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Abstract— Although significant improvement has been
achieved in fully autonomous driving and semantic high-
definition map (HD) domains, most of the existing 3D
point cloud segmentation methods cannot provide high
representativeness and remarkable robustness. The principally
increasing challenges remain in completely and efficiently
extracting high-level 3D point cloud features, specifically in
large-scale road environments. This paper provides an end-to-end
feature extraction framework for 3D point cloud segmentation
by using dynamic point-wise convolutional operations in multiple
scales. Compared to existing point cloud segmentation methods
that are commonly based on traditional convolutional neural
networks (CNNs), our proposed method is less sensitive to data
distribution and computational powers. This framework mainly
includes four modules. Module I is first designed to construct a
revised 3D point-wise convolutional operation. Then, a U-shaped
downsampling-upsampling architecture is proposed to leverage
both global and local features in multiple scales in Module
II. Next, in Module III, high-level local edge features in 3D
point neighborhoods are further extracted by using an adaptive
graph convolutional neural network based on the K-Nearest
Neighbor (KNN) algorithm. Finally, in Module IV, a conditional
random field (CRF) algorithm is developed for postprocessing
and segmentation result refinement. The proposed method was
evaluated on three large-scale LiDAR point cloud datasets in
both urban and indoor environments. The experimental results
acquired by using different point cloud scenarios indicate our
method can achieve state-of-the-art semantic segmentation
performance in feature representativeness, segmentation
accuracy, and technical robustness.
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I. INTRODUCTION

W ITH the increasing market demands of Advanced
Driver-Assistance Systems (ADAS), Level-5 fully

autonomous driving, autonomously operating robotics, smart
cities, and semantic high-definition (HD) maps, mobile laser
scanning (MLS) or mobile Light Detection and Rang-
ing (LiDAR) systems have attracted extensive attention of
many researchers over the past few years [1]. Such MLS
systems could effectively collect high-density and precise 3D
point clouds in large-scale road environments [2]. Accordingly,
3D point clouds have been commonly applied in many indus-
trial applications, including 3D object extraction in urban road
networks [3], [4], object registration, object tracking [5], object
modeling and 3D reconstruction, object classification [6], and
semantic segmentation [7]. As a significant requirement of 3D
digital cities, 3D semantic segmentation aiming to assign the
per point semantic label for all input point clouds is crucial
in exploiting the informative values of point clouds for the
aforementioned applications [8], [9]. Therefore, in this paper,
we specifically concentrate on the foundational and theoretical
problems of 3D semantic segmentation using MLS point
clouds in large-scale urban environments.

3D point-wise segmentation is to classify each point in
the entire point clouds into several homogeneous classes, and
semantic labels will be assigned to the points belonging to the
same objects or regions [10]. However, it is very challenging
to achieve automated and effective point-wise segmentation
regarding the high redundancy, uneven point density, and
inexplicit structure of MLS point clouds [6]. Generally, 3D
semantic segmentation is performed by creating hand-designed
feature descriptors. The most representative feature descriptors
are comprised of global feature descriptors and local feature
descriptors. Such global feature descriptors, e.g. 3D statistical
moment [11] and spherical harmonics descriptor [12], are com-
monly obtained based on the geometrical information of entire
MLS point clouds. However, these feature descriptors are very
sensitive to occlusions, distortions, and background interfer-
ences, resulting in segmentation ambiguities [13]. In addition,
local feature descriptors including Spin Image [14], Signature
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of Histograms of OrienTations (SHOT) [15], Fast Point Fea-
ture Histograms descriptor (FPFH) [16], and Fourier power
spectrum (FPS) [17], mainly concentrate on the descriptive
information of point clouds in local regions. However, such
methods could capture few geometrical information of 3D
objects. Hence, the representativeness of developed feature
descriptors is yet far from satisfaction.

To strengthen the descriptiveness and feature represen-
tation of these existing methods, it is effective to learn
features at middle and high levels for inherent and addi-
tional information taking advantage of the increased perfor-
mance of computational resources. One promising solution
is to use deep learning (DL) models, e.g. deep convolu-
tional neural networks (CNNs) and generative adversarial
networks (GANs), to learn deeper and more distinctive feature
representations [18]. Accordingly, various methods including
voxel-based methods (e.g., VoxNet [19]), multiview-based
methods (e.g., MV3D [20]), auto-encoder based methods
(e.g., CAE-ELM [21]), graph cut based methods (e.g.,
ECCNet [22]), and symmetric function based methods (e.g.,
PointNet [23]), have been proposed to use MLPs for 3D
data analysis, object recognition, and semantic segmentation.
Although these existing CNN-based methods have achieved a
significant enhancement in the representativeness and descrip-
tiveness on several publicly available datasets (e.g., ShapeNet-
Part and ModelNet40), it is still challenging to effectively and
automatically manipulate MLS point clouds with unordered
3D points, various point densities, outliers, and occlusions,
which are inevitable in complex urban environments.

To overcome these challenges, we investigate the feasibil-
ity of embedding point-wise CNNs with hierarchical feature
representations of point clouds. Yet CNNs were initially devel-
oped to deal with 2D images with structured pixel arrays. Such
images are organized with regular lattice grids in a specific
order, which can be directly fed into CNN-based architectures.
It is not feasible to directly perform CNNs on 3d MLS point
clouds since they are not in a regular data format or an inherent
order. Therefore, to solve this dilemma, we develop a 3D
semantic segmentation model aiming to facilitate collaboration
between point-wise CNNs and unordered 3D point clouds. The
novel architecture of our proposed neural network is to directly
consume unstructured 3D points and implement a point-wise
semantic label assignment network to learn fine-grained layers
of feature representations and reduce unnecessary convolu-
tional computations. To this end, we propose an end-to-end
DL framework comprised of the following four modules:
(1) point-based 3D convolution, (2) U-shaped downsampling-
upsampling framework, (3) dynamic graph edge convolution,
and (4) conditional random field (CRF) based postprocessing.
This proposed neural network is capable of robustly and
efficiently extract global and local features of input point
clouds in multiple scales. Furthermore, these proposed and
revised models can directly consume 3D point clouds without
data conversion and transformation.

Our proposed model has been evaluated on publicly accessi-
ble datasets including one large-scale MLS point cloud dataset
and two indoor high-density LiDAR datasets. Experimental
outputs conclusively demonstrate that the proposed method

could achieve superior performance in feature representation,
computational efficiency, and robustness. The significant con-
tributions of this paper are described as follows: (1) we
revised PointCONV, a multi-scale density-based reweight con-
volution, which can completely and efficiently approximate
the 3D convolution on large-scale unordered point clouds
with an efficient computation fashion; (2) we designed a
hierarchical U-shaped downsampling-upsampling framework
to implement both PointCONV and PointDeCONV for better
point-wise segmentation outcomes; (3) we improved the Edge-
Conv descriptor by optimizing both symmetric aggregation
function and edge function to achieve dynamically update the
graph of edges and learn more representative features between
adjacent points in local neighborhoods; and (4) we performed
a CRF algorithm for the label assignment refinement generated
by the proposed end-to-end model.

This paper is designed as follows: the related studies
of 3D point cloud segmentation are presented in Section 2.
Section 3 theoretically and mathematically details the pro-
posed end-to-end DL framework. The test datasets used in
this paper are presented in Section 4. Section 5 presents
the experimental outcomes, comprehensive discussion, and
comparative study, followed by the concluding remarks in
Section 6.

II. RELATED WORK

For the past several years, many methods have been devel-
oped for 3D object segmentation. This section provides an
in-depth review and investigation from the perspectives of 3D
point clouds. More detailed literature reviews are further
addressed in recently published review articles [24], [25]. Gen-
erally, the commonly employed 3D point clouds segmentation
methods are classified into two groups: hand-designed feature
related algorithms and deep learning related algorithms.

A. Hand-Designed Feature Related Studies

Hand-designed feature descriptors, including both global
feature descriptors and local feature descriptors, are created
to derive inherent features from 3D point clouds, such fea-
tures are afterward input into off-the-shelf classifiers (e.g.,
random forests) [32]. Global feature descriptors are commonly
obtained from the geometrical information of entire 3D point
clouds. A 3D statistical moment descriptor was developed for
the coarse representation of shapes of 3D objects [11]. Further-
more, a shape distribution descriptor was proposed to measure
geometrical information of 3D objects [26]. The essential idea
is to convert arbitrary 3D object models into parameterized
functions that can be directly compared with others. This
shape distribution descriptor can effectively eliminate shape
segmentation problems to the comparison of probability dis-
tributions, which is more robust and straightforward than other
shape segmentation methods that need data registration, model
fitting, and feature matching [24]. Yet the performance of
these global feature descriptors is dramatically impacted by
the selection of patch sizes and patch locations. These feature
descriptors are highly vulnerable to occlusions, distortions,
and background interferences [33]. Moreover, due to the
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complexity of 3D objects, especially for large-scale MLS point
clouds, the computational cost will exponentially increase for
the extraction of global feature descriptors.

Compared to global feature descriptors, local feature
descriptors generally calculate geometrical information and
statistical distributions of key points in the local neighbor-
hoods to construct feature description vectors [34]. As one of
the most representative local feature descriptors, Spin Image
feature descriptor [14] has been regarded as the benchmark
for the performance evaluation of the other local feature
descriptors. However, the feature representation ability of Spin
Image is relatively poor. To enhance the descriptiveness, a 3D
Shape Context feature descriptor [35] was proposed through
reconstructing 2D shape context methods on 3D point clouds.
Besides, the spatial transformation based feature descriptors,
including Heat Kernel Signature (HKS) [36] and 3D Speeded
Up Robust Feature (SURF) [37], first transformed the spatial
domain to other domains (e.g., spectrum domain), then used
the specific information in the transformed domains to describe
the key points within local neighborhoods. Accordingly,
Rusu et al. [16] developed the Fast Point Feature Histograms
descriptor (FPFH) by taking the angle differences from a
key seed to its neighbors into consideration. Meanwhile,
Salti et al. [38] proposed a histogram-based descriptor, called
Signature of Histograms of OrienTations (SHOT), to extract
local surface features. Guo et al. [39] presented a Rotational
Projection Statistics (RoPS) method, which has been included
in the open-access Point Cloud Library (PCL). Rather than
learning global and local features or constructing grid-based
data formats, Wang and Jia [40] introduced a Frustum ConvNet
(F-ConvNet) for 3D object segmentation on outdoor KITTI
datasets. Firstly, F-ConvNet generated a collection of frustums
to assemble points in local regions. Then, point-wise features
represented by frustum-level feature vectors were learned
via a fully convolutional network within each frustum. Most
significantly, F-ConvNet expects no prior knowledge of the
data scenarios and is therefore dataset-agnostic.

Nevertheless, for the above methods, the unavoidable task of
unstructured point clouds triangulation could lead to consider-
able computational complexity and original information loss.
Other local feature descriptor generation methods based on the
geometric information histograms and orientation gradient his-
tograms depend on the first and second derivatives of the point
cloud mesh surfaces, which are prone to noise interferences.
Moreover, the majority of local feature descriptors require
to first detect and extract key points and then construct the
local coordinate references (LRFs). Therefore, the robustness
of an LRF has a great impact on the performance of the
generated local feature descriptors. In addition, the larger size
of local neighborhoods, the more information the local feature
descriptors describe, and the more sensitive to occlusions and
background interferences.

B. Deep Learning Related Studies

Deep learning is taking off in the communities of arti-
ficial intelligence and remote sensing [18], [40]. Compared
to hand-designed feature descriptors, deep learning related

algorithms follow end-to-end pipelines, where the multi-
layer architectures can learn inherent feature representations
of high-dimensional data with multiple levels of abstrac-
tion [41], [42]. Various DL-based methods have remarkably
improved the state-of-the-art in many domains including image
recognition, machine translation, and environmental percep-
tion [43]. However, the irregular format and unstructured
distribution of 3D point clouds make direct application of
traditional CNNs challenging. Thus, the fundamental problem
of DL-based algorithms is to address feature representations
of 3D point clouds. Several end-to-end DL-based methods
have been investigated to deal with this dilemma. They are
usually categorized into three groups based on the follow-
ing data processing methods: voxelization-based methods,
multiview-based methods, and 3D point-based methods [24].

1) Voxelization-Based Methods: Volumetric methods can
transfer 3D point clouds with irregular format into structured
voxel data, on which CNN-related neural networks are thus
commonly performed. To overcome the over-segmentation
and under-segmentation issues normally occurred in complex
urban road environments, Luo et al. [44] introduced a proba-
bility occupancy grid-based method for real-time ground seg-
mentation tasks by employing a single laser scanner. Maturana
and Scherer [19] proposed a VoxNet architecture by integrating
volumetric occupancy grid representation with a supervised
CNN framework for 3D object recognition and autonomous
robot operation. Meanwhile, Wu et al. [27] developed 3D
ShapeNets to describe 3D geometric shapes as probability
distributions of binary variables on 3D volumetric grids, then
applied a convolutional deep belief network (DBN). But such
methods lead to sparse volumes and need lots of memory
space and computational powers with an increasing voxel size.
Accordingly, space partition methods including Octree-based
methods [45], [46] and KD-tree based methods [47]–[49] were
created to tackle voxel size and memory explosion problems.
However, the above methods solely depend on the partition of
a bounding voxel rather than the locally geometrical structures.
That is, if the point density is relatively low, there will be not
enough points located in the sparsely sampling neighborhoods
for volumetric convolutional operation. It normally leads to
an excessive requirement of memory footprints and high
computation cost.

2) Multiview-Based Methods: To fully take advantages
of well-developed DL-based models in image process-
ing and computer vision fields (e.g., AlexNet [50] and
Mask R-CNN [51]), many studies converted 3D point clouds
into 2D images. The multiview CNN methods were proposed
by projecting 3D point clouds into a set of 2D images derived
from multiple views. A basic CNN architecture was then
employed to train these rendered images and learn represen-
tative features [52]. In order to support autonomous driving,
Chen et al. [20] developed Multi-View 3D networks (MV3D)
for onboard sensor fusion and 3D object detection based on
the mechanism of multiple views. Bai et al. [53] proposed a
3D shape matching and retrieval framework by using pro-
jective images of 3D objects. Wen et al. [6] first transformed
mobile LiDAR point clouds into 2D georeferenced intensity
images with 4 cm2 resolution, an autoencoder-based U-net was
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afterward proposed for road marking segmentation. Addi-
tionally, Qi et al. [28] designed an automated pipeline
by combining both 3D voxelization and multiview CNNs
for 3D object classification and segmentation. Instead of
constructing proposals from RGB-D images or converting
point clouds into multiple views or volumetric data blocks,
Shi et al. [54] proposed the PointRCNN model that directly
generates high-quality 3D object proposals from raw point
clouds using a bottom-up strategy. Then, the resampled points
in each proposal were transformed into canonical coordinates
to capture more local spatial features. Although these 3D-2D
dimensional transformation methods can achieve dominating
performances, they introduce the resulting data with redundant
volumes and ignore the rich 3D geometric information and
spatial correlation of points. Besides, it is challenging to
ascertain both the number and direction of views in order
that they can cover the whole 3D scenes while preventing
self-occlusions.

3) 3D Point-Based Methods: Compared to volumetric meth-
ods and multiview-based methods, 3D point-based methods
could directly consume 3D points without data format trans-
formation. Considering the permutation invariance and trans-
formation invariance of point clouds, a CNN-based model,
called PointNet [23], was proposed to learn inherent features
for classification and segmentation tasks. However, PointNet
cannot capture local features of point clouds, which decreases
its strength to identify fine-grained patterns and generaliz-
ability to large-scale point clouds. Subsequently, an improved
version, called PointNet++ [55], was developed to learn more
local features than the PointNet by calculating the metric space
distances. PointNet++ used the farthest point sampling (FPS)
and multi-scale grouping algorithms to leverage local features
from coarse layers to fine layers at multiple scales for robust-
ness improvement. In general, both PointNet and PointNet++
are pioneers in DL-based models that directly use 3D point
clouds for classification and segmentation in complex scenes.
The fundamental structure developed in both PointNet and
PointNet++ for feature aggregation from various input points
is max-pooling operation. Nevertheless, a max-pooling layer
uniquely remains the largest activation on different features
in local neighborhoods or global regions, which leads to
inevitable information loss for segmentation tasks. Further-
more, the lack of deconvolution operation also limits their
performances.

To solve these problems, many PointNet-derived deep learn-
ing models apply PointNet recursively and optimize their
performances to deliver state-of-the-art. Li et al. [29] devel-
oped a PointCNN framework to use a hierarchical convolution
structure and an X-Conv operator that aggregate input points
into fewer points with richer features. However, PointCNN
is not capable of achieving permutation invariance, which
is significant for point cloud segmentation. Jiang et al. [30]
proposed the PointSIFT model applying a scale-invariant
feature transform (SIFT) descriptor to capture the shape
representation of input points. Additionally, dynamic graph
CNN (DGCNN) [31] implemented a framework that is able
to dynamically update the graph of point clouds. More-
over, Yi et al. [56] introduced a Generative Shape Proposal

Network (GSPN) for 3D object segmentation by employing
an analysis-by-synthesis approach and reconstructing shapes
as object proposals from noisy observation, which achieves
state-of-the-art performance on KITTI LiDAR datasets. Other
methods such as SpiderCNN [57] also have demonstrated
their superior performance in point cloud object detection
and semantic segmentation tasks. However, there are very few
applications that apply CNN-based models for segmentation
using MLS point clouds, especially in large-scale urban road
environments due to high computational complexity and mem-
ory occupation. Besides, it is challenging to directly apply
traditional CNNs on point clouds regarding to their irregular
formats. Additionally, such CNN-based methods always utilize
fix-sized filters (e.g., 1 × 1 and 5 × 5) to apply convolution
on unordered and irregular point clouds, which could lead
to remarkably redundant convolutional operations and extra
memory overhead.

To summarize, most of the existing hand-designed feature
descriptors or feature-related methods that only concentrate on
either global or local statistical information, which results in
a performance reduction in representativeness and descriptive-
ness. Also, traditional CNN convolution applied to 3D point
clouds could lead to high computational consumption and edge
information loss. Our method follows an idea same to the 3D
point-based methods. However, different from the way of only
focusing on the global features in PointNet [23], we revise and
propose point-wise convolution and edge convolution algo-
rithms to capture both global and local features of 3D point
clouds in multiple scales, avoiding the information loss in local
neighborhoods and useless convolutional computations. More-
over, we develop a hierarchical downsampling-upsampling
framework to extract representative and high-level features for
robustly and accurately 3D object segmentation in complex
urban environments.

III. METHODOLOGY FOR ROAD OBJECT SEGMENTATION

In this section, we detail the theoretical and logical princi-
ples of the proposed model for 3D road object segmentation
from MLS point clouds. This novel model, named MS-PCNN,
mainly contains four modules: convolution on 3D points,
multi-scale feature extraction, dynamic edge feature extraction,
and conditional random field post-processing.

More specifically, Module I is designed to construct a
revised convolutional kernel, particularly for 3D point clouds.
A Monte Carlo approximation of the 3D continuous convolu-
tional operators is first applied followed by dynamic density
scales to re-calculate the optimized weight functions. In Mod-
ule II, a U-shaped downsampling-upsampling architecture is
proposed to leverage both global and local features in multiple
scales. Next, in Module III, high-level local edge features
in 3D point neighborhoods are further extracted by using an
adaptive graph convolutional neural network based on the
K-Nearest Neighbor (KNN) algorithm. Finally, in Module
IV, a conditional random field algorithm is developed for
postprocess and segmentation result refinement, and 3D road
objects are therefore segmented. Fig. 1 presents the detailed
workflow of the proposed MS-PCNN model.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: MULTI-SCALE POINT-WISE CONVOLUTIONAL NEURAL NETWORKS FOR 3D OBJECT SEGMENTATION 5

Fig. 1. Illustration of the proposed MS-PCNN model architecture in this paper.

A. Module I: Convolution on 3D Points

Although CNN-based methods have demonstrated the supe-
rior performance on recognition, classification and segmen-
tation tasks using regular data formats, such as 2D images
or 3D voxelized grids, it is very difficult to provide promis-
ing solutions that directly apply convolutions on 3D point
clouds. Inspired by [58], as a revised convolutional opera-
tion, MS-PCNN extending conventional 2D image convolu-
tions into 3D point clouds is accordingly proposed in this
paper. In general, convolutional operations are determined by
using:

(F ∗ G)(x) =
∫∫

�x∈Rd
F(�x)G(x + �x)d(�x) (1)

where F(x) and G(x) are two functions, x is a d-dimensional
vector, and R

d denotes a d-dimensional Euclidean space.
2D Images represented by grid-structured matrices are nor-
mally regarded as discrete functions. In traditional CNNs,
various kernel filters (e.g., 1 × 1, 5 × 5, and 7 × 7) are
assigned to focus on small-sized local neighborhoods. More-
over, the relative positions among different pixels are always
certain in each local region, as illustrated in Fig. 2(a). Diverse
filters can be effectively employed to calculate the sum of
real-valued weights for different locations in the given local
neighborhood.

In contrast, point clouds are considered as a collection of
discrete 3D points pi (i = 1, 2, . . . , n) containing xyz coordi-
nate information and related characteristics including color,
intensity, and normal. Compared to grid-structured images,
point clouds have an irregular format with the unfixed arrange-
ment. Hence, as shown in Fig.2(b), the relative positions
of point clouds are different within different local regions,
resulting in traditional convolutional filters used on regular
data formats (e.g., images) cannot be directly utilized on point
clouds.

In order to make full use of convolutional operations on 3D
point clouds, Wu et al. [58] proposed a permutation-invariant
convolutional filter, called PointCONV. The main idea of

Fig. 2. Data format comparison between 2D images and 3D point clouds:
(a) 2D images. (b) 3D point clouds.

PointCONV is to define the 3D convolutions for continuous
functions by the following equation:

3D Conv(H, J )xyz =
∫∫∫

(ϕx ,ϕy ,ϕz)∈E

H
(
ϕx , ϕy, ϕz

)
· J

(
x +ϕx, y+ϕy, z+ϕz

)
dϕxϕyϕz (2)

where H (x) and J (x) are two functions, J (x + ϕx , y + ϕy ,
z +ϕz) represents the feature of a point pi (i = 1, 2, . . . , n) in
the local neighborhood E , where (x ,y,z) is the center position
of this local region. Specifically, point clouds are interpreted as
non-uniform samples in the continuous 3D space. Therefore,
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Fig. 3. Illustration of the multi-scale kernelized point density estimation.

PointCONV is defined as follows:
(F, H, J )xyz =

∑
(ϕx ,ϕy ,ϕz)∈E

F
(
ϕx , ϕy, ϕz

)
H

(
ϕx , ϕy, ϕz

)
× J

(
x + ϕx , y + ϕy, z + ϕz

)
(3)

where F(ϕx , ϕ y , ϕz) indicates the inverse density given
the point (ϕx , ϕ y , ϕz). F(ϕx , ϕ y , ϕz) is significant since
the downsampled point clouds are non-uniformly distributed.
However, the point densities in different local neighborhoods
are various across the entire point clouds. The key idea is
to employ multi-layer perceptrons (MLPs) for the weight
function approximation based on the 3D positions (ϕx , ϕ y , ϕz)
and the inverse density values F(ϕx , ϕ y , ϕz) using a density
estimation algorithm. However, Wu et al. [58] considered
the approximation of the density scale in a fixed threshold
rather than multi-scale or dynamic scales, which leads to
approximations of the 3D convolutional operator far from
satisfactory.

Different from [58], a multi-scale kernelized point density
calculation algorithm is proposed in this paper followed by
a non-linear transformation algorithm, which is implemented
during feature extraction stages (see blue bars in Fig. 4).
Different colors in Fig. 3 represent different point densities.
The MS-PCNN network is designed to capture multi-scale
patterns by grouping 3D points in multiple scales followed by
according MLPs to extract inherent features within each scale.
Then, features learned from various scales are concatenated
together for the multi-scale feature encoding purpose. The raw
points are randomly dropped out with a randomized probabil-
ity for each point. According to prior knowledge, we choose
the randomized dropout rate θ uniformly sampled in the range
of [0, ρ], where ρ = 0.9 to avoid the sampling deficiency.
To achieve invariant permutation of 3D points, the weights
learned from different MLPs in the revised PointCONV are
shared in the whole point clouds. According to the proposed
multi-scale kernel density estimation (MKDE) and non-linear
transformation algorithms, the inverse density scales F(ϕx , ϕ y ,
ϕz) can be adaptively calculated with multi-scale point density
estimation in local regions.

Fig. 4 indicates the revised PointCONV framework within
a local neighborhood. As can be seen, the white rectangles

represent the features by concatenating interpolated features
with features learned from MLPs with the same resolution
using across-level skip connections. Blue color bars indicate
feature extraction results by using MLPs, while light green
bars denote the downsampling and grouping modules that are
similar to the ones employed in PointNet++. More specifi-
cally, we conducted the iterative farthest point sampling (FPS)
to subsample the raw point clouds by calculating the Euclidean
distances from 3D points to the given centroids, which can
generate receptive fields in a data-dependent fashion. Assum-
ing that Ci and Co be the number of channels about the
input features and output features, respectively. (k, Ci , Co)
is regarded as the index of K -th neighbor, Ci -th channel of
input features and Co-th channel of output features. The input
pi (i = 1, 2, . . . , n) provide 3D coordinates pi = (xi , yi ,
zi ) where pi ∈ R

3×K , which is calculated by subtracting
the centroid coordinate and the input feature c ∈ R

Ci×K

of the local neighborhood. 1 × 1 convolutional kernel size
is ascertained to perform MLPs. The outputs of the weight
functions are W ∈ R

(Ci×Co)×K . Accordingly, W (k, Ci ) ∈ R
Co

denotes a weight vector, and the density scale is F ∈ R
K .

In order to capture more high-level local features at multiple
scales in each local region, the multiple thresholds of K are
selected based on the diverse distributions of point clouds,
and the average value of MKDE is then estimated. According
to prior knowledge and the accessible computation capability,
K is predefined as 128, 64, 32, and 16 respectively in this
paper. After convolutional operations, the input features Fi

captured in each local region with multi-scale K points are
fed into the following equation to obtain the output features
Fo ∈ R

K :

Fo =
K∑

k=1

ci∑
ci

F(k)W (k, ci ) Fi (k, ci ) (4)

However, such revised PointCONV operations are
time-consuming and huge memory-overhead, especially for
the weight approximation. For a certain point cloud, each local
neighborhood is assigned to the equivalent weight functions
that are encoded from MLPs. Nevertheless, the weights
calculated by different weight functions from various point
clouds are different. Accordingly, the sizes of the weight
filters can be determined as follows:

Sw = B × N × K × Cin × Cout (5)

where Sw is the size of weight filters computed by MLPs.
B is the mini-batch size, N represents the number of points
within each point cloud, K indicates the number of points
within each local neighborhood, Cin is the number of input
channels, and Cout denotes the number of output channels. For
instance, if B = 64, N = 1024, K = 64, Cin = Cout = 128,
respectively, the memory size for the generated weight filters
are over 16 GB for each layer, which results in huge memory
consumption in the training phase. Therefore, to tackle this
problem, we further refine PointCONV implementation by
optimizing matrix multiplication and 2D convolution opera-
tions. The revised PointCONV is equivalent to the following
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Fig. 4. The revised PointCONV framework with feature encoding and propagation.

equation:
Fout = C O NV3×3

(
H, (F · Fin)T ⊗ M

)
(6)

where M ∈ R
K×Cmid denotes the inputs fed into the last layer

of MLP to calculate the weight function, H ∈ R
(Cin×Cout )×Chid

is the weights in the last layer of MLP, F indicates the density
scale, and C O NV 3×3 is 3 × 3 convolutional operation. Since
the last layers of MLPs are generally linear layers, F̃ = F
· Fin is therefore rewritten within each local neighborhood.
Accordingly, let the weight function W = C O NV 3×3(H , M)
∈ R

(Cin×Cout )×K , k is the index of points in local regions, and
cin , chid , cout are the indices of the input, hidden and output
layer, respectively. Therefore, the revised PointCONV can be
expressed as follows:

Fout =
K−1∑
k=0

Cin−1∑
cin=0

(
W (k, cin) F̃in (k, cin)

)
(7)

W (k, cin) =
Chid −1∑
chid =0

(M (k, chid ) H (chid , cin)) (8)

According to both Eqs. (7) and (8), the revised PointCONV
is thus determined by:

Fout =
K−1∑
k=0

Cin−1∑
cin=0

(
F̃ln (k, cin)

Chid −1∑
chid =0

(M (k, chid ) H (chid , cin))

= C O NV3×3

(
H, F̃T

ln M
)

(9)

Consequently, the previous PointCONV is equivalently con-
verted into a 2D 3 × 3 convolution and a matrix multiplication.
In this revised model, we refine the matrix multiplication by
dividing the weight filters into two parts: the convolutional
kernel H and the intermediate output M . In addition, instead
of using 1 × 1 convolution, we employ 3 × 3 convolution to
not only deliver promising outputs but also effectively reduce
computational costs. Assuming that Chid = 64, the memory
usage is about 0.251 GB for each layer, which is only 1/64 of
the original PointCONV with the same parameters as shown
in Fig.4.

Therefore, this revised PointCONV operation can effec-
tively construct a network and approximate the continuous

weights for convolutions on point clouds. Compared to the tra-
ditional convolutions, the revised PointCONV-based convolu-
tion that only considers the relative coordinates as inputs could
output multi-scale densities and weights across the whole point
clouds, which considerably decreases the computational cost
caused by traditional discretized and fix-sized convolutions.

B. Module II: U-Shaped Downsampling-Upsampling
Architecture

After implementing PointCONV operations, the original
input point clouds have been subsampled into various res-
olutions. However, for object segmentation task especially
as semantic labeling, the point-wise segmentation for the
entire point clouds is needed. To acquire high-level features
for the whole point clouds in both global and local scales,
a hierarchical framework that could propagate features from
subsampled point clouds to relatively dense ones is required.
Therefore, a U-shaped downsampling-upsampling architecture
is proposed by taking PointCONV operations into consid-
eration. According to the revised PointCONV mentioned in
Section 3.1, we capture more high-level features by regarding
a revised PointDeCONV layer as deconvolutional operations.

As shown in Fig. 4, PointDeCONV implementation mainly
contains two processes: interpolation and revised PointCONV.
First, we perform interpolation to assemble different level
features from previous layers. According to the three nearest
points, the interpolation is carried out to linearly interpolate
features. Subsequently, such interpolated features are con-
catenated with features learned from MLPs with the same
resolution using across-level skip links. Finally, the revised
PointCONV is thus employed on the concatenated features
to catch the final deconvolution outputs. Accordingly, this
recursive process will not terminate until the features learned
from all point clouds have been propagated back to the initial
resolution.

C. Module III: Dynamic Graph Edge Convolution

Although the proposed MS-PCNN hierarchical framework
embedded with revised PointCONV and PointDeCONV oper-
ations could obtain features for all input point clouds in
multiple scales, edge features between a point and its adjacent
neighbors have not been taken into consideration. To address



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Illustration the principles of the revised PointCONV and EdgeConv
operations.

this drawback, a PointCONV-based dynamic graph edge con-
volution operator is proposed to capture local geometrical edge
structures based on the EdgeConv descriptor [31]. As shown
in Fig. 1, a local neighborhood graph is constructed fol-
lowed by PointCONV-based convolutional operations on the
connected edges. Compared to conventional graph CNNs,
the graphs introduced in this paper are dynamically updated
rather than fixed after feature extraction layer. Specifically,
the K -nearest neighbors of a point dynamically change
between two adjacent layers of the model and are accordingly
calculated the sequence of embeddings. Fig. 5 illustrates
the principle of revised EdgeConv operation compared with
revised PointConv operation. As can be perceived, by adding
dynamic graph edge convolutions into the proposed model,
not only point-wise geometric information but also edge
informative features between a certain point and its neighbors
are considered to capture more descriptive features in a local
region.

Assuming that a directed graph G = (V , E) denoting
the local structure of each point cloud, V = (1, 2, . . . , n)
and E ⊆ V × V are the vertices and edges, respectively.
To simplify this problem, we build a graph G as the K N N-
graph in D-dimensional space (generally D = 3 representing
xyz coordinates of point clouds) and define edge features as
ei j = gφ(xi , x j ), where gφ ∈ R

D × R
D denote parameter-

ized nonlinear functions with a collection of parameters φ.
After that, the EdgeConv operation is defined by conducting
a channel-wise symmetric aggregation implementation (e.g.,
sum) on the edge features from each point. Therefore, the out-
put of EdgeConv operation at the i -th vertex is performed as
follows:

x �
i = � j :(i, j )∈E gφ

(
xi , x j

)
(10)

where � represents a symmetric aggregation function. In this
paper, differently from [31], we apply max as the aggrega-
tion function rather than sum to reduce the computational
consumption. Instead of gφ(xi , x j ) = gφ(xi ), gφ(xi , x j ) =
gφ(x j −xi ) or gφ(xi , x j ) = gφ(xi , x j −xi ) tried in [31], gφ(xi ,
x j ) = gφ(xi , x j + xi )/2 is adopt in this paper as an symmetric
edge function. By combining both the global structures and
local neighborhood characteristics, such a function is capable
of acquiring more inherent and high-level features in an
effective manner. Moreover, due to the variations of the num-

ber of points in each local neighborhood, the average-based
asymmetric edge function gφ(xi , x j ) = gφ(xi , x j + xi )/2 is
prone to error reduction and keep much information for further
feature encodings.

Furthermore, it is remarkably significant to recalculate
a new graph using the K N N algorithm within the D-
dimensional feature space generated by previous layers.
Inspired by [31], the key idea of dynamic graph construction
is employed in this paper. Thus, a new graph Gl = (V l , El) is
constructed at each layer. Consequently, the Dl+1-dimensional
outputs are calculated by using the revised EdgeConv to the
Dl -dimensional outputs of the l-th layer from the following
equation:

x (l+1)
i = � j :(i, j )∈E(l) g(l)

φ

(
x (l)

i , x (l)
j

)
(11)

where gφ
(l) ∈ R

D(l) × R
D(l)

. Such revised EdgeConv can be
easily fed into existing architectures to boost the segmentation
performance. In this paper, we combine the revised Edge-
Conv with the basic version of hierarchical PointCONV and
PointDeCONV framework. As depicted in Fig. 1, an Edge-
Conv layer is employed after each revised PointCONV layer,
followed by a fully connected layer then fed back to Point-
DeCONV layers. Within each EdgeConv module, gφ

(l)(xφ
(l),

yφ
(l)) = gφ(xφ

(l), yφ
(l) + xφ

(l))/2 is applied as a shared edge
function, and we perform the max operation as the aggregation
function. Moreover, the number of nearest neighbors k is
predefined to be 32 in this paper for the effective segmentation
process.

D. Module IV: Post-Processing

Both CNNs and CRFs have demonstrated dominating
performance in semantic segmentation tasks for 3D point
clouds [60], [61]. Precise point-wise semantic segmentation
requires completely understanding not only high-level features
of road objects but also mid- or low-level details. Such details
are essential to ensure the consistency of point-wise label
prediction. For instance, if two points are close to each
other and have similar reflectance values, it is reasonable
that these two points pertain to the same road object and
therefore have the same semantic label. Thus, we perform a
CRF algorithm for the label map refinement produced by the
proposed PointCONV. Typically, an energy function is applied
to CRF models using the following equation:

E(l) =
n∑

i=1

ui (li ) +
n∑

i, j

vi, j
(
li , l j

)
(12)

where li denotes the i -th predicted label, i = 1, 2, , n, and n is
the total number of point clouds. We use ui (li ) = −log P(li ) as
the predicted probability P(li ) from the revised PointCONV.
The second term in Eq. (12) indicates the penalty to assign
labels to a couple of points and is therefore determined by
v i, j (li , l j ) = μ(li , l j )

∑P
p=1wpk p( f i , f j ), where μ(li , l j ) =

1 if li �= l j or 0 otherwise, k p represents the p-th Gaussian
kernel depending on extracted features f from points i and
j , and wp denotes constant coefficients. In this paper, two
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TABLE I

DETAILED DESCRIPTIONS OF DIFFERENT TEST DATASETS USED IN THIS PAPER

Gaussian kernels are chosen as follows:

k1 exp

(
−

∥∥pi − p j
∥∥2

2σ 2
α

−
∥∥xi −x j

∥∥2

2σ 2
β

)
+ k2 exp

(
−

∥∥pi − p j
∥∥2

2σ 2
Y

)
(13)

where k1exp(·) is determined by the 3D coordinates (x ,y,z)
and angular positions p of two adjacent points, and k2exp(·)
is calculated only relying on angular positions. σα, σβ and σγ

are three predefined hyperparameters. Accordingly, the fine-
grained point-wise label prediction is achieved by minimizing
the CRF energy function defined in Eq. (12). Although accu-
rate minimization of Eq. (12) is intractable, Chen et al. [59]
developed and revised a mean-field iteration method to handle
this problem effectively and appropriately. More detailed exact
minimization process can be found in [59]. The CRF used in
this paper can effectively leverage the prediction and confi-
dence produced by the PointCONV-based classifier, as well
as semantic label assignment between two similar points in
each local region.

To compute and minimize the loss generated by MS-PCNN
model, the off-the-shelf softmax cross entropy loss function is
utilized after implementing CRF-based post-processing. More
specifically, the softmax cross entropy is defined as follows:

L OSS = L(g, h(y)) = −
N∑

i=1

gi log Si (14)

where gi represents the one-hot label of i -th training sample,
N denotes the batch size, and Si = eVi /

∑
j e

Vj is the softmax
prediction score vector. The main objective is to minimize the
loss function expressed in Eq. (14). Finally, the point-wise
semantic label is determined based on the prediction score
vector Si .

E. Implementation Details

In all designed experiments, we test the proposed neural
network using Tensorflow on Nvidia GTX 1080 Ti GPU and
32 GB RAM. Moreover, we optimized the network using adap-
tive moment estimation (Adam) optimizer which is built-in
in Tensorflow. Batch normalization (BN) and rectified linear
unit (ReLU) were employed after each MLP layer, except for
fully connected (FC) layers. Several hyperparameters such as
the batch size and initial learning rate were optimized during
the training phase to determine the optimal combination by
using the grid search approach. Specifically, the batch size,
initial learning rate, the momentum of Adam, and dropout
rate were predefined in the range of [8, 16, 32], [0.01, 0.001,
0.001], [0.80, 0.85, 0.90], and [0.5, 0.6, 0.7], respectively.
The Overall Accuracy (OA) and Intersection over Union (IoU)

Fig. 6. Samples of test datasets used in this paper.

were used as the performance evaluation matrices. By imple-
menting many experiments with all possible hyperparameter
combinations, an optimal combination was determined as (8,
0.001, 0.9, 0.5). Namely, MS-PCNN model was trained using
Adam with a momentum of 0.9, a dropout rate of 0.5, and
a batch size of 8. The initial learning rate was 0.001 with
a decrease rate of 50% in every 25 iterations. Each test
dataset was divided into 70%, 20%, and 10% subsets for
training, testing, and validating, respectively. Finally, a total
of 200 epochs was applied for training purpose.

IV. DATASETS

We employed a large-scale outdoor MLS dataset, called
Paris-Lille-3D [60], collected in complex urban environments.
Moreover, to test the robustness and scalability of our devel-
oped model, two highly dense indoor LiDAR datasets Scan-
Net [61] and S3DIS [62], were further used. Fig. 6 indicates
several sample data, and Table I details the descriptions of
different test datasets.

A. Paris-Lille-3D

Paris-Lille-3D point cloud dataset was collected in the two
metropolitan areas, namely Paris and Lille, France, using an
MLS system equipped with a Velodyne HDL-32E LiDAR.
The Velodyne HDL-32E LiDAR sensor can obtain a maximal
measurement rate of 700,000 points per second in an effective
scanning range of 80 m to 120 m. Such a sensor is installed at
the rear roof of the vehicle with an angle of 30◦ between the
horizontal axis and rotation axis, which can achieve a 2 cm
measurement accuracy at the speed of up to 60 km/hr, resulting
in MLS point densities ranging from 1500-2000 points/m2.

In Paris-Lill3-3D, there are three data acquisition trajec-
tories: Lille1_1 is a length of 620 m urban road segment
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with 30.2 million points, Lille1_2 is a length of 530 m urban
road corridor with 30.1 million points, Lille 2 is a length
of 340 m urban road with 26.8 million points, and Paris
provides a 450 m length of urban road with 45.7 million
points, respectively. There are 9 object classes were manually
labeled as Ground, Buildings, Poles, Bollards, Trash Cans,
Barriers, Pedestrians, Cars, and Natural with a total number
of 2,479 object instances. Moreover, a total of 30 million
points without labels are released as official test datasets. This
dataset is obtained from complex urban road environments,
it shows surveying conditions with occlusions and varying
point densities in the real-world scenarios, thus resulting in
considerable difficulties for road object segmentation using
this dataset.

B. ScanNet and S3DIS

The ScanNet dataset was generated from over 1,500 scans
by using RGB-D video streaming in indoor environments,
such as offices, apartments, conference rooms, etc. There is
a total of over 100,000 CAD instances, which are retrieved
and placed on the surface reconstructions for semantic voxel
labeling. This dataset was manually interpreted and labeled
into 20 classes, such as Floor, Desk, Curtains, and Bathtubs.

The S3DIS dataset contains 13 object categories and
6,005 object instances with structural elements including
Ceiling, Floor, Wall, Beam, Column, Window, Door, and
moveable elements including Table, Chair, Sofa, Bookcase,
Board, and others, which were collected in 11 scene categories
(e.g., hallways and lobbies) and accordingly labeled. This
dataset was generated from 6 different building areas with
a total area of 6,020 m2, 1.2 million of mesh faces, and
a total number of 695 million 3D points, respectively. Both
ScanNet and S3DIS datasets are commonly applied for object
semantic segmentation tasks, which conduces to implement a
comparative study between MS-PCNN model proposed in this
paper and other existing methods.

V. RESULTS AND DISCUSSION

A series of experiments were carried out to evaluate the
performance of MS-PCNN network. This section introduces
the optimized hyperparameters and experimental results, fol-
lowed by efficiency evaluation and comparative study in terms
of accuracy and efficiency.

A. Hyperparameter Optimization

The proposed MS-PCNN framework has two essential
hyperparameters: σ , the bandwidth in multi-scale kernel den-
sity estimation; and k, the number of points in each local
neighborhood. To achieve the optimal hyperparameter settings,
MS-PCNN model performance was evaluated through multiple
experiments based on two evaluation matrices O A and IoU ,
which can be calculated as follows:

O A =
∑N

i=1 cii∑N
j=1

∑N
k=1 c jk

(15)

IoU = cii

cii + ∑
j �=i ci j + ∑

k �=i cki
(16)

where O A metric represents the overall accuracy of segmen-
tation results, and IoU metric measures the percent overlap
between the target mask and the segmentation output. N is
the number of classes, c ∈ R

N×N is a confusion matrix of the
segmentation method, where ci j is the number of points from
ground-truth class i predicted as class j .

Before conducting various experiments, the Paris-Lille-3D
dataset was preprocessed by first downsampling input point
clouds and then rotating and jittering them to enhance the
robustness and applicability of the MS-PCNN network. Addi-
tionally, to ensure geospatial correlation among point clouds
in the local neighborhoods, the coordinates of all point clouds
were normalized to [−1, 1] in a trajectory interval of 5 m.
According to prior knowledge, we tested the performance
of MS-PCNN model using 5 (options of σ ) 4 (options of
k) = 20 combinations. Since the number of combinations
is relatively large, we evaluated the different performance of
each hyperparameter setting through the variable-controlling
approach. That is, we only changed the value of one hyper-
parameter each time, while remained the other hyperparame-
ter values the same. To evaluate the influence of different
hyperparameter combinations, the O A-IoU curve for all cate-
gories can be generated. Intuitively, the O A-IoU curve would
fall in the top-right region of the plot, which indicates the
MS-PCNN model can produce both high overall accuracy and
IoU [33].

1) Size of σ : The size of bandwidth σ has a significant
impact on the performance of MS-PCNN model. An appro-
priate value of σ enables the model to learn more local features
from input point clouds. The value of σ varies in the range
of [0, 1]. More specifically, the smaller σ is, more local
information the model can capture, but more computational
energy consumes. To achieve an optimal balance between
model performance and computational costs, we tested the
performance of MS-PCNN network by using different σ
values, i.e., 0.05, 0.10, 0.15, 0.20, and 0.25 on three test
datasets, while keeping k = 32 all the time by running
200 training epochs.

Fig. 7(a) presents the O A-IoU curve based on different
σ values. Note that, the performance of MS-PCNN enhances
with the decrease of σ , which achieves the best performance
(i.e., O A = 97.2% and IoU = 68.4%) while setting
σ = 0.10. The reason is that in the process of multi-scale
kernel density estimation, MS-PCNN could capture more
details with the decreasing values of σ . However, point-wise
semantic segmentation performance decreases by 1.1% when
changing bandwidth values from σ = 0.10 (IoU = 68.4%)
to σ = 0.05 (IoU = 67.3%), that is because the MS-PCNN
model is overfitting due to much redundant information used
in the training phase. Therefore, we determined σ = 0.10 as
the optimal hyperparameter value in order that the MS-PCNN
model can deliver high robustness and computational
efficiency.

2) Size of k: The number of points in each local neigh-
borhood, namely k, determines both the descriptiveness and
robustness of MS-PCNN model in local feature extraction.
It is normally predefined as k = 8, 16, 32,or 64 based on the
different point densities for different test datasets. Accordingly,
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Fig. 7. Model performance evaluation through OA-IoU curves: (a) Using different values. (b) Using different k values. (c) Using different batch sizes.

we evaluated the performance of MS-PCNN model by using
different predefined k values on three test datasets, while
keeping σ = 0.10 all through 200 training epochs.

Fig. 7(b) shows the O A-IoU curve by using different k
values. Different point densities have a significant impact
on the selection of k values. More specifically, to obtain
representative features in local regions, a relatively large
k value should be selected for point cloud scenes with
high point densities. Note that, the MS-PCNN model can
achieve the best performance (i.e., O A = 97.1% and IoU
= 70.5%) for point-wise segmentation while setting k =
16 on Paris-Lille-3D dataset. Obviously, for the per-point
segmentation task, the m IoU increases by 2.1% by chang-
ing k = 32 to k = 16. Moreover, compared to k =
32 or 64, the computational efficiency at the stages of k-
nearest neighbor searching and edge convolutions is consid-
erably improved by setting k = 16. Thus, in MS-PCNN,
we defined k = 16 as the optimal hyperparameter value for
high segmentation accuracy and relatively low computational
costs.

Moreover, we also evaluated the influence of using different
batch sizes during the training phase. Fig. 7(c) presents the
O A-IoU curve by varying batch sizes from 4 to 24 (i.e.,
4, 8, 16 and 24) based on the computational power that we
access, while keeping other hyperparameters the same (e.g.,
σ = 0.10 and k = 16). Generally, the larger the
batch size, the more global feature the model cap-
tures, yet the more computational power the model
requires. As can be seen, the MS-PCNN model can
deliver the best segmentation accuracy by setting the
batch size to be 16 (m IoU = 70.5%). Accordingly,
we ascertained an optimal hyperparameter combination as
σ = 0.10, k = 16, and batch size to be 16, respectively.

B. Segmentation on Paris-Lille-3D

According to different experiments by using various
combinations, we determined the optimal combination as
σ = 0.10 and k = 16 on the Paris-Lille-3D test dataset.
Moreover, the initial learning rate, batch size, momentum of
Adam, dropout rate and epochs are 0.001, 16, 0.9, 0.5, and
200, respectively, which can deliver the best segmentation
result. Since the design of the MS-PCNN architecture depends
on experience, other parameters are thus ascertained through
trial and error. For instance, when determining the dimension
of the output channel, it is common to utilize an increasing size

(e.g., from 64 to 512) in the encoding layers and a decreasing
size (e.g., from 512 to 128) in the decoding layers [58].

Fig. 8 illustrates the experimental result by testing with
Lille2 dataset, which demonstrates that MS-PCNN model
is able to achieve promising solutions for point-wise seg-
mentation tasks in large-scale urban environments. Although
mobile LiDAR point clouds collected in urban road scenes
are very different from small-scale CAD models, the segmen-
tation results indicate a large number of road objects (e.g.,
buildings and poles) were effectively segmented and the road
surfaces were completely extracted. However, some points
failed to be segmented, which indicates that certain points
were mis-assigned as other semantic labels, as illustrated
in Fig.9. The complexity of road scenarios has a significant
impact on the descriptiveness of the MS-PCNN network.
Based on the zoom-in visual inspection, the decay, ground
settlement, occlusion, and moving obstacles (e.g., cyclists) in
the Paris-Lille-3D dataset could lead to the false point-wise
label assignment. Fig.9 also shows some pedestrian points
were misclassified as natural and some points belonging to cars
were predicted as barriers. Such unavoidable errors evolving in
the process of data preprocessing, such as batch normalization,
also conduce to overall accuracy reduction of point cloud
segmentation.

Accordingly, based on the same testing protocols, we com-
pared the proposed MS-PCNN model with these existing net-
works. Table II presents the performance comparison results
by calculating the mean IoU (m IoU ) matrix, which is the
mean of IoU across all the object categories. As can be
perceived, our method dramatically outperforms both Point-
Net (38.6% m IoU ) and PointNet++ (32.0% m IoU ), which
are pioneers that directly consume point clouds using deep
learning. In addition, compared to the DGCNN, our method
could dynamically update K-nearest neighbors between two
adjacent layers of the model and accordingly calculate the
sequence of embeddings, resulting in a 17.6% m IoU improve-
ment. Moreover, PointSIFT (62.7% m IoU ) obtain lower seg-
mentation accuracy than MS-PCNN. Most importantly, for
certain types of road objects including signages, bollards,
pedestrians and cars, our proposed model can deliver the dom-
inating performance in semantic segmentation. In conclusion,
the MS-PCNN model can achieve state-of-the-art point-wise
segmentation performance in large-scale urban environments.
Meanwhile, the comparative study inspires us to optimize the
MS-PCNN model by using more low-level features of point
clouds, e.g., RGB and normal vectors.
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Fig. 8. Point-wise segmentation results by using MS-PCNN network on Paris-Lille-3D dataset.

TABLE II

SEMANTIC SEGMENTATION RESULTS ON LILLE2 BY USING DIFFERENT METHODS

Fig. 9. Two zoom-in views of point-wise segmentation results from Paris-
Lille-3D dataset.

C. Segmentation on ScanNet and S3DIS

To evaluate the robustness and performance of MS-PCNN
model in indoor environments with high-density point clouds,
two open-access point cloud datasets with labels, namely Scan-
Net and S3DIS datasets, were further utilized. According to the
same hyperparameter settings and testing protocols as using

Paris-Lille-3D dataset, we determined the optimal combination
as σ = 0.10 and k = 32 on both ScanNet and S3DIS test
datasets. Additionally, the initial learning rate, batch size,
momentum of Adam, dropout rate and epochs were 0.001, 16,
0.9, 0.5, and 200 in ScanNet, and 0.001, 8, 0.9, 0.5, and 250 in
S3DIS, respectively, which can achieve the best performance
through multiple experiments. Other parameters such as the
radius in point density estimation and dimensions of the output
channels were experimentally determined through trial and
error.

Table III shows the segmentation results on ScanNet by
using different point-based deep learning methods. Note
that, ScanNet as the pioneer DL-based method proposed
for ScanNet dataset achieves 30.6% m IoU , which is far
from satisfactory in terms of robustness and segmentation
accuracy. Although PointNet++ utilized farthest point sam-
pling and multi-scale grouping algorithms to leverage local
features from high-density point clouds, it only obtained
38.3% m IoU and 71.4% O A due to the non-uniform distrib-
utions and varying point densities in different input scenarios.
Our method is superior to both SPLATNet and PointSIFT
even though they capture hierarchical and spatially-aware
features of input point clouds. Additionally, MS-PCNN
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TABLE III

SEMANTIC SEGMENTATION RESULTS ON SCANNET BY
USING DIFFERENT METHODS

TABLE IV

SEMANTIC SEGMENTATION PERFORMANCE ON S3DIS
BY USING DIFFERENT METHODS

method outperforms PointCNN that ignores edge informa-
tion among adjacent points in a local region. Compared to
other methods, our proposed MS-PCNN model achieves the
best performance in the sense of per-object segmentation
accuracy.

Furthermore, the semantic segmentation performance on
S3DIS by using different deep learning networks is presented
in Table IV. As can be perceived, MS+CU, G+RCU, and
SegCloud slightly outperform PointNet, while PointNet++
is superior to them. Compared to DGCNN and SPGraph
methods, our proposed MS-PCNN method outperforms them
by a significant margin. Additionally, our network achieves
competitive performance compared with the PointSIFT (i.e.,
67.2% for PointSIFT and 67.8% for MS-PCNN) on S3DIS
dataset. The experimental results indicate the strengths and
robustness of our MS-PCNN method in semantic segmentation
particularly in large-scale indoor environments with highly
dense point clouds.

D. Segmentation on ShapeNetPart

To evaluate the extensive applicability of the revised Point-
CONV convolutional operator in small-scale 3D point cloud
scenes, ShapeNetPart test datasets were further employed.
ShapeNetPart datasets consist of 16,881 3D CAD instances,
which are classified into 16 categories and 50 part anno-
tations. The majority of 3D objects are labeled with two
to five parts. Moreover, ground truths are labeled on
down-sampled points on all categories. Thus, we con-
verted part segmentation task into point-wise segmentation
problem.

According to the same hyperparameter settings and testing
protocols as using Paris-Lille-3D dataset, we ascertained the

optimal combination as σ = 0.10 and k = 16 on ShapeNetPart
dataset. Additionally, the initial learning rate, batch size,
momentum of Adam, dropout rate and epochs were 0.001,
16, 0.9, 0.5, and 200, respectively, which can achieve the
best performance through experimental tests. Table VI shows
the per-point segmentation results on ShapeNetPart by using
various deep learning methods. It is notable that MS-PCNN
obtains an object instance average m IoU of 86.6%, which
is on par with the state-of-the-art methods, e.g., PointNet,
DGCNN, SpiderCNN, and PointCNN only considering xyz
coordinate information of point clouds as inputs. Although
2D rendered images used in SPLATNet, MS-PCNN could
provide more accurate and efficient segmentation results by
directly consuming point clouds without data conversion. Fur-
thermore, the processing time presented in Table VI indicates
the time consuming for both forward and backward propaga-
tions through the entire testing dataset, which demonstrates
the proposed MS-PCNN can achieve higher computational
efficiency and lower time complexity compared with other
DL-based methods.

E. Efficiency Evaluation

Although the CRF-based postprocessing could strengthen
robustness, it would have a direct influence on the memory
consumption and time complexity (i.e., forward and back-
ward propagation) of the whole framework. Most notably,
it may affect the segmentation results. To estimate these
influences, we tested the MS-PCNN network using a desktop
equipped with Intel� i7 8700K CPU @ 4.7GHz and Nvidia
GTX 1080 Ti GPU with and without the CRF module.
We ran 200 epochs on Paris-Lille-3D dataset. Additionally,
we recorded the average processing time and tracked the
highest GPU memory size for two different models.

Table V presents the comparison results. It is notable
that the model size and GPU-memory usage using the net-
work architecture with CRF module is about 260 MB and
5,015 MB, respectively. The reason is that performing the CRF
module could linearly increase the number of parameters of
MS-PCNN network. Besides, the mean IoU increases by 2.7%
by introducing the CRF module into MS-PCNN architecture,
which demonstrates the CRF module is capable of further
achieving the point-wise segmentation refinement. Addition-
ally, the time consumption of each forward and backward
propagation process in MS-PCNN is over two times than
that in the network without the CRF operation. Obviously,
the point-wise semantic segmentation performance is greatly
improved by employing a CRF post-processing module. Since
CRFs are able to directly model spatial structures and capture
more inherent geometric characteristics (e.g., connectivity
between two adjacent points), the MS-PCNN model can be
fine-tuned by formulating the CRF module. Furthermore,
the proposed MS-PCNN network can achieve state-of-the-
art point-wise segmentation performance in both outdoor
and indoor environments with different data distributions and
requires less GPU memory usage. By predefining the batch
size as 16, the proposed MS-PCNN baseline only consumes
4,824 MB GPU memory space compared to 11,450 MB used
in PointSIFT network, which demonstrates the MS-PCNN
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TABLE V

PERFORMANCE EVALUATION OF MS-PCNN NETWORK WITH AND WITHOUT THE CRF MODULE ON PARIS-LILLE-3D DATASET

TABLE VI

SHAPENET PART SEGMENTATION RESULTS BY

USING DIFFERENT METHODS

model is less sensitive to data distributions and computational
consumptions.

VI. CONCLUSION

This paper tackles the problems related to 3D point cloud
segmentation tasks, particularly in large-scale scenes. Such
problems result in computation complexity and robustness
reduction when dealing with 3D highly dense point cloud,
most notably due to its various point density and irregular
data format, as well as occlusion and background interference
in the real world. In this paper, we have proposed a novel end-
to-end neural network, MS-PCNN, by combining point-wise
CNNs with dynamic edge convolutions for 3D point cloud
segmentation. The proposed network was evaluated by esti-
mating efficiency and robustness on three publicly accessible
LiDAR datasets, including one real urban-scene dataset (i.e.,
Pairs-Lille-3D), and two indoor-scene datasets (i.e., ScanNet
and S3DIS).

In conclusion, our proposed neural network has four main
strengths: First, the revised point-wise convolutional filters that
can learn spatial relationships and extract geometric informa-
tion of point clouds in local regions contributing to permuta-
tion invariance and translation invariance. Second, MS-PCNN
applies a hierarchical PointCONV-based downsampling and
DePointCONV-based upsampling architecture in order that
more high-level features are extracted in multiple scales. Third,
by improving the dynamic graph edge convolution, MS-PCNN
can learn edge features between a point and its adjacent
neighbors to improve the descriptiveness. Finally, we use a
CRF post-processing algorithm to ensure the consistency of
point-wise label prediction and refine segmentation results.
MS-PCNN model is robust to occlusion and diverse point
density for both urban-scene and indoor-scene point clouds.
Therefore, this paper demonstrates that MS-PCNN model can
provide promising solutions in industrial applications, such

as fully autonomous driving. Compared to other point-based
networks, e.g., PointSIFT and PointCNN, MS-PCNN is less
memory-consuming and time-consuming in both forward and
backward propagations, which can considerably save the
training time. Additionally, the comparative study certainly
indicates that MS-PCNN is superior to other DL-based meth-
ods in the testing scenarios in segmentation accuracy and
computational complexity. Overall, it is concluded that our
proposed neural network can achieve dominating performance
in 3D point cloud segmentation under large-scale point cloud
scenes more effectively and robustly.

For further research, we are dedicated to improving
MS-PCNN performance in several perspectives: using more
basic features of point clouds, including RGB, reflectance and
normal vector, to enhance the descriptive ability; decreasing
the number of model parameters with an appropriate fashion
to extend the application of MS-PCNN; and exploiting more
robust and effective loss functions to improve the segmentation
performance.
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