM2.5 in 
China was estimated to be 0.5 μm, with STD of 0.5 μm (Supplementary 
Material). This national mean of Re ¼ 0.5 μm was used to compare ex-
posures across the different regions. Fig. 5 shows that 98% of the Cen-
tre’s population was exposed to particles with annual-mean radius 
below 0.5 μm, compared to 85% of the Northeast. The Centre was 
consistently exposed to small particles, with PWA radius of 0.4 μm. 
Although Fig. 4 shows the West had the largest particles, Fig. 5 shows 
that most of its population was exposed to relatively smaller ones, with 
PWA radius of 0.5 μm (rounded to the nearest tenth of a micron). 

The seasonality of particle size can be observed in Fig. 6. The biggest 
difference in the median radius between the four regions occurred in 
springtime. Half of the Centre population in spring was exposed to PM2.5 
with radius less than 0.4 μm, while half of the Northeast population was 
exposed to larger particles, with median radius of 0.5 μm. Only 1% of the 
Centre population was exposed to particles larger than 0.5 μm in the 
spring, compared to 84% of the Northeast. Summer is the season with 
the highest national exposures (86%) to a mean radius less than 0.5 μm. 
The West shows the least seasonal variation in exposures to a mean less 
than 0.5 μm (76%–81%). A relatively large proportion of the East 

Fig. 2. Distribution of 2017 p.m.2.5 concentrations by population for four economic regions and China.  

Fig. 3. Validation of estimated effective radius against AERONET (a) radius retrievals and (b) AE values.  
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population (42% in autumn and 40% in winter) are exposed to PM2.5 
(Re > 0.5 μm), likely due to high population density in the coastal re-
gion. The results suggest that population in the Centre region was 
exposed to not only the highest PM2.5 concentration but also the smallest 
particle size. 

4. Discussion 

Previous studies have shown the potential for particle size to affect 
outcomes of PM exposure, indicating that smaller sizes may have greater 
effects on human health (De Haar et al., 2006; Franck et al., 2011). 
Size-resolved exposures needed to support epidemiologic studies into 
this effect, however, are limited by a lack of observations, especially at 
population scales. Here, we quantified PM2.5 concentrations using a 
GWR model and estimated effective particle radius based on 
optical-mass theoretical relationships for China in 2017 across regions 
and seasons. 

The national, annual-mean PM2.5 mass concentration was estimated 
to be 45.9 μg/m3. The highest mass concentrations of PM2.5 were 

observed in central and eastern China (east of Heihe-Tengchong popu-
lation line). These high concentrations were most prevalent in indus-
trialized urban agglomerations, such as the North China Plain (the BTH 
region), Hubei and Hunan provinces. Higher concentrations were also 
found to cross into Shanxi and Shaanxi province, areas with abundant 
coal-fired facilities and coal production. This is consistent with previous 
attribution studies suggesting that the high PM2.5 concentration in these 
regions is attributable to anthropogenic activities associated with rapid 
economic development and industrialization, such as fossil fuel con-
sumption (Zhang et al., 2015, 2013; Zheng et al., 2015). The hotspot in 
the Sichuan Basin is related to the unfavorable topography encouraging 
stagnation in this low-lying area surrounded by mountains (You et al., 
2016). 

In the fine fraction (PM2.5), we observed a range of annual mean 
effective particle radii from 0.3 μm to 1.8 μm across China in 2017. On a 
national, annual scale, we found a mean particle effective radius of 0.5 
μm with a STD of 0.5 μm. This is consistent with Wichmann et al. (2000), 
finding that 78% (14%) of PM2.5 mass was found in the diameter range 
of 0.1–0.5 μm (0.5–1.0 μm) in an urban area in Germany. The largest 

Fig. 4. Spatial patterns of estimated particle effective radius (left) and MODIS Angstrom Exponent (right).  
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mean effective radii of PM2.5 were found in the West, which is consistent 
with the evidence that the contribution of dust-related emission to PM2.5 
in the West is much higher than other regions (He et al., 2017; Huang 
et al., 2014). Mean particle radius across the Tarim Basin was much 
larger than in other areas, ranging from 0.6 μm to 1.4 μm. This finding is 
expected given the dust and sand in the Taklamakan Desert, and is in 

line with studies of PM2.5 mass and size in this region (Ma et al., 2014; 
Shao and Mao, 2016). Combining the seasonal spatial patterns of AOD 
and particle size (Supplementary Material), we found that high values of 
both AOD particle radius over the Taklamakan Desert are more preva-
lent in spring, which is attributed to the frequent dust events during 
spring (Yu et al., 2015; Zhao, 2003). It is interesting to note that large 

Fig. 5. Distribution of annual-mean PM2.5 effective radius estimation for four economic regions and China.  

Fig. 6. Distribution of seasonal-mean PM2.5 effective radius estimation for four economic regions and China in (a) Spring (b) Summer (c) Autumn and (d) Winter.  
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size values were also observed in summer here. This appears to be 
supported by Meng et al. (2019), reporting that summer has the lowest 
ratios of PM2.5/PM10, PM1/PM10, and PM1/PM2.5. Due to a dearth of 
studies of seasonal patterns of PM2.5 composition in this region, how-
ever, we can only infer that this observed seasonality could be related to 
the sources, fate and transport of PM2.5, and potential seasonal bias in 
the input data. Additionally, the Northeast region also experienced 
relatively high PM2.5 concentrations with large particle radii in spring, 
which has been related to sand and dust storms caused by Siberian and 
Mongolian cyclones from northern Asia, indicating that the spatial 
pattern of PM2.5 concentrations was also affected by aerosol regional 
transport (Qian et al., 2004; Wang et al., 2011). The drivers of fine 
aerosol sizes, such as emissions and meteorological factors, should be 
explored further to test these inferences. Intraregional analysis was not 
included in this study since observed differences were mostly small 
compared to errors. 

5. Sources of uncertainty 

This study attempts to utilize large-scale measurements to explore 
the spatial variation and population exposure to ambient size-resolved 
PM2.5 exposure. Given the aims of this work, several assumptions have 
been proposed to simplify the estimation method. Following error 
propagation theory, the uncertainty related to assumptions is approxi-
mately 24%. Specifically, the assumption that spherical aerosols were 
uniformly distributed in the PBL can introduce an error of 16% in 
aerosol extinction, especially when additional pollution layers above the 
PBL are present due to emissions and long-distance transport of air 
pollutants (Li et al., 2016). While we assumed that the physiochemical 
and optical properties of aerosols are independent of size distribution, 
which enabled the aerosol hygroscopic properties to be simplified by 
growth functions, previous studies reported minor errors from this 
assumption (Li et al., 2016; Zieger et al., 2014). In addition to the above 
theoretical assumptions, empirical assumptions (such as σg and ρ) can 
also bring errors. Two aerosol properties in size estimation were 
assumed constant, including ρ and σg used to define the lognormal 
distribution. According to previous studies (Hand and Kreidenweis, 
2002; H€anel and Thudium, 1977; McMurry et al., 2002), the general 
range of mass density is 1.5–2.1 g/cm3 in different regions, therefore, 
the assumption (ρ ¼ 1.5 g/cm3) can cause an error of about 16.7% 
(versus the average density of 1.80 g/cm3 at multiple sites). The average 
value of σg in the OPAC database for most fine aerosol components is 
2.14 μm (Hess et al., 1998), and the constant value of σg (2 μm) produces 
a systematic error of 6% against the average value. The maximum bias 
(0.01) caused by the constant (3.912) in Koschmieder’s equation in 
extinction when V ¼ 0.2 km. The sensitivity analysis is provided in 
Supplementary Material. 

In addition to assumptions, errors in input data affect the accuracy of 
the concentration and size estimates. Although MODIS AOD has been 
widely adopted and validated for daily PM2.5 concentration retrieval, 
biases remain because of the algorithm assumptions and cloud 
contamination. Missing AOD values may arise due to cloud contami-
nation, leading to underestimation, particular during severe haze. AOD 
values may also be biased in coastal regions where surface reflectance is 
more likely to be affected by mixed-pixels and challenging to charac-
terize (Anderson et al., 2013). The validation of MODIS AOD in this 
study is shown in Fig. S3, with R ¼ 0.92 and RMSE ¼ 0.18. Combining 
multiple sensors can be an effective way to improve the completeness 
and accuracy of AOD estimates in the future (Guo et al., 2014; Qi et al., 
2013). Other input parameters, for example, from meteorological 
reanalysis, can also introduce uncertainty due to model assumptions, 
coarse resolution and interpolation algorithm. Though the quantitative 
uncertainty of these parameters was not evaluated in this study due to 
the dearth of measurements, the good performance of reanalysis dataset 
has been demonstrated in numerous studies (Deroubaix et al., 2019; 

Ding et al., 2004; Kalnay et al., 1996). Further, errors in PM2.5 con-
centrations (RMSE ¼ 15.7 μg/m3, MAE ¼ 10.1 μg/m3) can propagate to 
particle size estimates; therefore, as PM2.5 estimates improve, so too will 
the reliability of size estimation results. 

Differences in spatial and temporal representativeness between sat-
ellite observations and ground-level measurements can also impact the 
estimation results. The satellite data employed in this study represent an 
average value for a 3 km by 3 km pixel, while monitoring stations 
represent some area around their sites, which are usually located in 
highly populated regions. Some temporal inconsistency also persists, 
given differing measurement frequencies and averaging periods be-
tween the ground-based and satellite-based observations. 

Compared to a laboratory setting, estimating particle radius accu-
rately using satellite data is difficult due to the characteristics of remote 
sensing (such as coarse resolution and long-distance measurements). 
Validation is also a challenge because of the limited ground-based 
measured data. Though various measurement campaigns have 
explored particle distributions in China (Song et al., 2012; Tao et al., 
2019; Yi et al., 2006), and many studies measured and estimated PM 
concentrations for different size ranges (including PM1, PM2.5 and PM10) 
(Shao et al., 2018; Wang et al., 2015; Zang et al., 2019) over specific 
times and locations, they are difficult to compare to our national, annual 
average values due to their disparate spatiotemporal scales. This is why 
we examined the relationship between estimated particle radius, AER-
ONET columnar retrieved radius, and AE data from AERONET and 
MODIS. As expected, a decreasing pattern between effective radius and 
AE was observed. While promising, this interpretation is qualitative, as 
the relationship between AE and particle effective radius is known to 
vary with wavelength, size distribution, and composition (Gobbi et al., 
2007; Schuster et al., 2006). The observed range of mean effective 
particle radii, 0.3 μm–1.8 μm, is based on an annual average of a single 
year, and thus cannot fully represent the actual PM2.5 size range that 
may be experienced over time across China. More highly-resolved data 
with shorter averaging periods over long timescales may reveal a wider 
range of exposures. 

6. Conclusion 

This study presents the first, to our knowledge, national estimates of 
size-resolved exposures to fine particulate matter. It seeks to address a 
gap in population-scale estimates that could be used to motivate or 
inform our understanding of the effect of particle size on human health, 
which current evidence suggests is important but remains limited by 
data. In an effort to address this gap, we derive particle effective radius 
and mass concentration of PM2.5 using satellite-derived data and aerosol 
microphysical properties to explore the spatial pattern and population 
exposure of PM2.5 concentrations and sizes. 

We find that most of the Chinese population was exposed to high 
PM2.5 concentrations with small particle sizes. Fewer than 20,000 peo-
ple in 2017 lived in locations where concentrations met the annual WHO 
guideline (10 μg/m3). Less than 1% lived in regions with a PM2.5 mean 
particle effective radius above 0.7 μm (i.e. aerodynamic diameters lower 
than 1.0 μm) in 2017. The national population-weighted annual average 
concentration of PM2.5 and particle effective radius were estimated to be 
52.1 μg/m3 and 0.5 μm in 2017, respectively. Spatially, PM2.5 concen-
trations to the east of the Heihe-Tengchong population line were 
generally higher than those in the west, while the particle radius was 
larger in the west, especially in the desert. Specifically, among four 
economic regions, the Centre region had the highest ambient PM2.5 
concentrations with the smallest particle radius, where 90% of the 
population was exposed to PM2.5 concentrations higher than 50 μg/m3 

and only 2% was exposed to a mean effective particle radius larger than 
0.5 μm in 2017. High PM2.5 concentrations and small particle sizes were 
more likely to occur in regions with high GDP and population densities, 
which is in line with other work suggesting an important contribution 
from industrial and economic activity. Temporally, summer is the 
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season in which the highest percentage of the national population (86%) 
lived in areas with a mean effective radius of PM2.5 less than 0.5 μm. In 
the Taklamakan Desert, where aerosols are dominated by natural 
sources (such as dust and sand), large particle radii were more prevalent 
in spring due to the higher frequency of dust events, despite relatively 
low PM2.5 concentrations during this period. 

The validation of particle radius in this work is restricted by the 
available particle size measurements. Large-scale and long-term particle 
size measurements in polluted regions, such as India and China, are 
especially limited. The AERONET columnar radius retrievals and MODIS 
AE data provide large-coverage observations of a variable linked to 
aerosol size were used to validate our radius estimates, yielding an MAE 
of 0.12 μm. Sensitivity analysis of retrieval parameters found a potential 
MAE contribution of 0.1 μm. Some of this difference may be attributable 
to differences in retrieval approaches. Accuracy may be improved with 
the advent of further ground-based measurements, higher resolution 
data input, or more detailed information on aerosol properties. This 
work demonstrates the potential of remote sensing techniques for esti-
mating population-scale size-resolved PM2.5 exposures, reveals preva-
lent exposure to sub-micron particles, and motivates further research on 
the effect of particle size on health outcomes related to particulate 
matter. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

CRediT authorship contribution statement 

Ming Liu: Conceptualization, Methodology, Software, Investigation, 
Writing - original draft. Rebecca K. Saari: Supervision, Conceptuali-
zation, Writing - review & editing. Gaoxiang Zhou: Software, Investi-
gation. Xiangnan Liu: Writing - review & editing. Jonathan Li: 
Supervision, Writing - review & editing. 

Acknowledgements 

The first author acknowledges the China Scholarship Council for 
their support via a doctoral scholarship (No. 201706400072). Rebecca 
K. Saari acknowledges funding by the Natural Sciences and Engineering 
Research Council of Canada. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.atmosenv.2020.117745. 

References 

Anderson, J.C., Wang, J., Zeng, J., Leptoukh, G., Petrenko, M., Ichoku, C., Hu, C., 2013. 
Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal 
regions: bias characteristics and uncertainty sources. Tellus B 65, 20805. https://doi. 
org/10.3402/tellusb.v65i0.20805. 

Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Heese, B., Müller, D., Artaxo, P., 
Paixao, M., Pauliquevis, T., Souza, R., 2012. Aerosol profiling with lidar in the 
Amazon Basin during the wet and dry season. J. Geophys. Res. Atmospheres 117. 
https://doi.org/10.1029/2012JD018338. 

Brauer, M., Amann, M., Burnett, R.T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. 
B., Krzyzanowski, M., Martin, R.V., Van Dingenen, R., van Donkelaar, A., 
Thurston, G.D., 2012. Exposure assessment for estimation of the global burden of 
disease attributable to outdoor air pollution. Environ. Sci. Technol. 46, 652–660. 
https://doi.org/10.1021/es2025752. 

Chen, G., Knibbs, L.D., Zhang, W., Li, S., Cao, W., Guo, J., Ren, H., Wang, B., Wang, H., 
Williams, G., Hamm, N.A.S., Guo, Y., 2018a. Estimating spatiotemporal distribution 
of PM1 concentrations in China with satellite remote sensing, meteorology, and land 
use information. Environ. Pollut. 233, 1086–1094. https://doi.org/10.1016/j. 
envpol.2017.10.011. 

Chen, G., Li, S., Zhang, Y., Zhang, W., Li, D., Wei, X., He, Y., Bell, M.L., Williams, G., 
Marks, G.B., Jalaludin, B., Abramson, M.J., Guo, Y., 2017. Effects of ambient PM1 air 
pollution on daily emergency hospital visits in China: an epidemiological study. 
Lancet Planet. Health 1, e221–e229. https://doi.org/10.1016/S2542-5196(17) 
30100-6. 

Chen, G., Morawska, L., Zhang, W., Li, S., Cao, W., Ren, H., Wang, B., Wang, H., 
Knibbs, L.D., Williams, G., Guo, J., Guo, Y., 2018b. Spatiotemporal variation of PM1 
pollution in China. Atmos. Environ. 178, 198–205. https://doi.org/10.1016/j. 
atmosenv.2018.01.053. 

Chen, J., Zhao, C.S., Ma, N., Yan, P., 2014. Aerosol hygroscopicity parameter derived 
from the light scattering enhancement factor measurements in the North China 
Plain. Atmos. Chem. Phys. 14, 8105–8118. https://doi.org/10.5194/acp-14-8105- 
2014. 

Chen, Y., Zhao, P., He, D., Dong, F., Zhao, X., Zhang, X., 2015. Characteristics and 
parameterization for atmospheric extinction coefficient in beijing. Environ. Sci. 36, 
3582–3589. 

Clarisse, L., Hurtmans, D., Prata, A.J., Karagulian, F., Clerbaux, C., Mazi�ere, M.D., 
Coheur, P.-F., 2010. Retrieving radius, concentration, optical depth, and mass of 
different types of aerosols from high-resolution infrared nadir spectra. Appl. Optic. 
49, 3713–3722. https://doi.org/10.1364/AO.49.003713. 

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., 
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., 
Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., 
Pope 3rd, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van 
Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar, M.H., 2017. Estimates and 25- 
year trends of the global burden of disease attributable to ambient air pollution: an 
analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 
1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6. 

Day, M.C., Pandis, S.N., 2011. Predicted changes in summertime organic aerosol 
concentrations due to increased temperatures. Atmos. Environ. 45, 6546–6556. 
https://doi.org/10.1016/j.atmosenv.2011.08.028. 

De Haar, C., Hassing, I., Bol, M., Bleumink, R., Pieters, R., 2006. Ultrafine but not fine 
particulate matter causes airway inflammation and allergic airway sensitization to 
co-administered antigen in mice. Clin. Exp. Allergy 36, 1469–1479. 

Delfino, R.J., Sioutas, C., Malik, S., 2005. Potential role of ultrafine particles in 
associations between airborne particle mass and cardiovascular health. Environ. 
Health Perspect. 113, 934–946. https://doi.org/10.1289/ehp.7938. 

Deroubaix, A., Menut, L., Flamant, C., Brito, J., Denjean, C., Dreiling, V., Fink, A., 
Jambert, C., Kalthoff, N., Knippertz, P., Ladkin, R., Mailler, S., Maranan, M., 
Pacifico, F., Piguet, B., Siour, G., Turquety, S., 2019. Diurnal cycle of coastal 
anthropogenic pollutant transport over southern West Africa during the DACCIWA 
campaign. Atmos. Chem. Phys. 19, 473–497. https://doi.org/10.5194/acp-19-473- 
2019. 

Ding, A., Wang, Tao, Zhao, M., Wang, Tijian, Li, Z., 2004. Simulation of sea-land breezes 
and a discussion of their implications on the transport of air pollution during a multi- 
day ozone episode in the Pearl River Delta of China. Atmos. Environ. 38, 6737–6750. 
https://doi.org/10.1016/j.atmosenv.2004.09.017. 

Esposito, V., Lucariello, A., Savarese, L., Cinelli, M.P., Ferraraccio, F., Bianco, A., De 
Luca, A., Mazzarella, G., 2012. Morphology changes in human lung epithelial cells 
after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens. 
Environ. Pollut. 171, 162–167. https://doi.org/10.1016/j.envpol.2012.07.006. 

Franck, U., Odeh, S., Wiedensohler, A., Wehner, B., Herbarth, O., 2011. The effect of 
particle size on cardiovascular disorders — the smaller the worse. Sci. Total Environ. 
409, 4217–4221. https://doi.org/10.1016/j.scitotenv.2011.05.049. 

Gerlofs-Nijland, M.E., Rummelhard, M., Boere, A.J.F., Leseman, D.L.A.C., Duffin, R., 
Schins, R.P.F., Borm, P.J.A., Sillanp€a€a, M., Salonen, R.O., Cassee, R.F., 2009. Particle 
induced toxicity in relation to transition metal and polycyclic aromatic hydrocarbon 
contents. Environ. Sci. Technol. 43, 4729–4736. https://doi.org/10.1021/ 
es803176k. 

Giannakaki, E., van Zyl, P.G., Müller, D., Balis, D., Komppula, M., 2016. Optical and 
microphysical characterization of aerosol layers over South Africa by means of 
multi-wavelength depolarization and Raman lidar measurements. Atmos. Chem. 
Phys. 16, 8109–8123. https://doi.org/10.5194/acp-16-8109-2016. 

Gobbi, G.P., Kaufman, Y.J., Koren, I., Eck, T.F., 2007. Classification of aerosol properties 
derived from AERONET direct sun data. Atmos. Chem. Phys. 7, 453–458. https:// 
doi.org/10.5194/acp-7-453-2007. 

Gulliver, J., Briggs, D.J., 2007. Journey-time exposure to particulate air pollution. 
Atmos. Environ. 41, 7195–7207. https://doi.org/10.1016/j.atmosenv.2007.05.023. 

Guo, J., Gu, X., Yu, T., Cheng, T., Chen, H., 2014. Trend analysis of the aerosol optical 
depth from fusion of MISR and MODIS retrievals over China. IOP Conf. Ser. Earth 
Environ. Sci. 17 https://doi.org/10.1088/1755-1315/17/1/012036, 012036.  

Hand, J.L., Kreidenweis, S.M., 2002. A new method for retrieving particle refractive 
index and effective density from aerosol size distribution data. Aerosol. Sci. Technol. 
36, 1012–1026. https://doi.org/10.1080/02786820290092276. 

H€anel, G., Thudium, J., 1977. Mean bulk densities of samples of dry atmospheric aerosol 
particles: A summary of measured data. PAGEOPH 115, 799–803. https://doi.org 
/10.1007/BF00881211. 

He, J., Gong, S., Yu, Y., Yu, L., Wu, L., Mao, H., Song, C., Zhao, S., Liu, H., Li, X., Li, R., 
2017. Air pollution characteristics and their relation to meteorological conditions 
during 2014–2015 in major Chinese cities. Environ. Pollut. 223, 484–496. https:// 
doi.org/10.1016/j.envpol.2017.01.050. 

He, Q., Huang, B., 2018. Satellite-based mapping of daily high-resolution ground PM2.5 
in China via space-time regression modeling. Remote Sens. Environ. 206, 72–83. htt 
ps://doi.org/10.1016/j.rse.2017.12.018. 

Hess, M., Koepke, P., Schult, I., 1998. Optical properties of aerosols and clouds: The 
software package OPAC. Bull. Am. Meteorol. Soc. 79, 831–844. 

M. Liu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.atmosenv.2020.117745
https://doi.org/10.1016/j.atmosenv.2020.117745
https://doi.org/10.3402/tellusb.v65i0.20805
https://doi.org/10.3402/tellusb.v65i0.20805
https://doi.org/10.1029/2012JD018338
https://doi.org/10.1021/es2025752
https://doi.org/10.1016/j.envpol.2017.10.011
https://doi.org/10.1016/j.envpol.2017.10.011
https://doi.org/10.1016/S2542-5196(17)30100-6
https://doi.org/10.1016/S2542-5196(17)30100-6
https://doi.org/10.1016/j.atmosenv.2018.01.053
https://doi.org/10.1016/j.atmosenv.2018.01.053
https://doi.org/10.5194/acp-14-8105-2014
https://doi.org/10.5194/acp-14-8105-2014
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref8
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref8
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref8
https://doi.org/10.1364/AO.49.003713
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/j.atmosenv.2011.08.028
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref11
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref11
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref11
https://doi.org/10.1289/ehp.7938
https://doi.org/10.5194/acp-19-473-2019
https://doi.org/10.5194/acp-19-473-2019
https://doi.org/10.1016/j.atmosenv.2004.09.017
https://doi.org/10.1016/j.envpol.2012.07.006
https://doi.org/10.1016/j.scitotenv.2011.05.049
https://doi.org/10.1021/es803176k
https://doi.org/10.1021/es803176k
https://doi.org/10.5194/acp-16-8109-2016
https://doi.org/10.5194/acp-7-453-2007
https://doi.org/10.5194/acp-7-453-2007
https://doi.org/10.1016/j.atmosenv.2007.05.023
https://doi.org/10.1088/1755-1315/17/1/012036
https://doi.org/10.1080/02786820290092276
https://doi.org/10.1007/BF00881211
https://doi.org/10.1007/BF00881211
https://doi.org/10.1016/j.envpol.2017.01.050
https://doi.org/10.1016/j.envpol.2017.01.050
https://doi.org/10.1016/j.rse.2017.12.018
https://doi.org/10.1016/j.rse.2017.12.018
http://refhub.elsevier.com/S1352-2310(20)30477-5/optO6X69AkDYd
http://refhub.elsevier.com/S1352-2310(20)30477-5/optO6X69AkDYd


Atmospheric Environment 238 (2020) 117745

10

Hilboll, A., Richter, A., Burrows, J.P., 2013. Long-term changes of tropospheric NO2 over 
megacities derived from multiple satellite instruments. Atmos. Chem. Phys. 13, 
4145–4169. https://doi.org/10.5194/acp-13-4145-2013. 

Hoek, G., Boogaard, H., Knol, A., De Hartog, J., Slottje, P., Ayres, J.G., Borm, P., 
Brunekreef, B., Donaldson, K., Forastiere, F., 2009. Concentration response functions 
for ultrafine particles and all-cause mortality and hospital admissions: results of a 
European expert panel elicitation. Environ. Sci. Technol. 44, 476–482. 

Holben, B.N., Eck, T.F., Slutsker, I., Tanr�e, D., Buis, J.P., Setzer, A., Vermote, E., 
Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 
1998. AERONET—a federated instrument network and data archive for aerosol 
characterization. Remote Sens. Environ. 66, 1–16. https://doi.org/10.1016/S0034- 
4257(98)00031-5. 

Hu, H.Y., 1935. The distribution of population in China,with Statistics and maps. Acta 
Geograph. Sin. 2, 33–74. https://doi.org/10.11821/xb193502002. 

Hu, K., Guo, Y., Hu, D., Du, R., Yang, X., Zhong, J., Fei, F., Chen, F., Chen, G., Zhao, Q., 
Yang, J., Zhang, Y., Chen, Q., Ye, T., Li, S., Qi, J., 2018. Mortality burden 
attributable to PM1 in Zhejiang province, China. Environ. Int. 121, 515–522. 
https://doi.org/10.1016/j.envint.2018.09.033. 

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K.R., 
Slowik, J.G., Platt, S.M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S.M., Bruns, E.A., 
Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle- 
Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I.E., 
Pr�evôt, A.S.H., 2014. High secondary aerosol contribution to particulate pollution 
during haze events in China. Nature 514, 218–222. https://doi.org/10.1038/ 
nature13774. 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., 
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., 
Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., 
Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. 
Meteorol. Soc. 77, 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437: 
TNYRP>2.0.CO;2. 

Kaufman, Y.J., Haywood, J.M., Hobbs, P.V., Hart, W., Kleidman, R., Schmid, B., 2003. 
Remote sensing of vertical distributions of smoke aerosol off the coast of Africa. 
Geophys. Res. Lett. 30 https://doi.org/10.1029/2003GL017068. 

Kloog, I., Nordio, F., Coull, B.A., Schwartz, J., 2012. Incorporating local land use 
regression and satellite aerosol optical depth in a hybrid model of spatiotemporal 
PM2.5 exposures in the Mid-Atlantic States. Environ. Sci. Technol. 46, 
11913–11921. https://doi.org/10.1021/es302673e. 

Knibbs, L.D., van Donkelaar, A., Martin, R.V., Bechle, M.J., Brauer, M., Cohen, D.D., 
Cowie, C.T., Dirgawati, M., Guo, Y., Hanigan, I.C., Johnston, F.H., Marks, G.B., 
Marshall, J.D., Pereira, G., Jalaludin, B., Heyworth, J.S., Morgan, G.G., Barnett, A.G., 
2018. Satellite-based land-use regression for continental-scale long-term ambient 
PM2.5 exposure assessment in Australia. Environ. Sci. Technol. 52, 12445–12455. 
https://doi.org/10.1021/acs.est.8b02328. 

Kodros, J.K., Cucinotta, R., Ridley, D.A., Wiedinmyer, C., Pierce, J.R., 2016. The aerosol 
radiative effects of uncontrolled combustion of domestic waste. Atmos. Chem. Phys. 
16, 6771–6784. https://doi.org/10.5194/acp-16-6771-2016. 

Kodros, J.K., Pierce, J.R., 2017. Important global and regional differences in aerosol 
cloud-albedo effect estimates between simulations with and without prognostic 
aerosol microphysics. J. Geophys. Res. Atmospheres 122, 4003–4018. https://doi. 
org/10.1002/2016JD025886. 

Kodros, J.K., Volckens, J., Jathar, S.H., Pierce, J.R., 2018. Ambient particulate matter 
size distributions drive regional and global variability in particle deposition in the 
respiratory tract. Geohealth 2, 298–312. https://doi.org/10.1029/2018gh000145. 

Koschmieder, H., 1924. Theorie der horizontalen sichtweite. Beitrage Zur Phys. Freien 
Atmosphare 33–53. 

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., 
Norford, L., Britter, R., 2015. The rise of low-cost sensing for managing air pollution 
in cities. Environ. Int. 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019. 

Larkin, A., Geddes, J.A., Martin, R.V., Xiao, Q., Liu, Y., Marshall, J.D., Brauer, M., 
Hystad, P., 2017. Global land use regression model for nitrogen dioxide air pollution. 
Environ. Sci. Technol. 51, 6957–6964. https://doi.org/10.1021/acs.est.7b01148. 

Li, Z.Q., Zhang, Y., Shao, J., Li, B.S., Hong, J., Liu, D., Li, D.H., Wei, P., Li, W., Li, L., 
Zhang, F.X., Guo, J., Deng, Q., Wang, B.X., Cui, C.L., Zhang, W.C., Wang, Z.Z., Lv, Y., 
Xu, H., Chen, X.F., Li, L., Qie, L.L., 2016. Remote sensing of atmospheric particulate 
mass of dry PM2.5 near the ground: method validation using ground-based 
measurements. Remote Sens. Environ. 173, 59–68. https://doi.org/10.1016/j. 
rse.2015.11.019. 

Lin, H., Tao, J., Du, Y., Liu, T., Qian, Z., Tian, L., Di, Q., Rutherford, S., Guo, L., Zeng, W., 
Xiao, J., Li, X., He, Z., Xu, Y., Ma, W., 2016. Particle size and chemical constituents of 
ambient particulate pollution associated with cardiovascular mortality in 
Guangzhou, China. Environ. Pollut. 208, 758–766. https://doi.org/10.1016/j. 
envpol.2015.10.056. 

Liu, Y., Franklin, M., Kahn, R., Koutrakis, P., 2007. Using aerosol optical thickness to 
predict ground-level PM2.5 concentrations in the St. Louis area: A comparison 
between MISR and MODIS. Remote Sensing of Environment, Multi-angle Imaging 
Spectro Radiometer (MISR) 107, 33–44. https://doi.org/10.1016/j.rse.2006.05.022. 
Special Issue.  

Liu, Y., Paciorek, C.J., Koutrakis, P., 2009. Estimating regional spatial and temporal 
variability of PM2.5 concentrations using satellite data, meteorology, and land use 
information. Environ. Health Perspect. 117, 886–892. https://doi.org/10.1289/eh 
p.0800123. 

Liu, M., Zhou, G., Saari, R.K., Li, J., 2019a. Long-term trend of ground-level PM2.5 
concentrations over 2012-2017 in China. In: IGARSS 2019 - 2019 IEEE International 
Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2019 - 2019 

IEEE International Geoscience and Remote Sensing Symposium. IEEE, Yokohama, 
Japan, pp. 7842–7845. https://doi.org/10.1109/IGARSS.2019.8900405. 

Liu, M., Zhou, G., Saari, R.K., Li, S., Liu, X., Li, J., 2019b. Quantifying PM2.5 mass 
concentration and particle radius using satellite data and an optical-mass conversion 
algorithm. ISPRS J. Photogrammetry Remote Sens. 158, 90–98. https://doi.org/ 
10.1016/j.isprsjprs.2019.10.010. 

Ma, Z., Hu, X., Huang, L., Bi, J., Liu, Y., 2014. Estimating ground-level PM2.5 in China 
using satellite remote sensing. Environ. Sci. Technol. 48, 7436–7444. https://doi. 
org/10.1021/es5009399. 

Ma, Z., Hu, X., Sayer, A.M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., 
Liu, Y., 2016. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 
2004-2013. Environ. Health Perspect. 124, 184–192. https://doi.org/10.1289/ 
ehp.1409481. 

McMurry, P.H., Wang, X., Park, K., Ehara, K., 2002. The relationship between mass and 
mobility for atmospheric particles: a new technique for measuring particle density. 
Aerosol. Sci. Technol. 36, 227–238. https://doi.org/10.1080/0278682027535040 
83. 

Meng, X., Wu, Y., Pan, Z., Wang, H., Yin, G., Zhao, H., 2019. Seasonal characteristics and 
particle-size distributions of particulate air pollutants in urumqi. Int. J. Environ. Res. 
Publ. Health 16, 396. https://doi.org/10.3390/ijerph16030396. 

Mills, N.L., Donaldson, K., Hadoke, P.W., Boon, N.A., MacNee, W., Cassee, F.R., 
Sandstr€om, T., Blomberg, A., Newby, D.E., 2009. Adverse cardiovascular effects of 
air pollution. Nat. Clin. Pract. Cardiovasc. Med. 6, 36–44. https://doi.org/10.1038/ 
ncpcardio1399. 

Müller, T., Schladitz, A., Kandler, K., Wiedensohler, A., 2011. Spectral particle 
absorption coefficients, single scattering albedos and imaginary parts of refractive 
indices from ground based in situ measurements at Cape Verde Island during 
SAMUM-2. Tellus B 63, 573–588. https://doi.org/10.1111/j.1600- 
0889.2011.00572.x. 

Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., Holben, B., 1996. Use of sky 
brightness measurements from ground for remote sensing of particulate 
polydispersions. Appl. Optic. 35, 2672–2686. https://doi.org/10.1364/ 
AO.35.002672. 

Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., Kleeman, M.J., 
2015. Associations of mortality with long-term exposures to fine and ultrafine 
particles, species and sources: results from the California Teachers Study Cohort. 
Environ. Health Perspect. 123, 549–556. https://doi.org/10.1289/ehp.1408565. 

Pacitto, A., Stabile, L., Moreno, T., Kumar, P., Wierzbicka, A., Morawska, L., 
Buonanno, G., 2018. The influence of lifestyle on airborne particle surface area doses 
received by different Western populations. Environ. Pollut. 232, 113–122. https:// 
doi.org/10.1016/j.envpol.2017.09.023. 

Pekkanen, J., Kulmala, M., 2004. Exposure assessment of ultrafine particles in 
epidemiologic time-series studies. Scand. J. Work. Environ. Health 30, 9–18. 

Pekkanen, J., Pearce, N., 2001. Environmental epidemiology: challenges and 
opportunities. Environ. Health Perspect. 109, 1–5. https://doi.org/10.1289/ 
ehp.011091. 

Pinto, J.P., Lefohn, A.S., Shadwick, D.S., 2004. Spatial variability of PM2.5 in urban 
areas in the United States. J. Air Waste Manag. Assoc. 54, 440–449. https://doi.org/ 
10.1080/10473289.2004.10470919. 

Pope, C.A., Ezzati, M., Cannon, J.B., Allen, R.T., Jerrett, M., Burnett, R.T., 2018. 
Mortality risk and PM2.5 air pollution in the USA: an analysis of a national 
prospective cohort. Air Qual. Atmosphere Health 11, 245–252. https://doi.org/ 
10.1007/s11869-017-0535-3. 

Qi, Y.L., Ge, J.M., Huang, J.P., 2013. Spatial and temporal distribution of MODIS and 
MISR aerosol optical depth over northern China and comparison with AERONET. 
Chin. Sci. Bull. 58, 2497–2506. https://doi.org/10.1007/s11434-013-5678-5. 

Qian, W., Tang, X., Quan, L., 2004. Regional characteristics of dust storms in China. 
Atmos. Environ. 38, 4895–4907. https://doi.org/10.1016/j.atmosenv.2004.05.038. 

Reid, J.S., Jonsson, H.H., Maring, H.B., Smirnov, A., Savoie, D.L., Cliff, S.S., Reid, E.A., 
Livingston, J.M., Meier, M.M., Dubovik, O., Tsay, S.-C., 2003. Comparison of size 
and morphological measurements of coarse mode dust particles from Africa. 
J. Geophys. Res. Atmospheres 108. https://doi.org/10.1029/2002JD002485. 

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., 
Hauenstein, S., Lahoz-Monfort, J.J., Schr€oder, B., Thuiller, W., Warton, D.I., 
Wintle, B.A., Hartig, F., Dormann, C.F., 2017. Cross-validation strategies for data 
with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 
913–929. https://doi.org/10.1111/ecog.02881. 

Saari, R.K., Mei, Y., Monier, E., Garcia-Menendez, F., 2019. Effect of health-related 
uncertainty and natural variability on health impacts and cobenefits of climate 
policy. Environ. Sci. Technol. 53, 1098–1108. https://doi.org/10.1021/acs. 
est.8b05094. 

Sacks, J.D., Stanek, L.W., Luben, T.J., Johns, D.O., Buckley, B.J., Brown, J.S., Ross, M., 
2011. Particulate matter-induced health effects: who is susceptible? Environ. Health 
Perspect. 119, 446–454. https://doi.org/10.1289/ehp.1002255. 

Saha, P.K., Li, H.Z., Apte, J.S., Robinson, A.L., Presto, A.A., 2019. Urban ultrafine particle 
exposure assessment with land-use regression: influence of sampling strategy. 
Environ. Sci. Technol. 53, 7326–7336. https://doi.org/10.1021/acs.est.9b02086. 

Samoli, E., Andersen, Z.J., Katsouyanni, K., Hennig, F., Kuhlbusch, T.A.J., Bellander, T., 
Cattani, G., Cyrys, J., Forastiere, F., Jacquemin, B., Kulmala, M., Lanki, T., Loft, S., 
Massling, A., Tobias, A., Stafoggia, M., Uf&Health Study group, 2016. Exposure to 
ultrafine particles and respiratory hospitalisations in five European cities. Eur. 
Respir. J. 48, 674–682. https://doi.org/10.1183/13993003.02108-2015. 

Schuster, G.L., Dubovik, O., Holben, B.N., 2006. Angstrom exponent and bimodal aerosol 
size distributions. J. Geophys. Res. Atmospheres 111. https://doi.org/10.1029/ 
2005JD006328. 

M. Liu et al.                                                                                                                                                                                                                                      

https://doi.org/10.5194/acp-13-4145-2013
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref24
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref24
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref24
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref24
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.11821/xb193502002
https://doi.org/10.1016/j.envint.2018.09.033
https://doi.org/10.1038/nature13774
https://doi.org/10.1038/nature13774
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1029/2003GL017068
https://doi.org/10.1021/es302673e
https://doi.org/10.1021/acs.est.8b02328
https://doi.org/10.5194/acp-16-6771-2016
https://doi.org/10.1002/2016JD025886
https://doi.org/10.1002/2016JD025886
https://doi.org/10.1029/2018gh000145
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref35
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref35
https://doi.org/10.1016/j.envint.2014.11.019
https://doi.org/10.1021/acs.est.7b01148
https://doi.org/10.1016/j.rse.2015.11.019
https://doi.org/10.1016/j.rse.2015.11.019
https://doi.org/10.1016/j.envpol.2015.10.056
https://doi.org/10.1016/j.envpol.2015.10.056
https://doi.org/10.1016/j.rse.2006.05.022
https://doi.org/10.1289/ehp.0800123
https://doi.org/10.1289/ehp.0800123
https://doi.org/10.1109/IGARSS.2019.8900405
https://doi.org/10.1016/j.isprsjprs.2019.10.010
https://doi.org/10.1016/j.isprsjprs.2019.10.010
https://doi.org/10.1021/es5009399
https://doi.org/10.1021/es5009399
https://doi.org/10.1289/ehp.1409481
https://doi.org/10.1289/ehp.1409481
https://doi.org/10.1080/027868202753504083
https://doi.org/10.1080/027868202753504083
https://doi.org/10.3390/ijerph16030396
https://doi.org/10.1038/ncpcardio1399
https://doi.org/10.1038/ncpcardio1399
https://doi.org/10.1111/j.1600-0889.2011.00572.x
https://doi.org/10.1111/j.1600-0889.2011.00572.x
https://doi.org/10.1364/AO.35.002672
https://doi.org/10.1364/AO.35.002672
https://doi.org/10.1289/ehp.1408565
https://doi.org/10.1016/j.envpol.2017.09.023
https://doi.org/10.1016/j.envpol.2017.09.023
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref50
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref50
https://doi.org/10.1289/ehp.011091
https://doi.org/10.1289/ehp.011091
https://doi.org/10.1080/10473289.2004.10470919
https://doi.org/10.1080/10473289.2004.10470919
https://doi.org/10.1007/s11869-017-0535-3
https://doi.org/10.1007/s11869-017-0535-3
https://doi.org/10.1007/s11434-013-5678-5
https://doi.org/10.1016/j.atmosenv.2004.05.038
https://doi.org/10.1029/2002JD002485
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1021/acs.est.8b05094
https://doi.org/10.1021/acs.est.8b05094
https://doi.org/10.1289/ehp.1002255
https://doi.org/10.1021/acs.est.9b02086
https://doi.org/10.1183/13993003.02108-2015
https://doi.org/10.1029/2005JD006328
https://doi.org/10.1029/2005JD006328


Atmospheric Environment 238 (2020) 117745

11

Shao, J., Mao, J., 2016. Dust particle size distributions during spring in yinchuan, China. 
Adv. Meteorol. 8 https://doi.org/10.1155/2016/6940502, 2016.  

Shao, P., Tian, H., Sun, Y., Liu, H., Wu, B., Liu, S., Liu, X., Wu, Y., Liang, W., Wang, Y., 
Gao, J., Xue, Y., Bai, X., Liu, W., Lin, S., Hu, G., 2018. Characterizing remarkable 
changes of severe haze events and chemical compositions in multi-size airborne 
particles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017 winter in 
Beijing, China. Atmos. Environ. 189, 133–144. https://doi.org/10.1016/j. 
atmosenv.2018.06.038. 

Song, S., Wu, Y., Jiang, J., Yang, L., Cheng, Y., Hao, J., 2012. Chemical characteristics of 
size-resolved PM2.5 at a roadside environment in Beijing, China. Environ. Pollut., 
Mercury in the Laurentian Great Lakes Region 161, 215–221. https://doi.org/ 
10.1016/j.envpol.2011.10.014. 

Steele, H.M., Eldering, A., Lumpe, J.D., 2006. Simulations of the accuracy in retrieving 
stratospheric aerosol effective radius, composition, and loading from infrared 
spectral transmission measurements. Appl. Optic. 45, 2014–2027. https://doi.org/ 
10.1364/AO.45.002014. 

Tao, J., Zhang, Z., Wu, Y., Zhang, L., Wu, Z., Cheng, P., Li, M., Chen, L., Zhang, R., 
Cao, J., 2019. Impact of particle number and mass size distributions of major 
chemical components on particle mass scattering efficiency in urban Guangzhou in 
southern China. Atmos. Chem. Phys. 19, 8471–8490. https://doi.org/10.5194/acp- 
19-8471-2019. 

van Donkelaar, A., Martin, R.V., Brauer, M., Hsu, N.C., Kahn, R.A., Levy, R.C., 
Lyapustin, A., Sayer, A.M., Winker, D.M., 2016. Global estimates of fine particulate 
matter using a combined geophysical-statistical method with information from 
satellites, models, and monitors. Environ. Sci. Technol. 50, 3762–3772. https://doi. 
org/10.1021/acs.est.5b05833. 

Wang, S., Liu, X., Yang, X., Zou, B., Wang, J., 2018. Spatial variations of PM2.5 in 
Chinese cities for the joint impacts of human activities and natural conditions: A 
global and local regression perspective. J. Clean. Prod. 203, 143–152. https://doi. 
org/10.1016/j.jclepro.2018.08.249. 

Wang, H., Zhang, L., Cao, X., Zhang, Z., Liang, J., 2013. A-Train satellite measurements 
of dust aerosol distributions over northern China. J. Quant. Spectrosc. Radiat. 
Transf., INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC LIGHT SCATTERING 
AND REMOTE SENSING (ISALSaRS’11) 122, 170–179. https://doi.org/10.1016/j. 
jqsrt.2012.08.011. 

Wang, Y.Q., Zhang, X.Y., Sun, J.Y., Zhang, X.C., Che, H.Z., Li, Y., 2015. Spatial and 
temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. 
Chem. Phys. 15, 13585–13598. https://doi.org/10.5194/acp-15-13585-2015. 

Wang, X., Zhang, C., Wang, H., Qian, G., Luo, W., Lu, J., Wang, L., 2011. The significance 
of Gobi desert surfaces for dust emissions in China: an experimental study. Environ. 
Earth Sci. 64, 1039–1050. https://doi.org/10.1007/s12665-011-0922-2. 

Wichmann, H.E., Spix, C., Tuch, T., W€olke, G., Peters, A., Heinrich, J., Kreyling, W.G., 
Heyder, J., 2000. Daily mortality and fine and ultrafine particles in Erfurt, Germany 
part I: role of particle number and particle mass. Res. Rep. Health Eff. Inst. 5–86 
discussion 87-94.  

Xiao, Q., Chang, H.H., Geng, G., Liu, Y., 2018. An ensemble machine-learning model to 
predict historical PM2.5 concentrations in China from satellite data. Environ. Sci. 
Technol. 52, 13260–13269. https://doi.org/10.1021/acs.est.8b02917. 

Xu, X., 2017. 1 KM grid population dataset of China. https://doi.org/10.12078/201712 
1101. 

Yan, X., Shi, W., Li, Zhanqing, Li, Zhengqiang, Luo, N., Zhao, W., Wang, H., Yu, X., 2017. 
Satellite-based PM 2.5 estimation using fine-mode aerosol optical thickness over 

China. Atmos. Environ. 170, 290–302. https://doi.org/10.1016/j. 
atmosenv.2017.09.023. 

Yang, B.-Y., Qian, Z. (Min), Li, S., Fan, S., Chen, G., Syberg, K.M., Xian, H., Wang, S.-Q., 
Ma, H., Chen, D.-H., Yang, M., Liu, K.-K., Zeng, X.-W., Hu, L.-W., Guo, Y., Dong, G.- 
H., 2018. Long-term exposure to ambient air pollution (including PM1) and 
metabolic syndrome: the 33 Communities Chinese Health Study (33CCHS). Environ. 
Res. 164, 204–211. https://doi.org/10.1016/j.envres.2018.02.029. 

Yi, H., Guo, X., Hao, J., Duan, L., Li, X., 2006. Characteristics of inhalable particulate 
matter concentration and size distribution from power plants in China. J. Air Waste 
Manag. Assoc. 56, 1243–1251. https://doi.org/10.1080/10473289.2006.10464590. 

You, W., Zang, Z., Zhang, L., Li, Y., Pan, X., Wang, W., 2016. National-scale estimates of 
ground-level PM2.5 concentration in China using geographically weighted 
regression based on 3 km resolution MODIS AOD. Rem. Sens. 8, 184. https://doi. 
org/10.3390/rs8030184. 

Yu, J., Che, H., Chen, Q., Xia, X., Zhao, H., Wang, H.Y., Wang, Y., Zhang, X.S., Shi, G., 
2015. Investigation of aerosol optical depth (AOD) and Ångstr€om exponent over the 
desert region of northwestern China based on measurements from the China Aerosol 
Remote Sensing Network (CARSNET). Aerosol Air Qual. Res. 15, 2024–2036. 
https://doi.org/10.4209/aaqr.2014.12.0326. 

Yu, Q., Lu, Y., Xiao, S., Shen, J., Li, X., Ma, W., Chen, L., 2012. Commuters’ exposure to 
PM1 by common travel modes in Shanghai. Atmos. Environ. Times 59, 39–46. 
https://doi.org/10.1016/j.atmosenv.2012.06.001. 

Zhang, L., Liu, L., Zhao, Y., Gong, S., Zhang, X., Henze, D.K., Capps, S.L., Fu, T.-M., 
Zhang, Q., Wang, Y., 2015. Source attribution of particulate matter pollution over 
North China with the adjoint method. Environ. Res. Lett. 10 https://doi.org/ 
10.1088/1748-9326/10/8/084011, 084011.  

Zang, L., Mao, F., Guo, J., Wang, W., Pan, Z., Shen, H., Zhu, B., Wang, Z., 2019. 
Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 
observations with satellite aerosol optical depth. Sci. Total Environ. 658, 
1256–1264. https://doi.org/10.1016/j.scitotenv.2018.12.297. 

Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., 
Zhao, Y., Shen, Z., 2013. Chemical characterization and source apportionment of 
PM2.5 in Beijing: seasonal perspective. Atmos. Chem. Phys. 13, 7053–7074. https:// 
doi.org/10.5194/acp-13-7053-2013. 

Zhang, Y., Li, Z., 2015. Remote sensing of atmospheric fine particulate matter (PM2.5) 
mass concentration near the ground from satellite observation. Remote Sens. 
Environ. 160, 252–262. https://doi.org/10.1016/j.rse.2015.02.005. 

Zhao, T.L., 2003. Modeled size-segregated wet and dry deposition budgets of soil dust 
aerosol during ACE-Asia 2001: implications for trans-Pacific transport. J. Geophys. 
Res. 108, 8665. https://doi.org/10.1029/2002JD003363. 

Zheng, G.J., Duan, F.K., Su, H., Ma, Y.L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., 
Kimoto, T., Chang, D., Poschl, U., Cheng, Y.F., He, K.B., 2015. Exploring the severe 
winter haze in Beijing: the impact of synoptic weather, regional transport and 
heterogeneous reactions. Atmos. Chem. Phys. 15, 2969–2983. https://doi.org/ 
10.5194/acp-15-2969-2015. 

Zhou, W., Tie, X., Zhou, G., Liang, P., 2015. Possible effects of climate change of wind on 
aerosol variation during winter in Shanghai, China. Particuology, Origin, evolution, 
and distribution of atmospheric aerosol particles in Asia 20, 80–88. https://doi.org 
/10.1016/j.partic.2014.08.008. 

Zieger, P., Fierz-Schmidhauser, R., Poulain, L., Müller, T., Birmili, W., Spindler, G., 
Wiedensohler, A., Baltensperger, U., Weingartner, E., 2014. Influence of water 
uptake on the aerosol particle light scattering coefficients of the Central European 
aerosol. Tellus B 66, 22716. https://doi.org/10.3402/tellusb.v66.22716. 

M. Liu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1155/2016/6940502
https://doi.org/10.1016/j.atmosenv.2018.06.038
https://doi.org/10.1016/j.atmosenv.2018.06.038
https://doi.org/10.1016/j.envpol.2011.10.014
https://doi.org/10.1016/j.envpol.2011.10.014
https://doi.org/10.1364/AO.45.002014
https://doi.org/10.1364/AO.45.002014
https://doi.org/10.5194/acp-19-8471-2019
https://doi.org/10.5194/acp-19-8471-2019
https://doi.org/10.1021/acs.est.5b05833
https://doi.org/10.1021/acs.est.5b05833
https://doi.org/10.1016/j.jclepro.2018.08.249
https://doi.org/10.1016/j.jclepro.2018.08.249
https://doi.org/10.1016/j.jqsrt.2012.08.011
https://doi.org/10.1016/j.jqsrt.2012.08.011
https://doi.org/10.5194/acp-15-13585-2015
https://doi.org/10.1007/s12665-011-0922-2
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref70
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref70
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref70
http://refhub.elsevier.com/S1352-2310(20)30477-5/sref70
https://doi.org/10.1021/acs.est.8b02917
https://doi.org/10.12078/2017121101
https://doi.org/10.12078/2017121101
https://doi.org/10.1016/j.atmosenv.2017.09.023
https://doi.org/10.1016/j.atmosenv.2017.09.023
https://doi.org/10.1016/j.envres.2018.02.029
https://doi.org/10.1080/10473289.2006.10464590
https://doi.org/10.3390/rs8030184
https://doi.org/10.3390/rs8030184
https://doi.org/10.4209/aaqr.2014.12.0326
https://doi.org/10.1016/j.atmosenv.2012.06.001
https://doi.org/10.1088/1748-9326/10/8/084011
https://doi.org/10.1088/1748-9326/10/8/084011
https://doi.org/10.1016/j.scitotenv.2018.12.297
https://doi.org/10.5194/acp-13-7053-2013
https://doi.org/10.5194/acp-13-7053-2013
https://doi.org/10.1016/j.rse.2015.02.005
https://doi.org/10.1029/2002JD003363
https://doi.org/10.5194/acp-15-2969-2015
https://doi.org/10.5194/acp-15-2969-2015
https://doi.org/10.1016/j.partic.2014.08.008
https://doi.org/10.1016/j.partic.2014.08.008
https://doi.org/10.3402/tellusb.v66.22716

	Size-differentiated patterns of exposure to submicron particulate matter across regions and seasons in China
	1 Introduction
	2 Materials and methods
	2.1 Satellite-retrieved PM2.5 estimation
	2.2 Particle size calculation
	2.3 Population data

	3 Results
	3.1 Ground-level PM2.5 concentration estimation
	3.2 Ground-level particle radius estimation

	4 Discussion
	5 Sources of uncertainty
	6 Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


