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Abstract— Accurate road marking extraction and classification
play a significant role in the development of autonomous vehi-
cles (AVs) and high-definition (HD) maps. Due to point density
and intensity variations from mobile laser scanning (MLS) sys-
tems, most of the existing thresholding-based extraction methods
and rule-based classification methods cannot deliver high effi-
ciency and remarkable robustness. To address this, we propose a
capsule-based deep learning framework for road marking extrac-
tion and classification from massive and unordered MLS point
clouds. This framework mainly contains three modules. Module I
is first implemented to segment road surfaces from 3D MLS point
clouds, followed by an inverse distance weighting (IDW) inter-
polation method for 2D georeferenced image generation. Then,
in Module II, a U-shaped capsule-based network is constructed
to extract road markings based on the convolutional and decon-
volutional capsule operations. Finally, a hybrid capsule-based
network is developed to classify different types of road markings
by using a revised dynamic routing algorithm and large-margin
Softmax loss function. A road marking dataset containing both
3D point clouds and manually labeled reference data is built from
three types of road scenes, including urban roads, highways, and
underground garages. The proposed networks were accordingly
evaluated by estimating robustness and efficiency using this
dataset. Quantitative evaluations indicate the proposed extraction
method can deliver 94.11% in precision, 90.52% in recall, and
92.43% in F1-score, respectively, while the classification network
achieves an average of 3.42% misclassification rate in different
road scenes.
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I. INTRODUCTION

NOWADAYS, many leading digital mapping corporations
(e.g., Here, TomTom, Google Maps, and Bing Maps) and

multinational courier services companies (e.g., UPS, FedEx,
and SF Express), are investing increasingly and dedicating
themselves to produce high-definition (HD) maps [1]. Such
HD maps are capable of providing sub-lane level road infor-
mation and highly detailed road inventories, including traffic
signs, pole lights, roadside trees, lanes, boundaries, curbs, and
all other essential road assets required for the development
of autonomous vehicles (AVs) and intelligent service robotics
(ISRs) [2]. As a critical element in HD maps, road markings
play a significant role in guiding, regulating, and forbidding all
road participants [3]. For instance, lane lines regulate driving
zones, painted texts indicate traffic rules, and arrows show
allowable driving directions. Therefore, accurately extracting
and classifying road markings have a significant impact on
transportation-related policymaking, driving behavior regula-
tion, and traffic collision reduction.

A series of research has been conducted for road marking
segmentation and classification using 2D images obtained
from vehicle-borne optical imaging systems [4], [5]. In [6],
a group of geometric feature functions in a probabilistic
Random Under Sampling Boost (RUSBoost) and Conditional
Random Field (CRF) classification framework was employed
to automatically learn the rules embodied in road markings
from stereo images. A trainable multi-task model was devel-
oped in [7] for pavement marking recognition and segmen-
tation from images acquired under complex road topotaxy
and varying traffic conditions. Moreover, line markings were
extracted in [8] by creating a novel line proposal unit embed-
ded in a fully convolutional network (FCN) for valid feature
encodings, which achieved the promising performance on
MIKKIand TuSimple image datasets. However, such image-
related methods are highly susceptible to weather and illumi-
nation variations [9].

Mobile laser scanning (MLS) systems comprising a com-
bined Global Navigation Satellite System and Initial Mea-
surement Unit (GNSS/IMU) subsystem, a Light Detection
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and Ranging (LiDAR) subsystem, a Radio Detection and
Ranging (RADAR) subsystem, CCD cameras, and a central
computing subsystem, can collect highly dense and accurate
point clouds with intensity or reflectance information in large-
scale urban environments and highways [10]. Compared to
vehicle-mounted cameras, LiDAR sensors are less sensitive to
ambient lighting conditions [11]. The point density collected
by MLS systems can achieve over 10,000 pts/m2 with cm-level
resolutions, while it is quite challenging for both terrestrial and
airborne laser scanning (TLS/ALS) platforms to deliver such
precision and flexibility [12].

Therefore, many studies focusing on the road marking
extraction and classification have been addressed by using
MLS point clouds [13]. However, massive and unevenly
distributed 3D point clouds make the intelligent point cloud
processing challenging. Occlusions and distortions, intensity
variations, density variations, noisy points, and incomplete
pavements during MLS data acquisition also result in consider-
able difficulties. Since thresholding-based methods at a global
scale cannot effectively extract road markings from georefer-
enced images with various point distributions, multi-threshold
methods are accordingly proposed by partitioning road surface
point clouds into a set of data blocks and determining an adap-
tive threshold within each data block [14]. Nevertheless, such
methods highly rely on suitable data block sizes. Meanwhile,
a normalized intensity-based approach was performed in [15]
to minimize the impacts of different intensity values due to
varying distances from the onboard laser scanners to scanning
objects. However, the normalization parameters defined in
such methods are different from scene to scene.

Generally, there exist three main challenges for road mark-
ing extraction and classification from mobile LiDAR data:
(1) the contrast between pavements and road markings is
relatively low. Road damage is inevitable regarding poor
maintenance, which leads to the unevenly distributed inten-
sity, thereby resulting in intensity-related methods ineffective.
(2) The intensity values and point densities are varying. Point
clouds are generally acquired by vehicle-based MLS systems
that are driven through changing lanes at varying driving
speeds. Depending on the profiling scanning mechanism of
MLS systems, the incident angle of laser beams grows larger
with an increased scanning range. Consequently, road mark-
ings have higher intensity values and point densities if they are
closer to the trajectory of MLS systems. It is challenging for
thresholding-based extraction methods to effectively extract
road markings by assuming that intensity and point density
are uniformly distributed. (3) Some road markings are incom-
plete. The damage of road surfaces resulting from on-road
overloaded trucks and severe weather conditions, such as acid-
alkali erosion, could create worn and decaying road markings.
Moreover, occlusions from all road participants (e.g., vehicles
and cyclists) also bring in dilemmas and uncertainties for
the accurate extraction and classification of road markings.
Accordingly, manual editing and post-refinement are required
to improve the completeness and accuracy of extracted road
markings. However, it is time-consuming and labor-intensive.

To deal with these challenges, we investigate the feasi-
bility of combing capsule networks with hierarchical feature

encodings of georeferenced feature images. Compared to
the conventional convolutional neural networks (CNNs), cap-
sule networks have achieved superior performance in image
segmentation and classification tasks, which captures more
intrinsic features in pose and spatial relationships of different
objects in images [16], [17]. In this paper, we develop two
capsule-based neural network architectures for road marking
extraction and classification by using MLS point clouds.
To this end, a pixel-wise U-shaped road marking extraction
network is proposed to segment road markings from input
images. At first, the road surface is partitioned into a collection
of image patches. Then, the Intersection-over-Union (IoU)
loss is employed, rather than cross-entropy, to guide weight
updates in the U-shaped segmentation architecture. Finally,
road markings are extracted based on binary classification.
Moreover, combined with the fully connected (FC) capsule
layers, a capsule-based network is constructed to classify road
markings. First of all, the extracted road markings are resized
to 28 × 28 pixels for computational complexity reduction.
Then, two sibling classification networks (i.e., a capsule-based
network and a fully-connected capsule network) are trained
to encode both low-level and high-level features for different
road marking classes, followed by a revised dynamic routing
algorithm. Meanwhile, a large-margin Softmax (L-Softmax)
loss function is adopted in the capsule-based classification
model to guide training, instead of a standard Softmax loss.
Finally, road markings are effectively categorized into several
groups.

The whole road marking extraction and classification frame-
work provides a promising solution for preloaded HD map
creation, which further produces an essential road inventory
dataset for road marking updates to support the development
of AVs. The significant contributions of this paper are as
follows. (1) A novel U-shaped convolution-deconvolution cap-
sule network is constructed to road markings. The impacts
of low-intensity contrast between road markings and their
surrounding pavements, as well as varying point densities, are
remarkably decreased through encoding the image patches at
various locations. (2) A hybrid capsule network is proposed
to categorize road markings with the assistance of a revised
dynamic routing algorithm. The sibling framework of the
capsule model and the fully connected capsule model achieves
more effective performance for road marking classification.
(3) To our knowledge, it is the first use of capsule-based neural
networks for road marking extraction and classification in
literature. And (4) a road marking dataset containing both 3D
point clouds and manually labeled reference data in three types
of road scenes (i.e., urban roads, highways, and underground
garages) is constructed, which will be publicly accessible to
motivate relevant research.

II. RELATED WORK

A. Road Marking Extraction

Road markings are decorated on asphalt concrete pave-
ments with highly light-reflective coatings, the intensities
backscattered from road markings are considerably higher than
surrounding pavements [18]. Accordingly, thresholding-related
approaches have been widely applied to achieve road marking
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extraction [19], [20]. To overcome the uneven distribution of
intensities and point densities, a multi-thresholding approach
was developed in [21] by first segmenting raw point clouds
into data blocks with trajectory support. Next, each block was
divided into different profiles with a certain width. Finally,
road markings were extracted based on the peak values of
intensity in each profile, followed by the spatial density
filtering (SDF) algorithm for noise removal. In [22], combined
with the multi-thresholding method, geometric feature filtering
was employed to segment lane markings.

Furthermore, by converting 3D point clouds into 2D georef-
erenced intensity images, a multiscale tensor voting (MSTV)
algorithm was proposed in [24] for discrete pixel elimina-
tion and road marking preservation. A weighted neighboring
difference histogram (WNDH) algorithm was first performed
to compute the intensity histogram of raw point clouds and
determine adaptive thresholds. Subsequently, the MSTV and
upward region-growing approaches were applied to ascertain
candidate road marking pixels, accompanied by a morpholog-
ical nearest algorithm for road marking extraction. However,
it is still very challenging for such methods to effectively
extract road markings from unorganized and high-density point
clouds, especially with distinctive concavo-convex features.

Deep learning is taking off in object segmentation and
object classification communities [23]. In [24], a lane marking
extraction method was proposed based on the CNNs from
MLS point clouds. A CNN framework designed for learning
hierarchical features from upsampling-downsampling modules
was first introduced for effectively and accurately detect lane-
shaped markings. Then, both the length and spatial information
related filters were utilized to optimize the extracted road
markings. Moreover, in [25], an improved U-Net encoder-
decoder framework was proposed by learning inherent fea-
tures of road markings embedded in different data patches,
which achieved promising flexibility and performance on point
clouds with low-intensity contrast ratios. Nevertheless, these
methods mainly concentrate on regular-shaped road mark-
ings (e.g., dashed lines and zebra crossings), it remains a
challenge to deliver satisfactory results for complicated road
markings (e.g., texts). Although it dramatically reduces the
computational complexity by converting 3D point clouds into
2D rasterized images, these neural networks cannot capture
pose or spatial information that is quite significant for road
marking extraction in fluctuant terrain environments.

B. Road Marking Classification

Following the extraction process, many classification meth-
ods were developed to classify road markings into vari-
ous categories for specific applications [26], [27]. In [28],
an Euclidean distance-based clustering approach was imple-
mented, followed by a voxel-based normalized segmenta-
tion algorithm for clustering unorganized road marking point
clouds into large-size and small-size clusters. Afterward,
large-size road markings were classified with the assistance
of trajectory data and curb-lines. Then, a jointly trained
Deep Boltzmann Machine (DBM) neural network followed
by a multi-layer classifier was developed to recognize and

categorize small-size markings effectively. Additionally, based
on the geometric parameters (e.g., perimeter, area, and cal-
culated width), the extracted road markings were classified
in [29] by constructing a manually defined decision tree.
However, it is challenging for this rule-based method to
effectively classify complex road markings, such as words and
arrows. Due to discrete noise, faded markings, and varied road
environments, it is also difficult for these methods to accurately
classify the incomplete road markings.

To achieve the superior road marking classification per-
formance, a hierarchical classification framework was first
designed in [20] by employing a multi-layer neural network
to recognize arrows and pedestrian crossings. Then, the Struc-
tural Similarity Index (SSIM) algorithm was carried out to
classify different types of arrows. Furthermore, a two-stage
CNN-based hierarchical classification framework was intro-
duced in [25]. At first, a multi-scale Euclidean clustering algo-
rithm was implemented to classify large-size road markings
(e.g., zebra crossing). Then, the remaining small-size road
markings (e.g., texts and diamonds) were successfully clas-
sified into different groups by using a four-layer convolution
network, followed by an optimized conditional generative
adversarial network (c-GAN) to enhance the completeness
of the extracted road markings. Although their experimental
results indicated a highly promising solution in road marking
classification, it is still challenging to eliminate the influences
of small incompletions and deliver an end-to-end deep learning
framework.

III. METHODS

This section details the theoretical and mathematical imple-
mentations of the developed capsule-based network architec-
tures for road marking extraction and classification by using
mobile LiDAR point clouds. This framework mainly contains
three modules: data-preprocessing, road marking extraction,
and road marking classification.

A. Module I: Data-Preprocessing

Since we mainly concentrate on road markings in this paper,
the off-ground point clouds (e.g., trees, traffic lights, fences,
and buildings) are first filtered out to strengthen the computa-
tional efficiency and reduce GPU memory consumption in the
following processes. In our previous research [21], a revised
curb-based road surface extraction method was introduced.
Given the fact that urban roads are constructed with concrete
curbs as road separation zones, road surface point clouds can
be accurately and effectively segmented from the input point
clouds depending on the fitted curb-lines. Detailed descriptions
of this method and relevant parameter refinement are depicted
in [21]. Herein, we employ this curb-based extraction method
to segment road surface point clouds.

Moreover, existing studies have demonstrated that the
height information of road point clouds conduces little to
road marking segmentation [30], [31]. Thus, in this paper,
road surface point clouds are projected to a 2D xy-plane
and transformed into georeferenced intensity raster images.
To this end, we employed an inverse distance weighting (IDW)
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Fig. 1. The intensity image generated by using IDW interpolation.

interpolation algorithm to produce 2D intensity images by
calculating the grey-scale value of a specific cell from its
surrounding neighbors. Two rules are designed to determine
the weight associated with each point: (1) a point with a larger
intensity value has a higher weight, and (2) a point closer to
the trajectory has a higher weight. The grid cell size should
adequately preserve the details of different road markings
and dramatically decreases the number of data that should
be handled. Theoretically, A larger grid cell size is selected
when performed on point clouds with lower density. Based on
our previous experiments [29], we tested several grid cell sizes
from 2.5 cm to 10 cm. The generated intensity images became
blurred, and the computational cost was reduced. Moreover,
with a grid cell size of 4 cm, the thinnest road markings
(i.e., lane lines with a width of 15 cm) are well preserved
in the generated intensity images, and the gaps among 3D
point clouds are accordingly interpolated.

Furthermore, a high-pass filtering operation with a suitable
kernel size is performed on the generated intensity images
to minimize the influence of varying intensity values. The
kernel size of this high-pass filter is ascertained based on prior
knowledge and multiple experiments. Specifically, this kernel
size should be not only large enough to comprise both road
marking and road surface pixels but small enough to reduce
the influence of the spatial variance and uneven distribution of
the intensity. In this paper, the raster grid size of the generated
intensity image and the kernel size of the high-pass filter are
defined as 4 cm and 25 × 25, respectively. Fig. 1 indicates an
example of the generated intensity image after implementing
IDW interpolation and high-pass enhancement.

B. Module II: U-Shaped Capsule Network

Since a rasterized cell either denotes some road marking
pixels or pavement pixels in the intensity images, we could

regard the road marking extraction process as a basic binary
classification task. Meanwhile, although capsule networks
introduced by in [32] have achieved remarkable success
for a broad range of computer vision problems particu-
larly for digit recognition and small image classification
(e.g., CT scans [33]), no studies yet exist in literature that
employs capsule networks for road marking extraction from
MLS point clouds. Comparing with conventional CNNs, cap-
sule networks utilize vectorial neurons rather than scalar
neurons to encode entity features. The instantiation parameters
of different capsules indicate varying types of entities, while
different lengths of capsules encode the probabilities of the
existence of these entities, and different directions indicate
their pose information [34]. Therefore, to demonstrate the
effective performance of capsule networks in extracting road
markings, we design a U-shaped capsule-based network using
the 2D georeferenced intensity images.

In the training process, the generated intensity images
are first manually labeled into two groups: positive training
samples containing road marking pixels and negative training
samples containing road surface pixels. Subsequently, a collec-
tion of local image patches with the size of 512 × 512 pixels
are derived from the generated intensity image based on a
sliding window mechanism. To ensure complete and extensive
coverage of the training image, two adjacent image patches are
generated with an overlapping size of ps pixels. Moreover,
such patches are fed into the multi-layer capsule networks for
intrinsic feature extraction.

Fig. 2 shows a U-shaped convolution-deconvolution capsule
network, which can learn not only intensity variance from
massive labeled image patches but the shape and position
information of road markings. This U-shaped capsule net-
work consists of traditional convolutional layers, primary cap-
sule layers, convolutional capsule layers, and deconvolutional
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Fig. 2. Architecture of the proposed U-shaped capsule network.

capsule layers. The traditional convolution layers are designed
to encode locally shallow features (e.g., edges and shapes)
from the input local image patches via convolutional encod-
ings. Such low-level features are afterward fed into high
order capsules to learn in-depth features. Herein, we adopt
the commonly employed rectified linear unit (ReLU) as the
activation function.

In primary capsule layers, the shallow scalar feature
encodings are transformed into high-order vectorized capsule
representations. Assuming Fm and Dc are the number of
feature maps and the dimension of capsules, respectively.
Then, the kernels with the size of Fm × Dc are implemented
in the following convolutional layer. Finally, the output feature
maps are categorized as Fm groups, each of which consists of
Dc feature maps.

The following convolutional capsule networks focus on
encoding high-level capsule features and orientations by using
capsule convolution operations. In general, the whole inputs
to a capsule j are a weighted sum over all outputs from the
capsules in the convolutional kernel in the previous layer:

C j =
�

i

hi j · �Vj |i (1)

where C j denotes the whole input to the capsule j , hi j is
the coupling coefficient showing the level of significance that
capsule i in the previous layer activates capsule j , and �Vj |i
indicates the predictions between capsule i and capsule j ,
which is calculated by:

V̂ j |i = Wij Vi (2)

where W ij denotes the weight matrix and V i is the outcomes
of capsule i . The sum of the weighting coefficients between
capsule i and all its linked capsules in the previous layer is
equal to 1, which is ascertained through a dynamic routing
mechanism [32]. Moreover, a nonlinear “Squashing” activation

function is employed to guarantee that different lengths of
vectors in capsules are shrunk in the range of [0, 1] and
results in the different probabilistic predictions. This squashing
function is calculated by:

Sj =
��C j

��2

1+ ��C j
��2 ·

c j��C j
�� (3)

where C j and S j is the total input and output vector
of capsule j , respectively. Furthermore, three deconvolutional
capsule layers are designed to construct a diverse set of
capsule types and propagate learned features from down-
sampled images to the original images, thereby allowing the
capsules to capture the most critical and intrinsic parameters of
the input images. Based on the IDW interpolation algorithm,
the feature propagation process is performed by interpolating
feature values f of pn pixels at coordinates of the pn−1 pixels.
Then, such interpolated features are locally-constrained and
concatenated with skip linked pixel features from the convo-
lution capsule layers. Since we only focus on the distributions
of the positive input class (i.e., road marking pixels) and
regard the remaining pixels as background, we mask out all
capsules except whose class labels match to the input image
patch. This reconstruction process is conducted by employing
three 1 × 1 convolutional layers.

Compared to the standard capsule network, we iteratively
update the parameters by using the IoU as the cost function
for model performance refinement, rather than binary cross-
entropy. The IoU loss function, namely L I oU , is calculated as
follows:

L I oU = −
�N

i=1

�
pi

pred ∩ pi
gt

�
�N

i=1

�
pi

pred ∪ pi
gt

� (4)
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Fig. 3. Architecture of the proposed hybrid capsule network.

Algorithm 1 Revised Dynamic Routing Algorithm

1: procedure DYNAMIC ROUTING (OVj|i, r, kh , kw)
2: for all capsule i within a kh * kw kernel in layer l and all capsule j in layer (l+ 1) : bij ← 0
3: for r iterations do
4: for all capsule i in layer l: l i ← LSoftmax (bi ) ⇒ L-Softmax computes Eq.5
5: for all capsule j in layer (l+ 1): c j ←�

i hi j · �V j |i
6: for all capsule j in layer (l+ 1): s j ← squash (ci ) ⇒ Squash computes Eq.3
7: for all capsule i in layer l and all capsule j in layer (l+ 1): bi j ← bi j + �V j |i · s j

8: return s j

where pi
pred and pi

gt is the i -th predicted road marking pixel
and corresponding ground truth pixel, respectively. To mini-
mize the L I oU , the proposed U-shaped capsule network can
extract more accurate and complete road markings in image
patches. Moreover, images with various intensity are utilized
as training data to decrease the impacts of intensity variation.

C. Module III: Hybrid Capsule Network

After road markings are segmented from the georefer-
enced intensity images, a hybrid capsule-based network is
further proposed to categorize these road markings into several
classes. Fig. 3 shows the workflow of the hybrid capsule
framework, which mainly consists of two hierarchical net-
works (a convolutional capsule network and an FC capsule
network) for, respectively, encoding high-level and low-level
features from input images. As indicated in Fig.3, the con-
volutional capsule network comprises a standard convolu-
tional layer and a primary capsule layer, followed by two
convolutional capsule layers. By taking advantage of con-
volutional operation, the first convolutional layer functions
to encode locally low-level features from the input images.
Such extracted features are then fed into high order vectorial
capsules for further feature encodings.

To enhance the weight update efficiency and improve inter-
class separability, we propose a revised dynamic routing

algorithm in this paper. Different from the dynamic routing
method conducted in [32], the revised dynamic routing algo-
rithm only route the child capsules within the user-specified
kernel to the parent, rather than routing all child capsules to
all parent capsules. The revised dynamic routing algorithm is
described in Algorithm 1. Moreover, a large-margin Softmax
loss [35] is adopted to emphasize intra-class compactness
and overcome inter-class imbalance, which usually poses
challenges by using standard Softmax loss. The large-margin
Softmax loss is calculated as follows:

LSof tmax

= − log

⎛
⎝ e

��W yi

���xi�ψ


θyi

�

e
��W yi

���xi�ψ


θyi

�
+�

j �=yi
e�W j��xi� cos(θ j)

⎞
⎠ (5)

where Wyi indicates the yi -th column of a FC-capsule layer W ,
θ j (0 < θ j < π) represents the angle between the vector W j

and xi . Generally, we define ϕ(θ) = cos(mθ), 0 ≤ θ ≤ π
m

and ϕ(θ) = F(θ), π
m ≤ θ ≤ π . m presents an integer

that is closely correlated to the classification margin. With
smaller m, the classification margin becomes smaller, and the
learning objective becomes easier accordingly. Based on prior
knowledge, m is defined as 5 in this paper. Furthermore, F(θ)
is a function that monotonically decreases in the range of
[0, π], while F 


π
m

�
equals to cos



π
m

�
. By such an introduc-

tion, the large-margin Softmax loss not only gains the main
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strengths from Softmax loss but encodes inherent features at
a large angular margin between different classes.

As perceived in Fig.3, the FC-capsule network contains
a standard FC layer, a primary FC-capsule layer, and two
FC-capsule layers. Intuitively, the FC layer is employed to
encode shallow global features from the raw images. Then,
such extracted global features are fed into high order capsules.
Likewise, according to traditional fully-connected operations,
the primary FC-capsule layer is generated. The corresponding
units are equally divided into categories to construct a group
of capsules. Meanwhile, two FC-capsule layers focusing on
extracting inherent capsule features on a global scale are
employed.

The two hierarchical networks encoding both local and
global capsule features are combined through flattening
and concatenation operations and further input into three
FC-capsule layers for the classification task. Finally, four FC
layers are employed to rebuild the input images, thus enable
capsules to learn the most intrinsic and critical instantiation
parameters of the raw images. Accordingly, we first mask
out all classification capsules and keep the remaining cap-
sules whose class labels correspond to the raw image. The
instantiation parameters of these capsules are input to the
reconstruction module for reconstruction.

The training parameters are effectively fine-tuned at the
error back-propagation stage. Accordingly, the following
multi-task loss function is adopted to refine the whole
framework:

L =
M�

i=1

N�
c=1

Lc
1 + δ

M�
i=1

Li
2 (6)

where Lc
1 and Li

2 denote the classification loss and reconstruc-
tion loss, respectively. M and N are, respectively, the number
of input training images and class-related capsules within the
L-Softmax layer. δ indicates a regularization term. Accord-
ingly, the classification loss for the specified class c is calcu-
lated as follows:

Lc
1 = Tc ·max



0,m+ − �Sc�

�2 + ε (1− Tc)

·max


0, �Sc� − m−

�2 (7)

where Tc = 1, if the training image corresponds to class c.
Otherwise, Tc = 0. m+ and m− are thresholds, respectively,
that determine if a training image belongs to class c or not.
In this paper, m+ = 0.93 and m− = 0.07 are predefined based
on a set of experiments. ε represents a regularization term.
Additionally, a smooth-L loss proposed by Girshick [36] is
adopted to determine the reconstruction loss.

In the classification process, a group of road marking
training data is manually labeled. Then, such training samples
are augmented through rotation, scaling, crop, and illumination
changes. Thus, we generate 7,000 training samples in total,
with 1,000 samples for each road marking type. Moreover,
to reduce the computational cost, all training samples are
resized to 28 × 28 pixels before feeding into the classification
network. Finally, the class label of a road marking image is
ascertained using the following equation:

K ∗ = argmaxc �Sc� (8)

TABLE I

THE CATEGORY AND QUANTITY OF LABELED ROAD MARKINGS

where �Sc� denotes the output of the classification network.
This class label is therefore assigned to the image as its
predicted road marking type.

IV. DATASET AND IMPLEMENTATION DETAILS

In this paper, the mobile LiDAR point clouds were captured
using a RIEGL-VMX 450 MLS system in both urban and
highway road sections with free-flowing traffic. The RIEGL-
VMX 450 MLS platform contains two full-circle RIEGL
VQ-450 laser heads, which could achieve a 400 lines/sec
scan frequency in a “Butterfly” configuration pattern. The
average point density of these data is over 4,500 pts/m2,
and the absolute measurement accuracy can reach 8 mm.
Additionally, we collected some pavement point clouds in
underground garage environments using our self-assembled
backpack laser scanning (BLS) system. The configuration
specifications of this BLS system are detailed in [37]. This
BLS system is equipped with two Velodyne VLP-16 laser
heads, which can achieve a scanning distance of 100 m with
1,700 pts/m2 point density and 3 cm measurement accuracy.
Compared to point clouds obtained by MLS systems, the point
clouds captured by the BLS system are of low quality due to
low-end LiDAR sensors and poor illumination conditions in
underground garage environments.

Moreover, we manually annotated the data to build a
road marking dataset. To end this, all road markings were
first labeled pixel-by-pixel on the generated intensity images
based on visual interpretation. Then, all these road markings
were segmented as separate training samples by employing
a clustering method. Thus, each labeled image only contains
one type of road marking. Finally, the 2D coordinates and
class type of each road marking pixel were recorded. Since
the number of some road markings in certain classes (e.g., dif-
ferent Chinese words) is limited, such classes were merged
and accordingly augmented through rotation, translation, and
scaling operations. As listed in Table I, a total of seven
categories of road markings were generated in this paper.

Since the road marking types in these three road scenes
(e.g., urban roads, highways, and underground garages) are
similar, 7,000 samples were utilized to extract and classify
road markings. The whole dataset was split into 60%, 20%,
and 20% subsets for training, validation, and testing, respec-
tively. According to prior knowledge and multiple experi-
ments, different hyperparameters, i.e., the batch size, initial
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Fig. 4. Road marking extraction results using the proposed U-shaped capsule network. (a) Highway scene, and (b) urban road scene.

learning rate, and dropout rate, were fine-turned in the training
process for the optimal combination. Accordingly, the batch
size, initial learning rate, dropout rate, and epochs were
[8, 0.0001, 0.80, 400] for the U-shaped road marking extrac-
tion model, respectively, and [32, 0.0005, 0.80, 300] for
the hybrid capsule-based road marking classification model.
We tested the proposed models using TensorFlow 2.0 on
Intel� i7-8700K CPU @3.70 GHz, Nvidia� 1080-Ti GPU,
and 32 GB RAM.

V. RESULTS AND DISCUSSION

A. Road Marking Extraction Results

In this paper, according to the manually labeled reference
data, the following three evaluation metrics, i.e., precision,
recall, and F1-score [38], were adopted to conduct the quan-
titative performance evaluation of road marking extraction:

Precision = TP

TP + FP
(9)

Recall = TP

TP + FN
(10)

F1-score = 2 ∗ Precision ∗ Recall

Precision+ Recall
(11)

where T P , F P , and F N present true positive, false positive,
and false negative segmentation outputs, respectively. Specif-
ically, the precision shows the percentage that the extracted
road markings are valid, while the recall represents the com-
pleteness of the extracted road markings. Moreover, F1-score
is a weighted average score of by analyzing both precision
and recall.

The U-shaped convolution-deconvolution capsule archi-
tecture was proposed for road marking extraction on the
generated intensity image patches with 4 cm resolutions.
Fig. 2 presents the fine-tuned network configurations based
on multiple experiments, which details the number of capsules
and the sizes of feature maps after standard or capsule-based
convolutional operations. The training samples captured in
urban roads, highways, and underground garages were used to
evaluate the extraction performance. A series of experiments
were performed to determine the optimal parameters, such as
the overlapping size ps between two adjacent image patches.
In fact, an increasing overlapping size can produce not only

better classification performance but also more image patches
resulting in slow training speed. Therefore, to balance the
classification performance and computational burden, ps was
defined as 128 in this paper.

Fig. 4(a) indicates the road marking extraction results in a
highway scene. These highways are newly built and well main-
tained with clear road markings (i.e., lane lines and dashed
lines), which enables the vectorial capsules to effectively learn
inherent road marking features (e.g., varying intensities) at the
training stage. Although we conducted binary classification to
minimize the influence of low contrast between road surfaces
and road markings, some pixels belonging to the lane lines
were misclassified into road surfaces. Compared to highway
road scenes, road markings painted on urban road surfaces
are usually worn, which leads to dilemmas and uncertain-
ties for high-accuracy road marking extraction. As shown
in Fig. 4(b), most road markings were successfully extracted,
which demonstrates our proposed network can effectively
extract road markings even in complex urban road scenes.
However, due to heavy traffic flow and pavement corrosion,
some road markings are heavily worn and incomplete, which
brings in enormous difficulties for road marking extraction.
Besides, some road markings are covered by thick dust due
to late maintenance, thus leading to varying intensities and
low contrasts with the surrounding pavements. Although these
conditions inevitably occurred in urban road scenes rather
than highways, our proposed U-shaped capsule network could
achieve reliable performance and deliver promising results for
road marking extraction under various road conditions.

Additionally, Fig. 5 illustrates the road marking extraction
results by utilizing the proposed networks in a 50 × 40 m2

underground garage scene. Although the point density of these
underground garage data is lower than point clouds obtained
from the MLS systems, it can be solved by converting 3D point
clouds into 2D images. The intensity value of a certain pixel
is calculated based on its surrounding neighbors. Moreover,
capsule convolutions encode not only intensity contrast but
pose (e.g., shape and position) information. Consequently,
the majority of road markings were accurately detected and
extracted, while only a few pixels belonging to arrows and
zebra crossings were misclassified into road surfaces due to
inevitable occlusions and poor illuminations.
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Fig. 5. Road marking extraction results in an underground garage scene.

TABLE II

ACCURACY ASSESSMENT OF ROAD MARKING EXTRACTION IN URBAN

ROADS, HIGHWAYS, AND UNDERGROUND GARAGES

Tables II indicates the quantitative accuracy assessment of
the road marking extraction results in three different road
scenes. Consequently, the propose U-shaped capsule network
delivered an average precision, recall, and F1-score of 94.92%,
90.25%, 92.52% in urban road scenes, and 96.14%, 91.13%,
and 93.57% in highways, and 91.26%, 90.17%, and 91.20% in
underground garages, respectively. Because of the high point
density, few occlusions, and good illumination conditions in
highways, our proposed U-shaped capsule network achieved
more superior performance for road marking extraction in
highway scenes than both urban roads and underground
garages. The issue of intensity variation is considerably solved
by learning the patches at different locations. The unavoidable
errors occurring at the stage of manually annotated label
generation could bring in challenges for robust and effective
road marking extraction. Furthermore, some road markings
are worn and incomplete, resulting in the sizes of such road
markings smaller than the manually labeled reference data.
Therefore, the road marking extraction performance of the

developed model is underestimated in the experimental results.
Our experiments demonstrated that our proposed U-shaped
capsule-based model is able to learn inherent features
(e.g., intensity and shape) for road marking extraction by using
different kinds of point clouds. Such data are obtained from
complex road scenes, with low point densities, in poor illumi-
nation conditions, and with uneven intensity distributions.

B. Comparative Study for Road Marking Extraction

A comparative study was conducted to evaluate the road
marking extraction performance by using the developed mod-
els and existing algorithms, including Cheng et al.[29],
Ma et al. [21], and Wen et al. [25]. The test datasets were col-
lected from urban roads, highways, and underground garages
with low-intensity contrast and incomplete point clouds, which
contain many categories of road markings (e.g., lines, arrows,
and texts). We re-implemented these three methods on our
testing datasets. Fig. 6 shows the road markings on the large-
scale roadways extracted using four methods.

Accordingly, mobile LiDAR point clouds were transformed
from 3D point clouds into 2D georeferenced images at the
stage of road marking extraction in both Cheng’s [29] and
Wen’s [25] methods. Cheng’s [28] method employed Otsu’s
thresholding approach [39] for road marking segmentation
according to the discriminant analysis, which requires the
generated intensity image should be bimodal with uniform
illumination conditions. Thus, it is difficult to completelyy
extract road markings from low-intensity contrast point clouds,
especially from underground garage data with poor illumi-
nations. Meanwhile, by projecting 3D point clouds onto a
horizontal xy-plane, Wen’s method [25] performed a revised
U-Net neural network to segment different types of road
markings. However, the Softmax activation function used at
the stage of road marking extraction cannot capture intra-class
compactness, thereby resulting in limitations in road marking
extraction from low-intensity contrast point clouds. Addition-
ally, Ma’s [21] method mainly concentrated on determining
adaptive intensity thresholds on local scales for road marking
extraction. Nevertheless, it is quite difficult to define suitable
threshold values in different road scenes.

Table III shows the overall performance of different meth-
ods for road marking extraction by using precision, recall,
and F1-score evaluation metrics. Cheng’s method [29], Ma’s
method [21], and Wen’s method [25] achieved an average
of precision, recall, and F1-score of 27.48%, 32.32%, and
29.69%, 67.16%, 59.38%, and 63.01%, and 93.36%, 88.97%,
and 91.09%, respectively; while our proposed method deliv-
ered an average of precision, recall, and F1-score of 94.11%,
90.52%, and 92.43%, respectively. As can be seen, the road
markings were extracted incompletely or even lost information
by using such three comparative methods. In contrast, the pro-
posed U-shaped capsule network is capable of achieving better
performance with higher accuracy and less noise in all road
scenes.

Moreover, the capsule-based convolutional operations in
our proposed model can not only capture the salient fea-
tures embedded in intensity values but also the shape and
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Fig. 6. Road marking extraction results using different methods. (a) Raw road surface, (b) Cheng et al. [29], (c) Ma et al. [21], (d) Wen et al. [25], (e) ours,
and (f) manually labeled reference data.

TABLE III

ROAD MARKING EXTRACTION RESULTS BY USING DIFFERENT METHODS

position information of the road markings, which makes our
proposed model outperformed than other methods in terms of
correctness and completeness. However, some road markings
were not correctly segmented from the generated intensity
image patches because of the occlusions of other road users

(e.g., vehicles and cyclists) during the data acquisition of
MLS systems. Additionally, uneven intensity distribution and
varying illumination conditions from different road scenes also
make effective and accurate road marking extraction challeng-
ing. On the whole, the proposed U-shaped capsule network
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Fig. 7. Road marking classification results by using Softmax loss and
L-Softmax loss with different routing iterations.

designs a promising solution for road marking extraction from
massive and unordered 3D MLS point clouds.

C. Road Marking Classification Results

The experimental results of the hybrid capsule-based road
marking classification neural network were evaluated based on
the misclassification rate (MCR), which is calculated by:

MCR =
�N

i=1 Ti

N
(12)

where N is the total number of road marking pixels.
Specifically, T i = 0, if the road marking is correctly classified.
Otherwise, T i = 1. The proposed road marking classification
method was evaluated in urban roads, highways, and under-
ground garages.

Accurate and robust road marking classification is essential
for fully autonomous driving to design efficient navigation
paths and avoid accidents in changing road conditions. Based
on the proposed hybrid capsule-based road marking classi-
fication method, the extracted road markings were further
classified into seven categories, i.e., lane line, dashed line,
zebra crossing, straight arrow, turn arrow, diamond, and text.
Fig. 3 details the optimal network configurations through
computational complexity and classification accuracy analy-
sis. In the revised dynamic routing algorithm, the number
of routing iterations, namely r, plays a significant role to
balance between classification performance and computational
complexity. Accordingly, multiple experiments were carried
out to verify the robustness and convergence of the revised
dynamic routing algorithm with different iterations. In fact,
more routing iterations usually strength the classification per-
formance but results in overfitting problems.

Additionally, to emphasize intra-class compactness and
overcome inter-class imbalance, the L-Softmax was adopted in
this paper to guide weight updates in the hybrid capsule-based
classification architecture. By calculating different MCRs after
800 epochs from an urban road scene, Fig. 7 illustrates
the classification performance of different loss functions
(i.e., standard Softmax loss and L-Softmax loss) with vary-
ing routing iterations. Intuitively, the standard Softmax loss

TABLE IV

THE MISCLASSIFICATION RATES OF THE PROPOSED CLASSIFICATION
NETWORK IN DIFFERENT ROAD SCENES

and L-Softmax loss deliver minimal MCRs of 3.67% and
2.33%, respectively, by defining the routing iterations r as 4.
Consequently, the L-Softmax loss function can achieve a lower
misclassification rate compared with the standard Softmax
loss, which demonstrates the L-Softmax loss function can
significantly boost the capsule-based classification network
performance by using mobile LiDAR point clouds.

Table IV shows that the proposed hybrid capsule-based
network can achieve an average of 3.42% MCR, which demon-
strates that most road markings were correctly classified in
three road scenes. Fig. 8 shows the road marking classification
results from a complex urban road environment. This scenario
is a typical urban road that consists of zebra crossings,
lane lines, diamonds, and texts, etc. Various colors denote
different road marking types, while the misclassified markings
are identified with black boxes. As can be seen, most road
markings were correctly classified with a 2.16% MCR. Some
lane lines are broken due to moving overloaded trucks and
late road maintenance, resulting in broken lane lines similar
to dashed lines. Therefore, such lane lines were inaccurately
grouped into dashed lines. Additionally, some zebra crossings
and straight arrows were misclassified as lane lines due to
the erroneous results obtained in the process of road marking
extraction. Similarly, Fig.9 indicates the classification results
from highway point cloud data with a 4.87% MCR. Intuitively,
the proposed model is capable of correctly classifying most
road markings. However, some lane lines were incorrectly
identified as dashed lines, resulting from the incomplete
extraction of road markings. Additionally, the shapes of some
broken lane lines are very similar to straight arrows, which
also leads to false classification results.

Moreover, we evaluated the road marking classification
performance of the proposed hybrid capsule-based network in
underground garage scenes. As shown in Fig. 10, our proposed
method can deliver satisfactory classification results from low-
intensity contrast point clouds in poor illumination and GNSS-
signal denied environments. However, some lane lines were
misclassified into dashed lines, because these lane lines were
not thoroughly extracted at the stage of road marking extrac-
tion. The hybrid capsule road marking classification model
regarded them as independent dashed lines and incorrectly
trained. Besides, a turn arrow was incorrectly identified as
straight arrows since the shape of this turn arrow looks much
like straight arrows. The MCR of road marking classification
in underground garage environments is 3.23%.

To further demonstrate the effectiveness and robustness of
our proposed models, we also evaluated the road marking
extraction and classification performance by using low-quality
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Fig. 8. Road marking classification results from an urban road scene. (a) Classification results, and (b) manually labeled reference data.

Fig. 9. Road marking classification results from a highway road scene. (a) Classification results, and (b) manually labeled reference data.

point cloud data. Accordingly, Figs. 11(a)-(c) presents the road
surface with low-intensity contrast between road markings and
their surrounding environments, the generated intensity image
with diverse point densities, and the road surface with worn
and incomplete road markings, respectively. Figs. 11(d)-(f)
indicates the corresponding road marking extraction and clas-
sification results, respectively. As can be perceived, the pro-
posed capsule-based deep learning networks are capable of
effectively extracting and classifying road markings from low-
quality input data. On the whole, the proposed capsule-based

networks can deliver accurate road marking extraction and
classification results on complex road environments, which
provides a promising solution in fully autonomous driving and
HD map creation.

D. Computational Efficiency Evaluation

In this paper, the proposed framework mainly contains three
modules: data-preprocessing, U-shaped capsule network for
road marking extraction, and hybrid capsule network for road
marking classification. Table V lists the computational cost
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Fig. 10. Road marking classification results from an underground garage scene. (a) Classification results, and (b) manually labeled reference data.

Fig. 11. Road marking extraction and classification results on low-quality
data. (a) road surface with low-intensity contrast between road markings and
their surrounding environments, (b) generated intensity image with varied
point densities, (c) road surface with worn and incomplete road markings, and
(d)-(f) are corresponding road marking extraction and classification results.

TABLE V

THE COMPUTATIONAL EFFICIENCY OF THE PROPOSED

METHODS IN DIFFERENT ROAD SCENES

for each module, as well as the average time complexity
across all over three road scenes. The average processing
time of data-preprocessing, road marking extraction, and road

marking classification are 36.47s, 3.07s, 2.58s, respectively.
In fact, most of the processing time is spent in the data-
preprocessing phase. Accordingly, multiple threads and GPU
parallel computing techniques can be further applied to not
only boost the computational efficiency in the process of 3D
point cloud projection but dramatically accelerate capsule-
based networks.

VI. CONCLUSION

This paper handles the dilemmas related to thresholding-
based methods for road marking extraction and classification.
Such dilemmas result in robustness reduction and compu-
tational complexity when dealing with 3D unordered and
high-density point clouds captured by MLS systems, most
remarkably due to its varying point density and intensity,
as well as low-intensity contrast between road markings
and their neighboring pavements. In this paper, we have
designed two novel capsule-based network architectures for
road marking extraction and classification, respectively, from
highly dense MLS point clouds with an irregular data format.
Moreover, a road marking dataset containing both 3D point
clouds collected by both MLS and BLS systems and manually
labeled reference data is created from three types of road
environments, including urban roads, highways, and under-
ground garages, while the proposed models were accordingly
evaluated by estimating robustness and efficiency using this
self-built dataset.

In the extraction process, we designed a U-shaped
capsule-based network to extract road markings using 2D
georeferenced intensity images. The experimental results
demonstrated that our proposed model is capable of effectively
encoding high-level features (e.g., changing intensity and
pose information) with significantly enhanced road marking
extraction performance. The comparative study indicated that
our developed method achieved better performance than other
thresholding-based and U-Net based methods, while delivered

Authorized licensed use limited to: University of Waterloo. Downloaded on May 08,2020 at 14:48:04 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

an average of precision, recall, and F1-score of 94.11%,
90.52%, and 92.43%, respectively, in three different road
scenes.

In the classification process, a hybrid capsule-based net-
work was proposed to classify seven types of road markings.
Compared to those manually defined rule-based classifica-
tion methods, our proposed method can automatically learn
more salient features embedded in intensity values, as well
as the shape information of the road markings by using a
revised dynamic routing algorithm and powerful L-Softmax
loss function. The quantitative evaluation indicated that the
hybrid capsule-based network achieved an average of 3.42%
MCR in changing road environments.

In conclusion, our experimental results have demonstrated
that capsule-based networks are capable of effectively extract-
ing inherent features from massive MLS point clouds and
achieving superior performance in road marking extraction
and classification tasks. For further research, we are dedicated
to developing a point-wise end-to-end deep learning frame-
work for robust and effective road marking extraction and
classification.
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